7.1 Recursieve formules [1]

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "7.1 Recursieve formules [1]"

Transcriptie

1 7.1 Recursieve formules [1] Voorbeeld: 8, 12, 16, 20, 24, is ee getallerij. De getalle i de rij zij de terme. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is de vijfde term (u 4 ) Elke term is 4 groter da de voorafgaade term. u 0 = 8 u 1 = u (=12) u 2 = u (=16) u 3 = u (=20) u 4 = u (=24) Algemee: u = u met u 0 = 8 (recursieve formule) Met de GR: 8 ENTER ANS + 4 ENTER ENTER. 1

2 7.1 Recursieve formules [2] Voorbeeld 1: Gegeve is de getallerij 1, 1, 2, 3, 5, 8, Dit is de rij va Fiboacci. Elke term is de som va de twee voorafgaade terme. Algemee: u = u -1 + u -2 met u 0 = 1 Bereke de 12 de term va deze rij Stap 1: Zet eerst i het MODE meu de optie SEQ aa. Stap 2: Druk op de kop Y= De idelig va het scherm is u aders da ormaal. 2

3 7.1 Recursieve formules [2] Voorbeeld 1: Bereke de 12 de term va deze rij Stap 3: Vul u het volgede i: Bij Mi 0 Bij u() u(-1) + u(-2) Bij u(mi) {1, 1} Op de GR krijg je: u via de toets 2ND 7 via de toets die je ormaal gebruikt voor de variabele X { via de toets 2ND ( } via de toets 2ND ) Je moet bij u(mi) de eerste twee terme ivulle. Vul eerst de tweede term i e da de eerste. Is maar éé term odig, da hoef je gee { } te gebruike. 3

4 7.1 Recursieve formules [2] Voorbeeld 1: Bereke de 12 de term va deze rij Stap 4: De uitkomst ku je vide via 2ND GRAPH De 12 de term (u 11 ) heeft de waarde 144. Als je i het ormale scherm u(11) krijg je ook de uitkomst 144. Voorbeeld 2: Vaaf welke term geldt bij de Rij va Fiboacci: u > ? Uit de tabel volgt: u 24 = u 25 = Vaaf de 26 ste term zij er waarde groter da

5 7.1 Recursieve formules [3] Voorbeeld: Op 1 maart zit i ee opslagtak liter water. Elke dag wordt 30% va de i de tak aawezige hoeveelheid voor zuiverig overgeheveld aar ee adere tak. Direct daara wordt de eerste tak bijgevuld met liter water. De eerste keer gebeurt dat op 2 maart. Stel bij deze situatie de recursieve formule op va de hoeveelheid water (W ) e oderzoek beede welke greswaarde de hoeveelheid water i de tak iet komt. W = 0,7W met W 0 = Voer de formule i op de GR zoals je dat bij de Rij va Fiboaci hebt geleerd. Uit de tabel volgt u dat de greswaarde m 3 water is. 5

6 7.2 Directe formules[1] 8, 12, 16, 20, 24, is ee rekekudige rij (rr), wat het verschil tusse twee opeevolgede terme (v) is costat. u 0 (= 8) u 1 = u 0 + v = (8 + 4 = 12) u 2 = u 1 + v = u 0 + v + v = u 0 + 2v = ( = 16) u 3 = u 2 + v = u 0 + 3v (= = 20) u 4 = u 3 + v = u 0 + 4v (= = 24) Algemee: u = u 0 + v (direct) u = u -1 + v met u 0 = getal (recursief) 6

7 7.2 Directe formules[1] Voorbeeld 1: 8, 12, 16, 20, 24, De hoeveelste term is 388? Directe formule = Los op: = = 380 = 95 Dus u 95 = 388, dus de 96 ste term is 388. Let op: De eerste term is u 0 De tweede term is u 1 De 96-ste term is u 95 7

8 7.2 Directe formules[2] Bij ee recursieve formule ku je ee term allee uitrekee door eerst alle voorgaade terme te berekee. Bij ee directe formule ka dit rechtstreeks. Voorbeeld 1: 8, 12, 16, 20, 24, Recursieve formule: u = u met u 0 = 8 Directe formule: u = De egede term (u 8!!!) = = 40 Voorbeeld 2: Bereke de som va de eerste zes terme va de rij met de directe formule u = Er wordt u dus gevraagd: Bereke u 0 + u 1 + u 2 + u 3 + u 4 + u 5 = 5 k0 u k = = k0 u k 8

9 7.2 Directe formules[2] Voorbeeld 2: Tel de eerste 29 terme va de rij u = op. Som = u 0 + u 1 + u u 27 + u 28 = Som = Som = som = som = Som = 0, = 1856 Let op 1: 29 (= ) = aatal terme dat je optelt Let op 2: 128 (= = u 0 + u 28 ) Algemee: Som = 0,5 aatal terme (eerste term + laatste term) Som = 0,5 ( + 1) (u 0 + u ) = 0,5 ( + 1) (u 0 + u ) k0 u k 9

10 7.2 Directe formules[2] Voorbeeld 1: Gegeve is de rekekudige rij u = Bereke 15 k0 u k Voor het berekee va de som va de eerste 16 terme gebruike we de formule: = 0,5 ( + 1) (u 0 + u ) 15 k0 u k = 0,5 (15 + 1) (u 0 + u 15 ) = 0,5 16 (4 + 94) = 0, =784 Let op: Als gevraagd wordt om de som va de eerste zestie terme te berekee is dit hetzelfde als 15 k0 u k 10

11 7.2 Directe formules[3] Gegeve is de rij getalle: 64, 96, 144, 216, 324, Elke term is te vide door de voorgaade term te vermeigvuldige met 1,5 Deze rij heet ee meetkudige rij (mr), omdat elke term ee bepaalde factor [r] groter (of kleier) is da de vorige term. u 0 (= 64) u 1 = u 0 r (= 64 1,5 = 96) u 2 = u 1 r = u 0 r r = u 0 r 2 (= 64 1,5 2 = 144) u 3 = u 2 r = u 0 r 3 (= 64 1,5 3 = 216) u 4 = u 3 r = u 0 r 4 (= 64 1,5 4 = 324) De directe formule wordt u: u = 64 1,5 De recursieve formule wordt u: u = 1,5 u -1 met u 0 = 64 Algemee: u = u 0 r (directe formule) u = r u -1 met u 0 = getal (recursieve formule) 11

12 7.2 Directe formules[3] Voorbeeld: Va ee meetkudige rij is u 6 = e u 11 = Stel de directe formule va u op. u 6 r 5 = u 11. Hieruit volgt: r u u r 5 = 32 geeft r De directe formule wordt u: Ivulle va u 6 = geeft: u u r u 0 u u 2 u u

13 7.2 Directe formules[4] Bereke de som va de eerste + 1 terme va de meetkudige rij: u = r u -1 som u0 u1 u2... u 1 u r som r ( u0 u1 u2... u 1 u ) r som r u0 r u1 r u2... r u 1 r u r som u u u... u u som u0 u1 u2... u 1 u r som u u u... u u som r som u som(1 r) u0 u 1 u0 u som 1 1r 1 u0u 0r som 1r 1 u0(1 r ) uk 1r k u 1 13

14 7.2 Directe formules[4] De som va ee meetkudige rij u met factor r is te berekee met de volgede formule: aatal terme eerste term(1 factor ) som 1 factor 1 u0(1 r ) uk 1r k0 Voorbeeld 1: Gegeve is de meetkudige rij u = 20 1,2 Bereke de k0 u k k0 u k (1 1,2 ) 20(1 1,2 ) 198,60 11,2 11,2 Let op: Als gevraagd wordt om de som va de eerste zes terme te berekee is dit hetzelfde als k0 u k 14

15 7.2 Directe formules[4] De som va ee meetkudige rij u met factor r is te berekee met de volgede formule: aatal terme eerste term(1 factor ) som 1 factor 1 u0(1 r ) uk 1r k0 Voorbeeld 2: Gegeve is de meetkudige rij u = 20 1,2 Bereke de k0 u k k0 u k u (1 r ) 20(1 1,2 ) 1r 11,2 1 20(1 1,2 ) 0, , ,2 1, , (1 1,2 ) 15

16 7.3 Lieaire differetievergelijkige va de eerste orde [1] Voorbeeld: Gegeve is de recursieve formule: u = 0,4u Dit is ee formule va de vorm u = a u -1 + b Dit is ee differetievergelijkig va de eerste orde. Er is bij deze formule ee lieair verbad tusse u e u -1. Ee dergelijke formule wordt ee lieaire differetievergelijkig geoemd. Als je deze formule ivoert, zoals geleerd i hoofdstuk 7.1 zul je zie dat u op de duur adert tot 233,33. Dit is de greswaarde va deze recursieve formule. 16

17 7.3 Lieaire differetievergelijkige va de eerste orde [1] Voorbeeld: Met behulp va de GR kue we ee tijdgrafiek va deze differetievergelijkig make. Op de horizotale -as, staat de tijd. Op de verticale as, de hoeveelheid. Stap 1: Vul de recursieve formule i bij Y = i de GR. Neem als startwaarde: u 0 = 50. Stap 2: Vul i het vester WINDOW het volgede i: Mi = 0 Max = 15 Xmi = 0 Xmax = 15 Ymi = 0 Ymax =

18 7.3 Lieaire differetievergelijkige va de eerste orde [1] Voorbeeld: Met behulp va de GR kue we ee tijdgrafiek va deze differetievergelijkig make. Op de horizotale -as, staat de tijd. Op de verticale as, de hoeveelheid. Stap 3: GRAPH geeft u de tijdgrafiek. 18

19 7.3 Lieaire differetievergelijkige va de eerste orde [2] Voorbeeld 1: Gegeve is de differetievergelijkig u = 2u met u 0 = 1. u 0 =1 u 1 =3 u 2 =7 u 3 =15 u 4 =31 u 5 =63 u 1 = 3 u 2 = 7 u 3 = 15 u 4 = 31 u 5 = 63 u 6 = 127 Je krijgt u de puterij (1, 3) (3, 7) (7, 15) (15, 31) (31, 63) (63, 127) Bij de rij u = 2u geldt u steeds: u (y-coördiaat) e u -1 (x-coördiaat). De pute uit de tabel ligge dus op de lij y = 2x

20 7.3 Lieaire differetievergelijkige va de eerste orde [2] Voorbeeld 2: Gegeve is de differetievergelijkig u = 1,5u met u 0 = 1. De pute va deze differetievergelijkig ligge op de lij y = 1,5x + 1. Hieroder staat hoe je bij ee bepaalde startwaarde u 0, sel de adere pute va de lij kut tekee. 20

21 7.3 Lieaire differetievergelijkige va de eerste orde [2] Voorbeeld 2: Gegeve is de differetievergelijkig u = 1,5u met u 0 = 1. De pute va deze differetievergelijkig ligge op de lij y = 1,5x + 1. Ee adere, eevoudigere maier, is de oderstaade: 21

22 7.3 Lieaire differetievergelijkige va de eerste orde [2] Voorbeeld 3: Gegeve is de differetievergelijkig u = 2u -1-1 met u 0 = 1,5. Liks is de webgrafiek va deze differetievergelijkig geteked. 22

23 7.3 Lieaire differetievergelijkige va de eerste orde [3] De webgrafiek va de differetievergelijkig u = au -1 + b bevat de lije y = ax + b e y = x. De x-coördiaat va het sijput va deze lije is als volgt te berekee: ax + b = x x-ax = b (1 a)x = b b u = x = (Dit is het dekput va de rij) 1 a Afhakelijk va de startwaarde u0 Krijg je u: - ee costate rij (situatie a); - ee covergerede rij met ee stabiel evewicht (situatie b e c); - ee divergerede rij met ee istabiel evewicht (situatie d). 23

24 7.3 Lieaire differetievergelijkige va de eerste orde [3] Voorbeeld: Maak met behulp va de GR ee webgrafiek va de differetievergelijkig: u = -0,6u met u 0 = 1. Stap 1: Vul de differetievergelijkig i bij Y = Stap 2: Selecteer bij 2ND ZOOM de optie WEB. 24

25 7.3 Lieaire differetievergelijkige va de eerste orde [3] Voorbeeld: Maak met behulp va de GR ee webgrafiek va de differetievergelijkig: u = -0,6u met u 0 = 1. Stap 3: Vul bij WINDOW het volgede i: Stap 4: 2ND TRACE Optie 1: VALUE geeft de twee lije, die bij deze webgrafiek hore. Vul voor het getal 10 i (e herhaal de vierde stap daara voor de getalle 11 e 12). 25

26 7.3 Lieaire differetievergelijkige va de eerste orde [3] Voorbeeld: Maak met behulp va de GR ee webgrafiek va de differetievergelijkig: u = -0,6u met u 0 = 1. Stap 5: Bij de waarde 10 krijg je uitkomste rod de 10. Dit is ook bij 11 e 12 het geval. Hieruit volgt het vermoede, dat er sprake is va ee stabiel evewicht bij 10. Ee berekeig geeft het volgede dekput: b 16 u 10 1a 10,6 26

27 7.3 Lieaire differetievergelijkige va de eerste orde [4] Voorbeeld 1: Pieter stort op 1 jauari 2000 ee bedrag va 750 euro op ee spaarrekeig. Elk volged jaar stort hij 500 euro op deze rekeig. Hij krijgt 5% rete per jaar. Het bedrag i euro s dat a jaar op zij rekeig staat is u. u 0 = 750 u 1 = 1,05u = 1, u 2 = 1,05u = 1,05 (1, ) = 1, , u 3 = 1,05u = 1,05 (1, , ) = 1, , , = 1, = 1, = 1, k0 5001,05 k , , ,05 1 1,

28 7.3 Lieaire differetievergelijkige va de eerste orde [4] Voorbeeld 1: Pieter stort op 1 jauari 2000 ee bedrag va 750 euro op ee spaarrekeig. Elk volged jaar stort hij 500 euro op deze rekeig. Hij krijgt 5% rete per jaar. Het bedrag i euro s dat a jaar op zij rekeig staat is u. u 3 = 1,05u = 1, ,05 1 1,05 3 Algemee geldt u: u = 1, ,05 1 1,05 I dit voorbeeld wordt uitsluited gekeke aar het bedrag dat aa het begi va het jaar op ee spaarrekeig staat. Da is er sprake va ee discreet model. Je kut iet berekee hoeveel er op ee ader tijdstip op deze rekeig staat met dit model. Omdat de tijd ee rol speelt is het ee discreet dyamisch model. 28

29 7.3 Lieaire differetievergelijkige va de eerste orde [4] Algemee: Gegeve is de differetievergelijkig u = au -1 + b met begiterm u 0 Uit voorbeeld 1 volgt: b ba u u0 a 1 a b ba u u0 a 1a 1a b b u a u0 a 1a 1a u u a u0 a u 29

30 7.4 Prooi-roofdiermodelle [1] Voorbeeld: Ga uit va ee afgeslote gebied waari 700 prooidiere e 200 roofdiere leve. De diere beïvloede elkaar iet. De populatie prooidiere eemt per maad met 25% toe. De populatie roofdiere eemt per maad met 3% af. P t = P t 1 + P met P = 0,25P t 1 e P 0 = 700. R t = R t 1 + R met R = -0,03R t 1 e R 0 = 200. De groeivoet is bij de prooidiere de factor 0,25 e bij de roofdiere de factor -0,03. Doordat de beide soorte diere elkaar beïvloede, passe we het model aa zodat de groeivoete veradere. P t = P t 1 + P met P = (0,25-0,015R t 1 )P t 1 e P 0 = 700. P t = P t 1 + (0,25-0,015R t 1 )P t 1 = 1,25P t 1-0,015R t 1 P t 1 Naarmate het aatal roofdiere groter wordt zal de groeivoet va de prooidiere kleier worde e op de duur zelfs egatief worde. 30

31 7.4 Prooi-roofdiermodelle [1] Voorbeeld: R t = R t 1 + R met R = (-0,03 + 0,00004P t 1 )R t 1 e R 0 = 200. R t = R t 1 + (-0,03 + 0,00004P t 1 )R t 1 = 0,97R t 1 + 0,00004P t 1 R t 1 Naarmate het aatal prooidiere groter wordt zal de groeivoet va de roofdiere groter worde e op de duur zelfs positief worde. De prooi-roofdiercyclus is u same te vatte met het volgede stelsel va differetievergelijkige: P t = 1,25P t 1-0,015R t 1 P t 1 R t = 0,97R t 1 + 0,00004P t 1 R t 1 P 0 = 700 e R 0 = 200. Als je het bovestaade stelsel va differetievergelijkig i je GR wilt plotte, moet je bij 2ND ZOOM de optie uv selectere. Noteer P t als u(), R t als v(), Als P + R = 0 is er sprake va ee geslote systeem, waarbij het totaal aatal diere steeds gelijk blijft. 31

32 7.4 Prooi-roofdiermodelle [2] Voorbeeld: Gegeve is het volgede stelsel va differetievergelijkige: P t = 0,8P t-1 + 0,04S t-1 S t = 0,2P t-1 + 0,96S t-1 Met P 0 = 1,2 e S 0 = 3,9 e t = 0 i P t = het aatal iwoers i miljoee op het plattelad. S t = het aatal iwoers i miljoe i de stad. Er is sprake va ee geslote systeem. 80% va de mese die i ee bepaald jaar op het plattelad woot, woot daar het volgede jaar og steeds. De overige 20% is verhuisd aar de stad. 96% va de mese die i ee bepaald jaar i de stad woot, woot daar het volgede jaar og steeds. De overige 4% is verhuist aar het plattelad. Er geldt u voor elke t: P t + S t = 5,1 32

33 7.4 Prooi-roofdiermodelle [2] Voorbeeld: Gegeve is het volgede stelsel va differetievergelijkige: P t = 0,8P t-1 + 0,04S t-1 S t = 0,2P t-1 + 0,96S t-1 Met P 0 = 1,2 e S 0 = 3,9 e t = 0 i Stel de directe formules va P t e S t op. Stap 1: Schrijf P t als ee recursieve formule: Er geldt u voor elke t: P t + S t = 5,1 (e dus ook P t-1 + S t-1 = 5,1 S t-1 = 5,1 - P t-1 Hierdoor volgt P t = 0,8P t-1 + 0,04S t-1 = 0,8P t-1 + 0,04(5,1 - P t-1 ) = 0,8P t-1 + 0,204 0,04 P t-1 = 0,76P t-1 + 0,204 met a = 0,76 e b = 0,204 33

34 7.4 Prooi-roofdiermodelle [2] Voorbeeld: Gegeve is het volgede stelsel va differetievergelijkige: P t = 0,8P t-1 + 0,04S t-1 S t = 0,2P t-1 + 0,96S t-1 Met P 0 = 1,2 e S 0 = 3,9 e t = 0 i Er geldt: P t = 0,76P t-1 + 0,204 met a = 0,76 e b = 0,204 Stap 2: Schrijf P t als ee directe formule: Dit is ee recursieve formule. Deze ka omgeschreve worde aar ee directe formule m.b.v. de regel va pagia 134 va het boek: t b 0,204 Pt P a ( P0 P) met P 0,85 1 a 1 0,76 P t t t t 0,85 0,76 1,20,76 0,85 t P 0,85 0,350,76 34

35 7.4 Prooi-roofdiermodelle [2] Voorbeeld: Gegeve is het volgede stelsel va differetievergelijkige: P t = 0,8P t-1 + 0,04S t-1 S t = 0,2P t-1 + 0,96S t-1 Met P 0 = 1,2 e S 0 = 3,9 e t = 0 i Op de duur woe er 0,85 miljoe mese op het plattelad e 5,1 0,85 = 4,25 miljoe i de stad. Stap 3: Stel de directe formule va P t op: Ivulle va P 0,85 0,35 0,76 t t i S t = 5,1 P t geeft: t S 5,1 0,85 0,350,76 4,25 0,350,76 t t 35

Rijen. 6N5p

Rijen. 6N5p Rije 6N5p 0-03 Rije Ileidig I de wiskude werke we vaak met formules e/of fucties die elke mogelijke waarde aa kue eme. Als bijvoorbeeld f( x) = 5x + 5x 3, da ku je voor x (bija) elke waarde ivulle e ka

Nadere informatie

Convergentie, divergentie en limieten van rijen

Convergentie, divergentie en limieten van rijen Covergetie, divergetie e limiete va rije TI-spire e rije 7N5p GGHM 22-23 Eigeschappe rekekudige rij b = begiwaarde v = verschil tusse twee opeevolgede terme recursieve formule: u = u + v met u = b directe

Nadere informatie

Videoles Discrete dynamische modellen

Videoles Discrete dynamische modellen Videoles Discrete dyamische modelle Discrete dyamische modelle Orietatie Algebraisch Algebraisch/ umeriek Numeriek Maak de volgede rijtjes af: Puzzele met rijtjes a. 2 4 6 8 10 - b. 1 2 4 8 16 - c. 1 2

Nadere informatie

1. Recursievergelijkingen van de 1 e orde

1. Recursievergelijkingen van de 1 e orde Recursievergelijkige va de e orde Rekekudige rije Het voorschrift va ee rekekudige rij ka gegeve wordt met de volgede recursievergelijkig: u = u + b Idie we deze vergelijkig i de vorm u = u u = b otere

Nadere informatie

Rijen met de TI-nspire vii

Rijen met de TI-nspire vii Rije met de TI-spire vii De tore va Pisa Me laat ee bal valle vaaf de tore va Pisa(63m hoog) Na elke keer stuitere haalt de bal og ee vijfde va de voorgaade hoogte. Gevraagd zij: a) De hoogte a de e keer

Nadere informatie

Hoofdstuk 1 - Rijen ) = bladzijde ; voor x = 11 is y = = 55. te rekenen omdat die ook met hele stappen toeneemt.

Hoofdstuk 1 - Rijen ) = bladzijde ; voor x = 11 is y = = 55. te rekenen omdat die ook met hele stappen toeneemt. Hoofdstuk - Rije bladzijde V-a Als x steeds met toeeemt, da eemt y met toe. b Voor x is y + 5 ; voor x is y + 55. c De waarde va x eemt met hele stappe toe. De waarde va y is da makkelijk uit te rekee

Nadere informatie

2. Limiet van een rij : convergentie of divergentie

2. Limiet van een rij : convergentie of divergentie 2. Limiet va ee rij : covergetie of divergetie 2. Eigelijke of eidige limiet 2.. Voorbeeld I ee bos staa 4 bome. De diest bosbeheer zal jaarlijks 2% bome kappe e ieuwe aaplate. Zal het bos verdwije? Zal

Nadere informatie

d 25, 35, 47 of27, 43, 69 b 2, 27, 10240, 100, e = 287 u( n) = 243 ( ) n

d 25, 35, 47 of27, 43, 69 b 2, 27, 10240, 100, e = 287 u( n) = 243 ( ) n Netwerk 4-5 vwo wiskude D Hoofdstuk 8 uitwerkige Hoofdstuk 8 Ker a 3, 37, 43 c 5, 3, 49 b, 3, d 5, 35, 47 of7, 43, 9 a,, 3, 5, 7 d 0,,,, 0 b, 7,, 3, 8 e 35, 35, 35, 35, 35 c 5, 0, 0, 40,80 f 0,, 8, 7,

Nadere informatie

8.0 Voorkennis ,93 NIEUW

8.0 Voorkennis ,93 NIEUW 8.0 Voorkennis Voorbeeld: In 2014 waren er 12.500 speciaalzaken. Sinds 2012 is het aantal speciaalzaken afgenomen met 7%. Bereken hoeveel speciaalzaken er in 2012 waren. Aantal 2014 = 0,93 Aantal 2012

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2008-II

Eindexamen wiskunde A1-2 vwo 2008-II Groepsfoto s Alle mese kippere met hu oge. Daardoor staa op groepsfoto s vaak ekele persoe met geslote oge. Sveso e Bares hebbe oderzocht hoeveel foto s je moet make va ee groep va persoe om 99% kas te

Nadere informatie

Een meetkundige constructie van de som van een meetkundige rij

Een meetkundige constructie van de som van een meetkundige rij Ee meetkudige costructie va de som va ee meetkudige rij [ Dick Kliges ] Iets verder da Euclides deed Er wordt door sommige og wel ees gedacht dat Euclides (hij leefde rod 300 v. Chr.) allee over meetkude

Nadere informatie

Werktekst 1: Een bos beheren

Werktekst 1: Een bos beheren Werktekst : Ee bos behere Berekeige met rije op het basisscherm Op ee perceel staa 3000 kerstbome. Ee boomkweker moet beslisse hoeveel bome er jaarlijks gekapt kue worde e hoeveel ieuwe aaplat er odig

Nadere informatie

Hoofdstuk 1 Rijen en webgrafieken

Hoofdstuk 1 Rijen en webgrafieken Hoofdstuk Rije e wegrafieke Voorkeis: Rije ladzijde V-a u 7 + v +, c De vergelijkig 7 + +, oplosse geeft, e dus 8. Ze hee eide 8 rode gelope. V- u, u met u V-a u + ( ) + + s u + u + u +... + u + + 8 +

Nadere informatie

Praktische opdracht: Complexe getallen en de Julia-verzameling

Praktische opdracht: Complexe getallen en de Julia-verzameling Praktische opdracht: Complexe getalle e de Julia-verzamelig Auteur: Wiebe K. Goodijk, Zerike College Hare Beodigde Voorkeis: 1 = i Het complexe vlak. Notatie: z = a + bi of z = r(cosϕ + i si ϕ) Regel va

Nadere informatie

We kennen in de wiskunde de volgende getallenverzamelingen:

We kennen in de wiskunde de volgende getallenverzamelingen: Masteropleidig Fiacial Plaig Kwatitatieve Methode Relevate wiskude We kee i de wiskude de volgede getalleverzamelige: De atuurlijke getalle: N = {0,,,,4, } De gehele getalle: Z = {, -,-,-,0,,,, } (egels:

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame HAVO 2013 tijdvak 2 woesdag 19 jui 13.30-16.30 uur wiskude A Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 21 vrage. Voor dit exame zij maximaal 80 pute te behale. Voor elk vraagummer

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eideame wiskude B vwo 200 - II Sijde met ee hoogtelij Op ee cirkel kieze we drie vaste pute, B e C, waarbij lijstuk B gee middellij is e put C op de kortste cirkelboog B ligt. Ee put doorloopt dat deel

Nadere informatie

Periodiciteit bij breuken

Periodiciteit bij breuken Periodiciteit bij breuke Keuzeodracht voor wiskude Ee verdieede odracht over eriodieke decimale getalle, riemgetalle Voorkeis: omrekee va ee breuk i ee decimale vorm Ileidig I deze odracht leer je dat

Nadere informatie

Bevolkingsevolutie en prijsevolutie: rijen en de TI-89

Bevolkingsevolutie en prijsevolutie: rijen en de TI-89 Bevolkigsevolutie e prijsevolutie: rije e de TI-89 Joha Deprez, EHSAL Brussel - K.U. Leuve. Ileidig Deze tekst is bedoeld als keismakig met de symbolische rekemachie TI-89 va Texas Istrumets. We geve gee

Nadere informatie

Steekproeftrekking Onderzoekspopulatie Steekproef

Steekproeftrekking Onderzoekspopulatie Steekproef Steekproeftrekkig I dit artikel worde twee begrippe beschreve die va belag zij voor het uitvoere va ee oderzoek. Het gaat om de populatie va het oderzoek e de steekproef. Voor wat betreft steekproeve lichte

Nadere informatie

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek.

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek. 006 Wolters-Noordhoff bv Groige/Houte De steekproefomvag Ee toelichtig op het belag e het berekee va de steekproefomvag i marktoderzoek. Ihoud 1 Ileidig Eerst ekele defiities 3 Steekproefomvag e respose

Nadere informatie

2.1 Lineaire formules [1]

2.1 Lineaire formules [1] 2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Rijen en reeksen. Mei 2008. Remy van Bergen Peter Mulder

Rijen en reeksen. Mei 2008. Remy van Bergen Peter Mulder Rije e reekse Keuzeoderwerp Atheeum 5 wiskude B e B Mei 008 Remy va Berge Peter Mulder Dit boekje gaat over rije e reekse. Wiskudige rije! Rije worde i de wiskude op verschillede maiere gedefiieerd. Met

Nadere informatie

Examen PC 2 onderdeel 4A

Examen PC 2 onderdeel 4A Exame PC 2 oderdeel 4A Istructieblad Betreft: exame: PC 2 oderdeel 4A leergag 3 oderdeel: Fiaciële Rekekude datum: 30 mei 2012 tijdsduur: 90 miute (09:30-11:00 uur) Deze aawijzige goed leze voor u met

Nadere informatie

Deel A. Breuken vergelijken 4 ----- 12

Deel A. Breuken vergelijken 4 ----- 12 Deel A Breuke vergelijke - - 0 Breuke e brokke (). Kleur va elke figuur deel. Doe het zo auwkeurig mogelijk.. Kleur va elke figuur deel. Doe het telkes aders.. Kleur steeds het deel dat is aagegeve. -

Nadere informatie

B C D E Welke rij is noch een Rekenkundige. noch een Meetkundige Rij? A B C D E

B C D E Welke rij is noch een Rekenkundige. noch een Meetkundige Rij? A B C D E Naam : Klas:.Datum: Ma 0 sept. 00 Rechterkat als kladblad gebruike A. 5067 De rij x, x+, x+,... is rekekudig als x gelijk is aa ) ) ) 4) 4 5) 0 6) 4 7) 8) ee getal tusse e 0 B. 57 80 De legtes a, b e c

Nadere informatie

Oefeningen op Rijen. Leon Lenders, Bree

Oefeningen op Rijen. Leon Lenders, Bree Oefeige op Rije Leo Leders, Bree I de tekst staa ee aatal oefeige i verbad met rije. De moeilijkere oefeige zij volledig uitgewerkt. Volgede oderwerpe kome aa bod : Plooie va ee blad papier Salaris Het

Nadere informatie

PARADOXEN 9 Dr. Luc Gheysens

PARADOXEN 9 Dr. Luc Gheysens PARADOXEN 9 Dr Luc Gheyses LIMIETEN, AFGELEIDEN EN INTEGRALEN: ENKELE MERKWAARDIGE VERHALEN Ileidig: verhale over ifiitesimale Ee ifiitesimaal (of ifiitesimaal kleie waarde) is ee object dat mi of meer

Nadere informatie

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten Hoofdstuk 4 Compressore Doelstellige 1. Wete dat i het geval va compressore rekeig moet gehoude worde met thermische effecte 2. Wete dat er ee gres is aa het verhoge va de druk va ee gas 3. Wete welke

Nadere informatie

VWO Wiskunde D Discrete dynamische modellen

VWO Wiskunde D Discrete dynamische modellen VWO Wiskude D 2015 3 Discrete dyamische modelle Ihoud 1 Voorbeelde va dyamische systeme 1 2 Rije 6 3 Iteratie 16 4 Limiete berekee 20 5 Gemegde opgave 35 Atwoorde 46 Bij opgave gemarkeerd met dit symbool

Nadere informatie

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100...

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100... Opgave OPGAVE 1 a. Itereer met F( ) = e als startwaarde 1 e 1. 16 1............... 16 1............... b. Stel de bae grafisch voor i ee tijdgrafiek. c. Formuleer het gedrag va deze bae. (belagrijk is

Nadere informatie

RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T212-HCMEM-H7911 Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald.

RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T212-HCMEM-H7911 Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T1-HCMEM-H7911 Voor elk oderdeel is aagegeve hoeveel pute kue worde behaald. Atwoorde moete altijd zij voorzie va ee berekeig, toelichtig of argumetatie.

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Rijen

Uitwerkingen bij 1_0 Voorkennis: Rijen Uitwerkige ij _0 Voorkeis: Rije V_ a U = 7 + U = +,5 7 + = +,5 0,5 = 4 = 8 Na 8 rode krijge ze elk,-. V_ U() =, 06 U( ) met U(0) = 500 e U() het eidedrag a jaar. V_ a u 458 8 r u 8 9 4 = = = dus 5 u5 8

Nadere informatie

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak Lesbrief 5 Recurreties e ogelijkhede Recursief gedefiieerde rije Er zij getallerije {a } die voldoe aa ee recurrete betrekkig va de vorm a +k = f(a +k ;a +k ;:::;a ) voor = ; ;:::, waardoor de + k-de term

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eidexame wiskude B vwo 200 - II Formules Vlakke meetkude Verwijzige aar defiities e stellige die bij ee bewijs moge worde gebruikt zoder adere toelichtig. Hoeke, lije e afstade: gestrekte hoek, rechte

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

De standaardafwijking die deze verdeling bepaalt is gegeven door

De standaardafwijking die deze verdeling bepaalt is gegeven door RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE VWO CM T311-VCM-H911 Voor elk oderdeel is aagegeve hoeveel pute kue worde behaald. Atwoorde moete altijd zij voorzie va ee berekeig, toelichtig of argumetatie. MAX:

Nadere informatie

Appendix A: De rij van Fibonacci

Appendix A: De rij van Fibonacci ppedix : De rij va Fiboacci Het expliciete voorschrift va de rij va Fiboacci We otere het het e Fiboaccigetal met F De rij va Fiboacci wordt gegeve door: F F F F 4 F F 6 F 7 F De volgede afleidig is gebaseerd

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 23 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 23 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eame VWO 200 tijdvak 2 woesdag 23 jui 3.30-6.30 uur wiskude B Bij dit eame hoort ee uitwerkbijlage. Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 80 pute te behale. Voor elk vraagummer staat

Nadere informatie

wiskunde A pilot vwo 2016-I

wiskunde A pilot vwo 2016-I wiskude A pilot vwo 06-I Aalscholvers e vis maximumscore 3 De viscosumptie per dag is 30 0 0,36 + 696 0, 85 ( 788 (kg)) I de maad jui is dit 30 788 (kg) Het atwoord: 38 000 ( 38 duized) (kg) Als ee kadidaat

Nadere informatie

Spelen met vormen. Tim Neefjes Bryan Tong Minh

Spelen met vormen. Tim Neefjes Bryan Tong Minh Spele met vorme Tim Neefjes Brya Tog Mih Ileidig Toe ee plei i Stockholm, Sergel s Square aa heraaleg toe was stode de architecte voor ee probleem. Het was ee rechthoekig plei e i het midde moest ee wikelcetrum

Nadere informatie

fíéê~íáéi=çóå~ãáëåüé=éêçåéëëéå=éå= åìãéêáéâé=ãéíüççéå=

fíéê~íáéi=çóå~ãáëåüé=éêçåéëëéå=éå= åìãéêáéâé=ãéíüççéå= fíéê~íáéiçóå~ãáëåüééêçåéëëéåéå åìãéêáéâéãéíüççéå oçöéêi~äáé hçéåpíìäéåë Iteratie, dyamische processe e umerieke methode Roger Labie Koe Stules www.scholeetwerk.be 005, UHasselt (België), Scholeetwerk Weteschappe

Nadere informatie

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking 1. Wat is iteratie? Iteratie is het steeds herhale va eezelfde proces, verwerkig op het bekome resultaat. INPUT Verwerkig OUTPUT Idie de verwerkig gebeurt met ee (reële) fuctie geldt voor ee startwaarde

Nadere informatie

Eindexamen wiskunde A vwo 2010 - I

Eindexamen wiskunde A vwo 2010 - I Eidexame wiskude A vwo - I Beoordeligsmodel Maratholoopsters maximumscore 3 uur, 43 miute e 3 secode is 98 secode De selheid is 495 98 (m/s) Het atwoord: 4,3 (m/s) maximumscore 3 Uit x = 5 volgt v 4,4

Nadere informatie

Huisstijl en logogebruik Associatie KU Leuven

Huisstijl en logogebruik Associatie KU Leuven Huisstijl e logogebruik Associatie KU Leuve Associatie huisstijlhadboek > Ihoudstafel 1 Ihoudstafel 1. Gebruik va de huisstijl of opame va het associatielogo 3 2. Huisstijl Associatie KU Leuve 4 2.1 Opame

Nadere informatie

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl) wiskude A, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 04 Tijdvak izede scores Verwerk de scores va de alfabetisch eerste vijf kadidate per school i het programma Wolf

Nadere informatie

Overlijden: uw rechten in Duitsland en Nederland

Overlijden: uw rechten in Duitsland en Nederland Regelige e voorzieige CODE 1.1.3.46 Overlijde: uw rechte i Duitslad e Nederlad brochure broe Bureau voor Duitse Zake, www.svb.l/bdz Ihoudsopgave Overlijde Uw rechte i Duitslad e Nederlad Deskudig e betrouwbaar

Nadere informatie

??? ??? ??? ??? ??? ???????????????

??? ??? ??? ??? ??? ??????????????? CT - Logshale ladzijde 58 a Het voordeel va de grote horizotale eeheid is dat je gemakkelijk kut iterpolere. Als je wilt wete hoe groot de edekte oppervlakte a 5 dage ku je met de optie trae gemakkelijk

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Eindexamen wiskunde B1 vwo 2007-I

Eindexamen wiskunde B1 vwo 2007-I Eidexame wiskude B vwo 007-I havovwo.l Podiumverlichtig Ee podium is 6 meter diep. Midde bove het podium hagt ee balk met tl-buize. De verlichtigssterkte op het podium is het kleist aa de rad, bijvoorbeeld

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl) Wiskude B, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 0 Tijdvak Izede scores Uiterlijk op jui de scores va de alfabetisch eerste vijf kadidate per school op de daartoe

Nadere informatie

Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc)

Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc) . Ileidig: Complexe getalle I de wiskude stelt zich het probleem dat iet bestaat voor de reële getalle of dat de vergelijkig x + 0 gee reële ulpute heeft. Om dit euvel op te losse werd het getal i igevoerd

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Discrete dynamische systemen

Discrete dynamische systemen Cahiers T 3 Europe Vlaadere r. 19 Discrete dyamische systeme Recursievergelijkige met de TI-84 Joha Deprez Discrete dyamische systeme Joha Deprez HUBrussel, Uiversiteit Atwerpe, Katholieke Uiversiteit

Nadere informatie

Examen PC 2 onderdeel 4A

Examen PC 2 onderdeel 4A Exame PC 2 oderdeel 4A Istructieblad Betreft: exame: PC 2 oderdeel 4A leergag 1 oderdeel: Fiaciële Rekekude datum: 27 mei 2011 tijdsduur: 90 miute (10.00-11.30 uur) Deze aawijzige goed leze voor u met

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodelle e ormaal verdeelde steekproefgroothede 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1.

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 009 tijdvak wiskude B, Het correctievoorschrift bestaat uit: Regels voor de beoordelig Algemee regels Vakspecifieke regels Beoordeligsmodel 5 Izede scores Regels voor de beoordelig

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Inleiding Experimentele Fysica (3NA10 of 3AA10) Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Inleiding Experimentele Fysica (3NA10 of 3AA10) Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) TECHISCHE UIVERSITEIT EIDHOVE Tetame Ileidig Experimetele Fysica (3A10 of 3AA10) Tetame OGO Fysisch Experimetere voor mior AP (3M10) d.d. 0 jauari 010 va 9:00 1:00 uur Vul de presetiekaart i blokletters

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur Eame VW 05 tijdvak doderdag 8 jui.0-6.0 uur wiskude B (pilot) Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 79 pute te behale. Voor elk vraagummer staat hoeveel pute met ee goed atwoord behaald

Nadere informatie

Toelichting bij Opbrengstgegevens VAVO 2011-2013

Toelichting bij Opbrengstgegevens VAVO 2011-2013 Toelichtig bij Opbregstgegeves VAVO 2011-2013 Ihoud Ileidig Aatal deelemers exame Kegetalle toezicht exames CE-cijfer alle vakke CE-cijfer alle vakke - tred SE-cijfer mius CE cijfer alle vakke Percetage

Nadere informatie

Machtsfuncties en wortelfuncties. Introductie 177. Leerkern 178

Machtsfuncties en wortelfuncties. Introductie 177. Leerkern 178 Ope Ihoud Uiversiteit leereeheid 6 Wiskude voor ilieuweteschappe Machtsfucties e wortelfucties Itroductie 77 Leerker 7 Machtsfucties et ee atuurlijk getal als epoet 7 Machtsfucties et ee egatief geheel

Nadere informatie

Regressie, correlatie en modelvorming

Regressie, correlatie en modelvorming Hoofdstuk 9 Regresse, correlate e modelvormg 9. Leare regresse 9.. Ileded voorbeeld De pute (,3), (,) e (3,5) lgge et op éé rechte. Hoe kue we de rechte vde de het best aaslut bj de pute? Plaats de coördate

Nadere informatie

Beoordelingsmodel VWO wiskunde B II. Een rij. Voor de limiet geldt: u 2 u. 2u u = 1. Dit schrijven als un. De (enige) oplossing: u = 1

Beoordelingsmodel VWO wiskunde B II. Een rij. Voor de limiet geldt: u 2 u. 2u u = 1. Dit schrijven als un. De (enige) oplossing: u = 1 Beoordeligsmodel VWO wiskude B 009-II Vraag Atwoord Scores Ee rij maximumscore Voor de limiet geldt: u u u u Dit schrijve als u u+ 0 De (eige) oplossig: u maximumscore 5 vervage door i u + u + + + Dit

Nadere informatie

Tabellenrapportage CQ-index Kraamzorg

Tabellenrapportage CQ-index Kraamzorg Tabellerapportage CQ-idex Kraamzorg Jauari 2011 Ihoud Pagia Algemee uitleg 1 Deelame e bevalmaad 1 De itake 2 3 Zorg tijdes de bevallig 3 4 Zorg tijdes de kraamperiode 4 10 Samewerkig e afstemmig 11 Algemee

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1. Ee ieuwe aam voor ee gekede grootheid...2

Nadere informatie

Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa Inleiding. Studiemateriaal

Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa Inleiding. Studiemateriaal Algemee iformatie http://www.wi.tue.l/wsk/oderwijs/s95 College e istructies College: woesdag uur - HG6.96 Istructies maadag uur 5-6 HG6.09 Auditorium oodgebouw, uit Opdrachte: opgave uit boek e dictaat

Nadere informatie

REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING

REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING I de voorwaarde va de REAAL Woohuisverzekerig leest u: Wat u va os mag verwachte e wat wij va u verwachte (pagia 2). Voor welke schade wij wel e iet betale

Nadere informatie

de Wageningse Methode Beknopte gebruiksaanwijzing TI84 1

de Wageningse Methode Beknopte gebruiksaanwijzing TI84 1 Algemene vaardigheden Veel knopjes hebben drie functies. De functie die op een knop... staat krijg je door er op de drukken. De blauwe functie die er boven een knop... staat krijg je met 2nd.... Zo zet

Nadere informatie

WOONHUISVERZEKERING. In de voorwaarden van de Thomas Assuradeuren Woonhuisverzekering

WOONHUISVERZEKERING. In de voorwaarden van de Thomas Assuradeuren Woonhuisverzekering Cambuur Fapolis Pakket Uw Woohuisverzekerig I de voorwaarde va de Thomas Assuradeure Woohuisverzekerig leest u: Wat u va os mag verwachte e wat wij va u verwachte (pagia 2). Voor welke schade wij wel e

Nadere informatie

Buren en overlast. waar je thuis bent...

Buren en overlast. waar je thuis bent... Bure e overlast waar je thuis bet... Goed wooklimaat HEEMwoe vidt het belagrijk dat bewoers prettig woe i ee fije buurt. De meeste buurtbewoers kue het goed met elkaar vide. Soms gaat het sameleve i ee

Nadere informatie

Inleiding. 1. Rijen. 1.1 De rij van Fibonacci. 2 Zou je deze regelmatigheden kunnen verklaren met wiskunde? déäçéáç=çççê=táëâìåçé=éå=téíéåëåü~éééå=

Inleiding. 1. Rijen. 1.1 De rij van Fibonacci. 2 Zou je deze regelmatigheden kunnen verklaren met wiskunde? déäçéáç=çççê=táëâìåçé=éå=téíéåëåü~éééå= Ileidig Waarom vorme zoebloempitte 2 bochte i de ee richtig e 34 i de adere? E wat heeft ee huisjesslak te make met + 5 2 Zou je deze regelmatighede kue verklare met wiskude? Heeft wiskude cocrete toepassige

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken.

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken. HET BELANG VAN KP HART Vrage Tijdes de voordracht op augustus 007 hebbe we de volgede vrage besproke. Hoe ku je izie dat ee vierkat, bij gegeve omtrek, de rechthoek met de maximale oppervlakte is? Hoe

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Hoofdstuk 5 - Recursie

Hoofdstuk 5 - Recursie Hoofdstuk 5 - Recursie Een banktegoed waarover je jaarlijks rente krijgt uitgekeerd is een voorbeeld van recursie. Je kunt steeds het nieuwe banktegoed berekenen op basis van het banktegoed van vorig jaar.

Nadere informatie

REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING

REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING REAAL GOED GEREGELD PAKKET UW WOONHUISVERZEKERING I de voorwaarde va de REAAL Woohuisverzekerig leest u: Wat u va os mag verwachte e wat wij va u verwachte (pagia 2). Voor welke schade wij wel e iet betale

Nadere informatie

De basis cursus scripting in AutoCAD voor studenten van. de Sacrale Kunst van Luiheid Les 2 2004 Joop F. Moelee

De basis cursus scripting in AutoCAD voor studenten van. de Sacrale Kunst van Luiheid Les 2 2004 Joop F. Moelee Aha, daar zij jullie weer. Heb je al tijd over? Al lekker lui achterovergehage met je voete op het bureau e lurked aa ee blikje bier terwijl je computer al het werk voor je doet? Da gaa we u verder. De

Nadere informatie

Hoe los ik het op, samen met Thuisvester? Ik heb een klacht

Hoe los ik het op, samen met Thuisvester? Ik heb een klacht Klachte? Hoe los ik het op, same met Thuisvester? Ik heb ee klacht Thuisvester doet haar uiterste best de beste service te verlee aa haar huurders. We vide ee goede relatie met oze klate erg belagrijk.

Nadere informatie

Analyse wijze en stimuleren van invullen Nationale Studenten Enquête 2012. Pascal Brenders 19 juni 2013

Analyse wijze en stimuleren van invullen Nationale Studenten Enquête 2012. Pascal Brenders 19 juni 2013 Aalyse wijze e stimulere va ivulle atioale Studete Equête 20. Pascal Breders 19 jui 2013 Aaleidig Studiekeuze3 is veratwoordelijk voor de uitvoerig va de atioale Studete Equête (SE). De atioale Studete

Nadere informatie

figuur 2.50 Microscoop

figuur 2.50 Microscoop 07-01-2005 10:20 Pagia 1 Microscoop Ileidig Ee microscoop is bedoeld om kleie voorwerpe beter te kue zie, zie figuur 2.50. De bolle les dicht bij het oog (het oculair) heeft ee grote diameter. De bolle

Nadere informatie

Discrete dynamische systemen: wiskundige modellen met rijen, vectoren en matrices Deel 1: rijen en recursievergelijkingen

Discrete dynamische systemen: wiskundige modellen met rijen, vectoren en matrices Deel 1: rijen en recursievergelijkingen Discrete dyamische systeme: wiskudige modelle met rije, vectore e matrices Deel 1: rije e recursievergelijkige Ihoud 1. Ileidig. Tabelle e grafieke 3. Ee spiewebdiagram 4. Ee ecoomisch probleem 5. Aalytisch

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 7 les 3

Wiskunde D Online uitwerking 4 VWO blok 7 les 3 Paragraaf Vergelijkige va vlakke Opgave a Dat zij de pute A, B, E e F e alle pute die verder op de voorkat va de kubus ligge. b Dat zij de pute A, C, E e G e alle pute die i het diagoaalvlak met A, C,

Nadere informatie

Wiskundige toepassingen bij Thermodynamica - 1 WISKUNDE. toegepast bij THERMODYNAMICA

Wiskundige toepassingen bij Thermodynamica - 1 WISKUNDE. toegepast bij THERMODYNAMICA iskudige toeassige bij Thermodyamia - ISKUNDE toegeast bij THERMODYNAMICA iskudige toeassige bij Thermodyamia - INTEGRATIETECHNIEKEN Toeassigsvoorbeeld - Het ogeome vermoge va ee omressor Beshouw oderstaad

Nadere informatie

BovenIJ ziekenhuis Postadres : Postbus 37610, 1030 BD Amsterdam Bezoekadres: Statenjachtstraat 1, Amsterdam Telefoon : (020) 634 6346

BovenIJ ziekenhuis Postadres : Postbus 37610, 1030 BD Amsterdam Bezoekadres: Statenjachtstraat 1, Amsterdam Telefoon : (020) 634 6346 118552 107229 BoveIJ ziekehuis Postadres : Postbus 37610, 1030 BD Amsterdam Bezoekadres: Statejachtstraat 1, Amsterdam Telefoo : (020) 634 6346 Vragelijst Hoofdpij Hoofdpijpoli BoveIJ Ziekehuis Naam: M/V

Nadere informatie

Betrouwbaarheid. Betrouwbaarheidsinterval

Betrouwbaarheid. Betrouwbaarheidsinterval Betrouwbaarheid Ee simulatie beoogt éé of i.h.a. twee of meerdere sceario s te evaluere e te vergelijke, bij Mote Carlo (MC) simulatie voor ee groot aatal istelwaarde, voor éé of meerdere parameters. Hierbij

Nadere informatie

Waar moet je aan denken? Verhuizen. Stap 1: Hoe zeg ik de huur op?

Waar moet je aan denken? Verhuizen. Stap 1: Hoe zeg ik de huur op? Verhuize Waar moet je aa deke? Verhuize Bij verhuize komt heel wat kijke. Naast het ipakke va spulle e doorgeve va adreswijzigige, is het ook belagrijk dat u same met Thuisvester ee aatal zake regelt.

Nadere informatie

12 Kansrekening. 12.1 Kansruimten WIS12 1

12 Kansrekening. 12.1 Kansruimten WIS12 1 WIS12 1 12 Kasrekeig 12.1 Kasruimte Kasmaat Ee experimet is ee hadelig of serie hadelige met ee of meer mogelijke resultate uitkomste geoemd). De uitkomsteruimte, die we steeds zulle aageve met Ω, is de

Nadere informatie

Vuilwaterafvoersystemen voor hoogbouw

Vuilwaterafvoersystemen voor hoogbouw Vuilwaterafvoersysteme voor hoogbouw 1.2 Vuilwaterafvoersysteme voor hoogbouw Nu er steeds hogere e extremere gebouwe otworpe worde, biedt ee ekelvoudig stadleidigsysteem de mogelijkheid om gemakkelijker

Nadere informatie

Eindexamen natuurkunde 1-2 compex havo 2007-I

Eindexamen natuurkunde 1-2 compex havo 2007-I Ogave 1 Kerfusie I de zo fusere waterstofkere tot heliumkere. Bij fusie komt eergie vrij. O deze maier roduceert de zo er secode 3,9 10 26 J. Alle eergiecetrales o aarde roducere same i éé jaar ogeveer

Nadere informatie

Op zoek naar een betaalbare starterswoning? Koop een eigen huis met korting

Op zoek naar een betaalbare starterswoning? Koop een eigen huis met korting Op zoek aar ee betaalbare starterswoig? Koop ee eige huis met kortig Op zoek aar ee betaalbare starterswoig? Koop ee eige huis met kortig Pagia Ee eige huis waar u zich helemaal thuis voelt. Dat wil iederee!

Nadere informatie

déäçéáç=çççê=táëâìåçé=éå

déäçéáç=çççê=táëâìåçé=éå déäçéáç=çççê=táëâìåçé=éå téíéåëåü~éééå táëâìåçé oáàéå e~åë=_éâ~éêí oçöéê=i~äáé iéçå=iéåçéêë hçéå=píìäéåë 4, LUC Diepebeek (België), Geboeid door Wiskude e Weteschappe Niets uit deze uitgave mag worde verveelvoudigd

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskude B (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 0 Tijdvak Izede scores Uiterlijk op jui de scores va de alfabetisch eerste vijf kadidate per school op de daartoe

Nadere informatie

Hoe werkt het? Zelf uw woning aanpassen

Hoe werkt het? Zelf uw woning aanpassen Woig aapasse Hoe werkt het? Zelf uw woig aapasse Prettig woe beteket woe i ee huis aar uw smaak. Om og fijer te kue woe, wille veel huurders kleie of grote veraderige aabrege i hu huis. Thuisvester begrijpt

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskude B (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 0 Tijdvak Izede scores Uiterlijk op jui de scores va de alfabetisch eerste vijf kadidate per school op de daartoe

Nadere informatie

Thermodynamica HWTK PROEFTOETS- AT02 - UITWERKING.doc 1/9

Thermodynamica HWTK PROEFTOETS- AT02 - UITWERKING.doc 1/9 VAK: hermodyamica HWK Set Proeftoets A0 hermodyamica HWK PROEFOES- A0 - UIWERKING.doc /9 DI EERS LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 00 miute Uw aam:... Klas:... Leerligummer:

Nadere informatie

Statistiek = leuk + zinvol

Statistiek = leuk + zinvol Statistiek = leuk + zivol Doel 1: Doel : Doel 3: zie titel ee statistisch oderzoek kue beoordele ee statistisch oderzoek kue opzette ee probleem vertale i stadaardmethode gegeves verzamele, verwerke via

Nadere informatie

Ongelijkheden. IMO trainingsweekend 2013

Ongelijkheden. IMO trainingsweekend 2013 Ogelijkhede IMO traiigsweeked 0 Deze tekst probeert de basis aa te brege voor het bewijze va ogelijkhede op de IMO. Het is de bedoelig om te bewijze dat ee bepaalde grootheid (ee uitdrukkig met ee aatal

Nadere informatie

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. 14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.

Nadere informatie