Complexe eigenwaarden

Maat: px
Weergave met pagina beginnen:

Download "Complexe eigenwaarden"

Transcriptie

1 Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie is dan wel dat de bijbehorende eigenvectoren ook complexe coördinaten hebben In plaats van vectoren in R n beschouwen we dan vectoren in C n Definitie Een vector x C n met x o heet een eigenvector van een (n n-matrix A als Ax λx voor zekere λ C Zo n (complex getal λ C heet dan een eigenwaarde van A Een vector x o met Ax λx noemen we een eigenvector van A behorende bij de eigenwaarde λ NB We zullen alleen reële matrices (met reële elementen beschouwen Dit betekent dat het karakteristieke polynoom alleen reële coefficienten heeft en dat niet-reële nulpunten (eigenwaarden dus alleen in complex geconjugeerde paren kunnen voorkomen ( Voorbeeld Stel dat A, dan volgt : A λi λ λ λ2 + De (complexe eigenwaarden van A zijn dus λ i en λ 2 i Voor de bijbehorende eigenvectoren vinden we nu : λ i : ( ( ( i i i E i i Span{ } en λ 2 i : ( i i ( i ( i E i Span{ Omdat A geen reële eigenwaarden heeft, is A niet diagonaliseerbaar Het is in principe mogelijk ook het begrip diagonaliseerbaarheid uit te breiden tot complexe diagonaliseerbaarheid, maar dat zullen we in deze cursus buiten beschouwing laten Als we het hebben over diagonaliseerbaarheid, dan bedoelen we dus reële diagonaliseerbaarheid, dus : een (n n-matrix A is diagonaliseerbaar als er een basis van R n bestaat geheel bestaande uit eigenvectoren van A } Vectoren in C n Voor vectoren in C n voeren we wat voor de hand liggende terminologie in : Definitie 2 Als x C n, dan is x C n, de complexe geconjugeerde van x, de vector waarvan alle coördinaten de complex geconjugeerden zijn van de overeenkomstige coördinaten van x Elke vector x C n kunnen we schrijven in de vorm x Re x + iim x, waarbij Re x en Im x vectoren in R n zijn ; respectievelijk het reële en imaginaire deel van de vector x Als A een willekeurige (m n-matrix is met complexe elementen, dan is A de matrix die uit A ontstaat door elk element te vervangen door z n complex geconjugeerde

2 Als A nu een reële (n n-matrix is, dan geldt natuurlijk dat A A en dus : Ax Ax Ax Dus : als Ax λx, dan volgt dat Ax Ax λx λx Dus : als x C n een eigenvector is van A behorende bij de eigenwaarde λ C, dan is de complex geconjugeerde x C n van x ook een eigenvector van A en wel behorende bij de eigenwaarde λ C Bij reële matrices komen niet-reële eigenwaarden dus alleen in complex geconjugeerde paren voor en de bijbehorende eigenvectoren zijn ook elkaars complex geconjugeerden Zie ook voorbeeld Hiervan maken we bij het rekenwerk natuurlijk dankbaar gebruik Bij het bepalen van de eigenvectoren proberen we dat rekenwerk tot een minimum te beperken ( 5 2 Voorbeeld 2 Stel dat A, dan volgt : 3 A λi 5 λ 2 3 λ λ2 8λ + 7 (λ De (complexe eigenwaarden zijn dus λ 4 ± i Voor de berekening van de eigenvectoren kiezen we één van de twee complex geconjugeerde eigenwaarden : ( i 2 λ 4 + i : i Omdat λ 4 + i een eigenwaarde is, weten we dat deze matrix slechts één pivotpositie heeft We hoeven dat niet te controleren door te vegen (dat is lastig rekenwerk met complexe getallen, maar bepalen een oplossing door naar de eerste of de tweede rij te kijken Alle andere eigenvectoren zijn dan immers veelvouden van die ene oplossing Dus : ( 2 E 4+i Span{ i } of E 4+i Span{ ( + i De eigenvectoren van A behorende bij de eigenwaarde λ 4 i volgen nu eenvoudig door de complex geconjugeerden te nemen (overal i vervangen door i : ( ( 2 i E 4 i Span{ } of E + i 4 i Span{ } } Uiteraard gaat het niet altijd zo eenvoudig Toch proberen we het rekenwerk te minimaliseren Veel rekenwerk met complexe getallen is immers vragen om moeilijkheden (rekenfouten 2 2 Voorbeeld 3 Als A 3 3, dan volgt : 2 A λi λ λ 3 ( λ 3 λ 3 2 λ 2 λ λ ( λ(λ 2 2λ λ + 4 λ 3 + 3λ 2 7λ + 5 Nu moeten we proberen dit karakteristieke polynoom in (complexe factoren te ontbinden Een derdegraads polynoom (met reële coëfficiënten kan hooguit twee niet-reële nulpunten 2

3 hebben, omdat die alleen in complex geconjugeerde paren kunnen voorkomen Er moet dus minstens één reëel nulpunt zijn Door proberen vinden we dat λ een eigenwaarde is Dus : A λi (λ 3 3λ 2 + 7λ 5 (λ (λ 2 2λ + 5 (λ [ (λ ] De andere twee (complexe eigenwaarden zijn dus : λ ± 2i Het loont soms de moeite om de determinant A λi uit te rekenen door handig te vegen, waardoor het karakteristieke polynoom min of meer automatisch in factoren wordt ontbonden Het is daarbij echter niet altijd eenvoudig om de handigste veegstappen te vinden : A λi λ λ 3 2 λ λ 3 λ 4 2 λ λ λ 3 λ 3 2 λ ( λ(λ2 2λ + 5 ( λ [ (λ ] Het bepalen van de eigenruimte E bij de eigenwaarde λ gaat als voorheen : 2 2 λ : 2 3 E Span{ 2 2 Voor de eigenruimten behorende bij λ ± 2i gaan we alsvolgt te werk Eerst kiezen we één van de twee eigenwaarden en proberen met zo min mogelijk rekenwerk een bijbehorende eigenvector te bepalen Alle andere eigenvectoren zijn dan immers veelvouden daarvan De eigenvectoren behorende bij de andere eigenwaarde zijn dan de complex geconjugeerden Dus : λ + 2i : 2i i i i 2 2i 3 + i Met slechts een paar kleine vereenvoudigingen (en soms een enkele eenvoudige veegstap kunnen we hieruit de eigenvectoren bepalen Kijk hiervoor naar de eerste en de laatste rij : ix + x 2 + x 3 x 2 + i, x 3, ix x 2 + x 3 i x x 2 + ( + ix 3 Zo vinden we dus vrij eenvoudig : E +2i Span{ + i } en dus E 2i Span{ i } } Voor complexe getallen z x + iy met x, y R kennen we ook de schrijfwijze z re iϕ met r z x 2 + y 2 en ϕ arg z In matrixnotatie kunnen we dit schrijven als : ( ( ( ( x y x/r y/r r cos ϕ sin ϕ C r y x y/r x/r r sin ϕ cos ϕ De eigenwaarden van de matrix C zijn λ x ± iy Ga na! 3

4 ( cos ϕ sin ϕ De matrix heeft de volgende eigenschap Als we een vector x R sin ϕ cos ϕ 2 vermenigvuldigen met deze matrix, dan levert dit de vector in R 2 die uit x wordt verkregen door deze te draaien om de oorsprong O over de hoek ϕ in positieve richting (tegen de wijzers ( van de klok in Zie : Lay, pag 333 Omdat een vermenigvuldiging met de matrix r eenvoudig een scalaire vermenigvuldiging is met het getal r λ geldt dus dat de r lineaire afbeelding C : R 2 R 2 met C(x Cx een rotatie (draaiing over de hoek ϕ (in positieve richting voorstelt, gevolgd door een scalaire vermenigvuldiging (schaling met het getal r λ Iets algemener geldt : Stelling Als A een (2 2-matrix is met een (complexe eigenwaarde λ x iy met x, y R en y, dan geldt : ( A P CP x y met C en P Re v Im v, y x waarbij v C 2 een eigenvector is van A behorende bij de eigenwaarde λ x iy Het bewijs van deze stelling laten we achterwege In plaats daarvan een voorbeeld : ( 5 2 Voorbeeld 4 In voorbeeld 2 hebben we gezien dat de eigenwaarden van A 3 gelijk zijn aan λ 4 ± i Ook( hebben we gezien ( dat een ( bij λ 4 i behorende eigenvector i bijvoorbeeld gelijk is aan v + i Dus : ( ( ( ( Re v en Im v P en P Nu geldt inderdaad (ga na! : ( P CP ( 4 4 ( ( A Toepassingen op stelsels lineaire differentiaalvergelijkingen We beschouwen stelsels lineaire differentiaalvergelijkingen van de vorm x (t a x (t + + a n x n (t x 2 (t a 2x (t + + a 2n x n (t x n(t a n x (t + + a nn x n (t Hierbij zijn x (t,, x n (t functies van één variabele t en zijn de coëfficiënten a,, a nn reële constanten 4

5 Een dergelijk stelsel van eerste orde lineaire differentiaalvergelijkingen kan geschreven worden in de vorm x (t x x 2 (t a a n (t Ax(t met x(t en A a x n (t n a nn Aan zo n stelsel kan eventueel nog een beginvoorwaarde in de vorm van x( x R n worden toegevoegd In dat geval spreekt men over een beginwaardeprobleem : x (t Ax(t met x( x R n Als A een diagonaalmatrix is, dan spreken we van een niet-gekoppeld stelsel differentiaalvergelijkingen (of een stelsel niet-gekoppelde differentiaalvergelijkingen : λ x x λ 2 (t λ x (t (t x(t x 2 (t λ 2x 2 (t λ n x n(t λ n x n (t De oplossing hiervan is wel erg eenvoudig : x i (t c i e λit voor i, 2,, n Hierbij zijn de constanten c i R met i, 2,, n willekeurig In vectorvorm kan de oplossing geschreven worden als : x(t c e λt + c 2 e λ2t + + c n e λnt Als A geen diagonaalmatrix is, dan spreekt men van een gekoppeld stelsel differentiaalvergelijkingen (of een stelsel gekopppelde differentiaalvergelijkingen We zouden nu ook een oplossing van de vorm x(t ve λt van zo n gekoppeld stelsel x (t Ax(t kunnen zoeken We vinden dan : x (t λve λt en Ax(t Ave λt Ave λt λve λt en dus : Av λv Dus : als x(t ve λt een niet-triviale oplossing (v o is van x (t Ax(t, dan is λ een eigenwaarde van A en v een eigenvector van A behorende bij die eigenwaarde λ Men kan aantonen (in de theorie van differentiaalvergelijkingen dat elk stelsel differentiaalvergelijkingen van de vorm x (t Ax(t met A een (n n-matrix n lineair onafhankelijke oplossingen x (t,, x n (t heeft De algemene oplossing kan dan geschreven worden in de vorm x(t c x (t + + c n x n (t met c,, c n R willekeurig Deze coëfficiënten kunnen vervolgens vastgelegd worden door een beginvoorwaarde van de vorm x( x R n, zodat de oplossing van zo n beginwaardeprobleem x (t Ax(t met x( x uniek is 5

6 Voor een stelsel van de vorm x (t Ax(t met A een (n n-matrix dient men dus n lineair onafhankelijke oplossingen te vinden Aangezien er oplossingen bestaan van de vorm x(t ve λt met v een eigenvector van A, lukt dit steeds als A diagonaliseerbaar is Dan bestaat er immers een basis van R n geheel bestaande uit eigenvectoren van A We hebben dan dus n lineair onafhankelijke oplossingen van de vorm x(t ve λt Als A niet diagonaliseerbaar is, dan lukt dit niet Er zullen dan ook nog andere oplossingen gevonden moeten worden Die gevallen laten we hier buiten beschouwing Dit probleem zal later opgelost worden bij het vak Differentiaalvergelijkingen Voorbeeld 5 Beschouw x (t Ax(t met A Verder volgt : en ( Dan volgt : A λi 2 λ 5 4 λ λ2 2λ 3 (λ 3(λ + λ 3 : λ 2 : De oplossing is dus : ( 5 5 ( 5 5 ( ( 5 x(t c v e λ t + c 2 v 2 e λ 2t c ( Uitgeschreven betekent dit dus : x (t 2x (t 5x 2 (t x 2 (t x (t + 4x 2 (t v v 2 e 3t + c 2 ( 5 ( ( 5 e t x (t c e 3t + 5c 2 e t x 2 (t c e 3t c 2 e t Hierbij zijn c en c 2 willekeurig Met bijvoorbeeld de beginvoorwaarde x( we : c ( + c 2 ( 5 ( 7 : ( 5 7 Dus : de (unieke oplossing van het beginwaardeprobleem x (t ( ( 7 x(t met x( ( ( vinden is ( x(t 3 ( e 3t ( e t 3e 3t + e t 3e 3t 2e t 6

7 Voor een diagonaliseerbare matrix A geldt : A P DP voor zekere inverteerbare matrix P en een diagonaalmatrix D Bovendien geldt dan : P v v n en D diag(λ,, λ n met Av i λ i v i, i, 2,, n Stel nu x(t P y(t dan volgt : x (t Ax(t P y (t AP y(t (P DP P y(t P Dy(t, want P hangt niet van t af Omdat P inverteerbaar is, volgt hieruit dat y (t Dy(t (een niet-gekoppeld stelsel Dit noemt men het ontkoppelen van het stelsel differentiaalvergelijkingen We vinden vervolgens dat : y(t c e λ t c n e λnt x(t P y(t c v e λ t + + c n v n e λnt Als A nu complexe eigenwaarden λ a ± ib met a, b R heeft, dan geldt : e λt e (a±ibt e at e ±ibt e at (cos bt ± i sin bt De bijbehorende eigenvectoren zijn dan elkaars complex geconjugeerden Dus : Av λv en Av λv We kunnen dan lineaire combinaties van de vorm c ve λt + c 2 ve λt met c, c 2 C kiezen die reëel zijn zodat we twee lineair onafhankelijke (reële oplossingen vinden bij de eigenwaarden λ a ± ib Hiervoor kunnen we dan het reële en het imaginaire deel van ve λt kiezen Voorbeeld 6 Beschouw x (t Ax(t met A ( λ 4 + i is een eigenwaarde met bijbehorende eigenvector v ve λt ( + i ( e 4t cos t sin t (cos t + i sin t cos t, dan geldt (zie voorbeeld 2 : ( + i Dan volgt : ( e 4t cos t + sin t + i sin t e 4t Hieruit volgt dat : x(t c ( cos t sin t cos t e 4t + c 2 ( cos t + sin t sin t e 4t Als A een (2 2-matrix is, dan kunnen we de oplossingen van x (t Ax(t tekenen in het platte vlak R 2 De grafiek van zo n oplossing {x(t t } noemt men een baan van het dynamische systeem x (t Ax(t De baan hangt daarbij steeds af van het startpunt x( x R 2 7

8 Als de eigenwaarden λ en λ 2 van A beide negatief zijn, dan gaan alle oplossingen x(t c v e λ t + c 2 v 2 e λ 2t voor t naar de oorsprong O Men zegt dan dat de oorsprong O een aantrekker (attractor of put is van het dynamische systeem x (t Ax(t Als de eigenwaarden λ en λ 2 van A beide positief zijn, dan gaan alle oplossingen x(t c v e λ t + c 2 v 2 e λ 2t voor t naar het oneindige (weg van de oorsprong O Men zegt dan dat de oorsprong O een afstoter of bron is van het dynamische systeem x (t Ax(t Als A zowel een positieve als een negatieve eigenwaarde heeft, dan noemt men de oorsprong wel een zadelpunt van het dynamische systeem x (t Ax(t In het geval van niet-reële eigenwaarden noemt men de oorsprong O wel een spiraalpunt van het dynamische systeem x (t Ax(t In dat geval zijn de banen van x (t Ax(t spiralen rond de oorsprong O Deze spiralen worden naar de oorsprong toe getrokken als het reële deel van de (twee complex geconjugeerde eigenwaarden negatief is (dan is O een put Als het reële deel van de eigenwaarden positief is, dan is de oorsprong een bron of afstoter In voorbeeld 5 is de oorsprong O een zadelpunt, want : λ 3 > en λ 2 < In voorbeeld 6 is de oorsprong O een spiraalpunt en tevens een afstoter of bron, omdat Re λ 4 > Voorbeeld 7 Beschouw x (t Ax(t met A In voorbeeld 3 hebben we gezien dat A de eigenwaarden λ en λ ± 2i heeft De bijbehorende eigenruimten zijn (zie voorbeeld 3 : E Span{ }, E +2i Span{ Nu volgt met e (+2it e t (cos 2t + i sin 2t : + i e t (cos 2t + i sin 2t + i cos 2t cos 2t sin 2t cos 2t De algemene oplossing van x (t Ax(t is dus : x(t c e t + c 2 cos 2t cos 2t sin 2t cos 2t } en E 2i Span{ e t + i e t + c 3 sin 2t cos 2t + sin 2t sin 2t sin 2t cos 2t + sin 2t sin 2t i e t e t } 8

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt).

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt). 76 Complexe eigenwaarden Ook dit hebben we reeds gezien bij Lineaire Algebra Zie: Lay, 57 Als xt ve rt een oplossing is van de homogene differentiaalvergelijking x t Axt, dan moet r een eigenwaarde van

Nadere informatie

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Bij het vak Lineaire Algebra hebben we reeds kennis gemaakt met stelsels eerste orde lineaire differentiaalvergelijkingen We hebben

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L Habets HG 809, Tel: 040-2474230, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y650 1 Herhaling: Oplossing homogene DV ẋ = Ax Aanname: A is diagonaliseerbaar

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire

Nadere informatie

Eigenwaarden en eigenvectoren in R n

Eigenwaarden en eigenvectoren in R n Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Eigenwaarden en Diagonaliseerbaarheid

Eigenwaarden en Diagonaliseerbaarheid Hoofdstuk 3 Eigenwaarden en Diagonaliseerbaarheid 31 Diagonaliseerbaarheid Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit

Nadere informatie

Tentamen Lineaire Algebra 1 (Wiskundigen)

Tentamen Lineaire Algebra 1 (Wiskundigen) Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)

Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets) Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N

Nadere informatie

Geadjungeerde en normaliteit

Geadjungeerde en normaliteit Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of

Nadere informatie

Tentamen Lineaire Algebra UITWERKINGEN

Tentamen Lineaire Algebra UITWERKINGEN Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00

Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00 Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus

Nadere informatie

d τ (t) dt = 1 voor alle τ 0.

d τ (t) dt = 1 voor alle τ 0. 65 Impulfunctie In deze paragraaf kijken we naar verchijnelen waarbij in zeer korte tijd een (grote kracht op een yteem wordt uitgeoefend Zo n plotelinge kracht kunnen we bechrijven met behulp van een

Nadere informatie

Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015

Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015 Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen

Nadere informatie

1 Stelsels lineaire vergelijkingen.

1 Stelsels lineaire vergelijkingen. Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A. TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0

Nadere informatie

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 10 13 oktober 2016 1 Samenvatting Hoofdstuk 4.1 Een constante λ is een eigenwaarde van een n n matrix A als er een niet-nul vector x bestaat, zodat Ax =

Nadere informatie

Tentamen Lineaire Algebra

Tentamen Lineaire Algebra Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische

Nadere informatie

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica Examen GO7E Wiskunde II (3sp maandag juni 3, 8:3-:3 uur Bachelor Geografie en Bachelor Informatica Auditorium De Molen: A D Auditorium MTM3: E-Se Auditorium MTM39: Sh-Z Naam: Studierichting: Naam assistent:

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Uitwerking opgaven 17 december. Spoilers!!

Uitwerking opgaven 17 december. Spoilers!! Uitwerking opgaven 7 december Spoilers!! (duh... 8 januari 206 Inhoudsopgave Complex diagonaliseren matrix 2. Opgave................................................ 2.2 Oplossing...............................................

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 5 J.Keijsper (TUE)

Nadere informatie

Stelsels lineaire differentiaalvergelijkingen (homogeen)

Stelsels lineaire differentiaalvergelijkingen (homogeen) Stelsels lineaire differentiaalvergelijkingen (homogeen) Voorbeeld Voorbeeld ( 7., Opgave 22) Op t = 0 bevatten de vaten respectievelijk 25 en 5 oz (ounces) zout. 3 september 206 Onderzoeken we hoeveel

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

11.0 Voorkennis V

11.0 Voorkennis V 11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

Hoofdstuk 1: Inleiding

Hoofdstuk 1: Inleiding Hoofdstuk 1: Inleiding 1.1. Richtingsvelden. Zie Stewart, 9.2. 1.2. Oplossingen van enkele differentiaalvergelijkingen. Zelf doorlezen. 1.3. Classificatie van differentiaalvergelijkingen. Differentiaalvergelijkingen

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I

EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I Theorie Opgave 1. In deze opgave wordt gevraagd om een aantal argumenten of overgangen uit de cursusnota s in detail te verklaren. In delen (a) (b) peilen we naar

Nadere informatie

1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A.

1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A. . Oefen opgaven Opgave... Van de lineaire afbeelding A : R 3 R 3 is gegeven dat A = Bepaal de matrix van A. 4, 4 A =, A = 3 4. In de volgende opgave wordt het begrip injectiviteit en surjectiviteit van

Nadere informatie

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B = Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 215 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan. Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt

Nadere informatie

Oefensommen tentamen Lineaire algebra 2 - december A =

Oefensommen tentamen Lineaire algebra 2 - december A = Oefensommen tentamen Lineaire algebra 2 - december 2012 Opg 1 De schaakbordmatrix A is de 8 bij 8 matrix 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 A = 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

6. Lineaire operatoren

6. Lineaire operatoren 6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm 5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm x y + xy + (x ν )y = met ν R (1) heet een Bessel (differentiaal)vergelijking. De waarde van ν noemt men ook wel de orde

Nadere informatie

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen Vector-en matrixvergelijkingen (a) Parallellogramconstructie (b) Kop aan staartmethode Figuur: Vectoren, optellen (a) Kop aan staartmethode, optellen (b) Kop aan staart methode, aftrekken Figuur: Het optellen

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B = Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 2015 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Combinatoriek groep 1

Combinatoriek groep 1 Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT (2DM20) op vrijdag 12 juni 2009, 9.00 Dit tentamen bestaat uit 5 open vragen, en 4 kort-antwoord vragen.

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters

Nadere informatie

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur Examen GO7D Wiskunde II (6sp maandag juni 3, 8:3-:3 uur Bachelor Biochemie & Biotechnologie Bachelor hemie, Bachelor Geologie Schakelprogramma Master Biochemie & Biotechnologie en Schakelprogramma Master

Nadere informatie

Geef niet alleen antwoorden, maar bewijs al je beweringen.

Geef niet alleen antwoorden, maar bewijs al je beweringen. Tentamen Lineaire Algebra maandag 3--27, 3.3-6.3 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken. Schrijf op elk

Nadere informatie

Stelsels van lineaire DVen met constante coëfficiënten

Stelsels van lineaire DVen met constante coëfficiënten Zij K = R of C, n N, A R n n. Zoek differentieerbare functies y : R K n zodanig dat ẏ(t) = Ay(t), t R. Opmerking: De oplossingen vormen een lineaire deelruimte (ga na!). Deze heeft dimensie n. De algemene

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30) Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Vincent van der Noort Scoop vult de gaten in onze kennis... Het gevoel van eigenwaarden van David J. Griffith

Vincent van der Noort Scoop vult de gaten in onze kennis... Het gevoel van eigenwaarden van David J. Griffith Scoop februari 2003 Scoop vult de gaten Vincent van der Noort Scoop vult de gaten in onze kennis... Het gevoel van eigenwaarden van David J. Griffith De wiskundigen onder jullie zal de naam waarschijnlijk

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor

Nadere informatie

Geef niet alleen antwoorden, maar bewijs al je beweringen.

Geef niet alleen antwoorden, maar bewijs al je beweringen. Tentamen Lineaire Algebra donderdag 29 januari 205, 9.00-2.00 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken.

Nadere informatie

Tentamen Lineaire Algebra B

Tentamen Lineaire Algebra B Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi2030wbmt 1 / 14 Niet-lineaire diff. vgl. en stabiliteit Niet-lineaire

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie