Hoofdstuk 3 : Determinanten
|
|
- Leen Wouters
- 5 jaren geleden
- Aantal bezoeken:
Transcriptie
1 (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld det(a) = 7 3 = 7 3 = 3 Definitie 3.2 De Ondermatrix (B ij) van de matrix B is de matrix die overblijft als je de i/de rij en de j/de kolom doorstreept. Voorbeeld 2 Neem de matrix B = Dan is ondermatrix B 2 = ( ) en ondermatrix B 23 = ( 7 3 ) Definitie 3.3 Om de determinant van een [3 x 3] matrix B uit te rekenen, als je deze ontwikkelt naar bijvoorbeeld de e rij : b b 2 b 3 det(b) = b 2 b 22 b 23 = b B b 2 B 2 + b 3 B 3 b 3 b 32 b 33
2 2 (A5D) Voorbeeld Om de determinant van B uit te rekenen, gebruik je de volgende stappen : B = ( ) det(b ) = = = B 2 = ( ) det(b 2) = = = B 3 = ( ) det(b 3) = = = De determinant van B kun je nu berekenen : det(b) = b B b 2 B 2 + b 3 B 3 = = Opmerking Je kunt de matrix naar iedere rij en kolom ontwikkelen. Kies vaak de handigste rij / kolom (welke zal dat zijn?) + + Er is een trucje voor de plussen en minnen bij de determinant : ( + ) + + Voorbeeld 2 Bereken de determinant van de matrix B door hem te ontwikkelen naar de tweede kolom.
3 3 (A5D) Les 2 : Rekenregels voor Determinanten Een determinant is een getal, dus daar zijn ook rekenregels voor. Rekenregels en eigenschappen van Determinanten. Laat B een matrix zijn en B dezelfde matrix waarbij één rij met factor α vermenigvuldigd is. Dan geldt det (B) = α det (B ) 2. Vegen van rijen heeft GEEN invloed op de waarde van de determinant. 3. Laat B een matrix zijn en B 2 dezelfde matrix waarbij 2 rijen (of kolommen) van plaats wisselen. Dan geldt det (B) = - det (B 2) 4. det (AB) = det (A) det (B) 5. det (A T ) = det (A) 6. det(a) = De kolommen zijn onafhankelijk. Bij ieder ander getal zijn ze afhankelijk. 7. det(a ) = det (A) Voorbeelden Neem B = ( ) en A = ( ). Er geldt det(b) = 2-3 = 9 en det (A) = 5+2=7 2. det(b) = 6 3 = 36 9 = 27 = 3 9 = 3 det (B) R = R R2 det(b3) = 5 = = 9 = det (B) 2 3. det(b2) = 2 = 3 2 = 9 = 9 = det (B) det(ab) = = 8 45 = 63 = 7 9 = det (A) det (B) det(a T ) = 5 = 5 2 = 7 = det (A) 2 6. det(c) = 3 6 = = Klopt want kolom 2 = 2 kolom det (A) det (A - ) = det (A x A - ) = det (I) = det(a ) = det (A) Voorbeeld Bestaat de inverse van een matrix A als det(a) =?
4 4 (A5D) Les 4 : De regel van Cramer (Inverse met determinanten) De inverse van een matrix A is ook te bepalen m.b.v. de formule A = C = ( )i+j det (B ji ) det(a) Stappenplan voor de inverse met de regel van Cramer :. Bereken det(a) 2. Maak matrix B met b ij = det (A ij ) 3. Neem B T. 4. Verdeel de plussen en minnen volgens het schaakbordpatroon. (matrix D) 5. Deel de ontstane matrix door det(a). Zo ontstaat A -. Voorbeeld. Neem de matrix A = ( 4 ) en det(a) = Dan is bijv. minor B 2 = ( 4 ) en det(b 2) = 4. Als je alle deelmatrices uitrekent ontstaat de 6 4 matrix B = ( 4 3 ) [B] T = ( 4 4 ) C = ( 4 4 ) A = C = ( 4 4 ) = ( det(a) )
5 5 (A5D) Les 7 : Eigenwaarden en Eigenvectoren Definitie 3.4 Eigenwaarde en Eigenvector Neem de matrix A en een getal λ en x. Als voor de vector x geldt dat Ax = λx dan heet x de eigenvector met λ de bijbehorende eigenwaarde. Voorbeeld Neem A = ( 3 4 ) en x = ( 3 4 ). Dan is Ax = ( 3 3 ) ( 4 4 ) = ( 8 8 ) = 2 ( 4 4 ) Dus de vector x is eigenvector van de matrix A met eigenwaarde λ=2. Eigenwaarden en eigenvectoren berekenen Om de eigenwaarden en eigenvectoren te berekenen gebruik je Ax = λx Ax - λix = (A λi)x = Omdat x moet er gelden dat det(a λi) = Dit noemt men de karakteristieke vergelijking We zullen een stappenplan opstellen. Algoritme voor eigenwaarden en Eigenvectoren berekenen. Bepaal de matrix A λi en bereken de determinant van A λi 2. Bepaal een makkelijke waarde en bereken de andere waarde m.b.v. een staartdeling 3. Bepaal bij iedere eigenwaarde de eigenvector
6 6 (A5D) Voorbeeld Eigenwaarde en Eigenvectoren berekenen : 2 Neem A = ( 3 4). Bepaal de eigenwaarden en eigenvectoren. 4 9 Oplossing. Bepaal de matrix A λi en bereken de determinant : Ontwikkelen naar de e rij geeft : = 2. Bepaal een makkelijke waarde en los de vergelijking op. Voor λ = geldt de oplossing, dus een staartdeling uitvoeren geeft : -λ 3 +4λ 2-35λ + 22 : (λ ) = -λ 2 + 3λ 22 - (λ 2-3λ + 22) -(λ-)(λ-2) Dus de oplossingen zijn λ = ; λ = 2 en λ =. 3. Bepaal bij iedere eigenwaarde de eigenvector 9 a 9a a = ) λ = : (A I)x = ( 8 4 ) ( b) = ( 8b + 4c) = ( ) ( c = 2b) 4 2 c 4b 2c c = 2b Dus een eigenvector is ( ) (of een veelvoud daarvan) 2 a a a = 2) λ = : (A I)x = ( 2 4) ( b) = ( 2b + 4c) = ( ) ( b = 2c) 4 8 c 4b + 8c Dus een eigenvector is ( ) (of een veelvoud daarvan) 2 b = 2c a a a = 3) λ = 2 : (A I)x = ( 4) ( b) = ( b + 4c ) = ( ) ( b = 4c ) 4 7 c 4b + 7c b = 7 c 4 Dus een eigenvector is ( ) (of een veelvoud daarvan)
7 7 (A5D) Samengevat Er zijn drie eigenwaarden met 3 bijbehorende eigenvectoren : ) λ = : ( ) 2 2) λ = : ( ) 2 3) λ = 2 : ( ) Opmerkingen. Vegen van rijen verandert de eigenwaarden (NOOIT doen) 2. Eigenwaarden (λ) kunnen zijn, eigenvectoren NOOIT.
Hoofdstuk 3 : Determinanten
Hoofdstuk 3 : Determinanten Paragraaf 3.2 : Determinanten (Les ) Definitie determinant aa bb De determinant van de [2 x 2]-matrix AA = is een getal met waarde cc dd det(a) = ad bc. aa bb Notatie : dddddd(aa)
WI1808TH1/CiTG - Lineaire algebra deel 1
WI1808TH1/CiTG - Lineaire algebra deel 1 College 10 13 oktober 2016 1 Samenvatting Hoofdstuk 4.1 Een constante λ is een eigenwaarde van een n n matrix A als er een niet-nul vector x bestaat, zodat Ax =
Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:
Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x
Lineaire Algebra (wi2142tn) Les 5: Determinanten. Joost de Groot Les 5. Faculteit EWI, Toegepaste Wiskunde. Technische Universiteit Delft
Lineaire Algebra (wi2142tn) Les 5: Determinanten Joost de Groot Les 5 1 Technische Universiteit Delft Doel van deze les Determinanten ben je al tegengekomen bij de behandeling van het in en het uitwendig
De inverse van een matrix
De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 J.Keijsper
1 Eigenwaarden en eigenvectoren
Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan
11.0 Voorkennis V
11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix
1 Stelsels lineaire vergelijkingen.
Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking
Determinanten. Definities en eigenschappen
Determinanten Definities en eigenschappen Definities (korte herhaling) Determinant van een 2x2-matrix: a b ad bc c d S. Mettepenningen Determinanten 2 Definities (korte herhaling) Determinant van een 3x3-matrix:
Lineaire Algebra (2DD12) Laatste nieuws in 2012
Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.
Lineaire Algebra Een Samenvatting
Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle
Eindtermen Lineaire Algebra voor E vor VKO (2DE01)
Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale
Determinanten. , dan is det A =
Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is
Matrixalgebra (het rekenen met matrices)
Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg
6. Lineaire operatoren
6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire
4. Determinanten en eigenwaarden
4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:
Eigenwaarden en eigenvectoren
Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire
Eigenwaarden en eigenvectoren in R n
Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante
x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1
WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit
Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
Stelsels Vergelijkingen
Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit
TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,
TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen
Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud
college 6 en lineaire collegejaar college build slides Vandaag : : : : 6-7 6 9 juni 27 3 2 3 van een matrix Toepassing: oppervlakte en inhoud.6-7[6] vandaag van de 2 2-matrix a b c d is gelijk aan ad bc.
Samenvatting Lineaire Algebra, periode 4
Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra donderdag 29 januari 205, 9.00-2.00 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken.
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding
Tentamen Lineaire Algebra 1 (Wiskundigen)
Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren
Complexe eigenwaarden
Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie
Basiskennis lineaire algebra
Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal
Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op vrijdag mei 7, 9: : uur. U mag bij het tentamen geen computer (notebook, laptop), boeken
3.2 Vectoren and matrices
we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het
Geadjungeerde en normaliteit
Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of
Uitwerkingen huiswerk week 6
Lineaire algebra 2 najaar 2008 Uitwerkingen huiswerk week 6 Opgave( 21. ) a b Zij A = F 2 2. (i) Laat zien dat deta noodzakelijk van de vorm deta = ad bc is (door A op bovendriehoeksvorm te transformeren).
Aanvullingen bij Hoofdstuk 8
Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011
Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het
4.0 Voorkennis [1] Stap 1: Maak bij een van de vergelijkingen een variabele vrij.
3x4 y26 4x y3 4.0 Voorkennis [1] Voorbeeld 1 (Elimineren door substitutie): Los op: Stap 1: Maak bij een van de vergelijkingen een variabele vrij. 4x y = 3 y = 4x 3 Stap 2: Vul de vrijgemaakte variabele
Determinanten. Hoofdstuk Inleiding
Hoofdstuk 3 Determinanten 3.1 Inleiding In deze paragraaf bekijken we het stelsel Ax = b waarbij A een n n matrix is. We zagen in voorgaande dat, als A inverteerbaar is er precies één oplossing van dit
Matrixoperaties. Definitie. Voorbeelden. Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten.
Definitie Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten. Voorbeelden De coëfficiëntenmatrix of aangevulde matrix bij een stelsel lineaire vergelijkingen. Een rij-echelonmatrix
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT (2DM20) op vrijdag 12 juni 2009, 9.00 Dit tentamen bestaat uit 5 open vragen, en 4 kort-antwoord vragen.
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper
TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.
TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0
Tentamen Lineaire Algebra 2
Lineaire algebra (NP010B) januari 013 Tentamen Lineaire Algebra Vermeld op ieder blad je naam en studentnummer. Lees eerst de opgaven voordat je aan de slag gaat. Schrijf leesbaar en geef uitleg over je
Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer
Samenvatting Lineaire Algebra 1 - Collegejaar 2013-2014 Dictaat met verwijzing naar het boek Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst
Tentamen Lineaire Algebra B
Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een
Eigenwaarden en Diagonaliseerbaarheid
Hoofdstuk 3 Eigenwaarden en Diagonaliseerbaarheid 31 Diagonaliseerbaarheid Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L Habets HG 809, Tel: 040-2474230, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y650 1 Herhaling: Oplossing homogene DV ẋ = Ax Aanname: A is diagonaliseerbaar
Tentamen Lineaire Algebra
Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische
Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen
Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet
Overzicht. Eigenwaarden. Beurzen en afhankelijkheid. Eigenwaarden: Intro
Overzicht Eigenwaarden VU Numeriek Programmeren. Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, A april Waarom? Voorbeelden Eigenwaarden/eigenvectoren Hoe vind ik ze? Polynoom Powermethode Andere
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
Matrices en Stelsel Lineaire Vergelijkingen
Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een
Lineaire vergelijkingen II: Pivotering
1/25 Lineaire vergelijkingen II: Pivotering VU Numeriek Programmeren 2.5 Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, 1A40 15 april 2013 2/25 Overzicht Pivotering: Methodes Norm en conditionering
Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen
Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:
1. Lineaire Vergelijkingen in Lineaire Algebra 2. Matrix Algebra 3. Determinanten 4. Vectorruimten 5. Eigenwaarden en Eigenvec.
LINEAIRE ALGEBRA Eric Jespers Vrije Universiteit Brussel Referentie: David C. Lay, Linear Algebra and Its Applications, Fourth edition, Pearson International Edition, 2012, ISBN: 9781408287859 verplicht
NP2.5w3 Eigenwaarden. Eigenwaarden. VU Numeriek Programmeren 2.5. Charles Bos. Vrije Universiteit Amsterdam 1A april /26
1/26 Eigenwaarden VU Numeriek Programmeren 2.5 Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, 1A40 22 april 2013 2/26 Overzicht Waarom? Voorbeelden Eigenwaarden/eigenvectoren Hoe vind ik ze? Polynoom
Studiehandleiding Wiskunde 1B Voor Bachelor Opleiding Scheikunde Dr. W. van der Kallen
Studiehandleiding Wiskunde 1B Voor Bachelor Opleiding Scheikunde 2004 2005 Dr. W. van der Kallen Januari 2005 Inhoudsopgave 1 Plaatsen, tijden, namen enz. 3 2 Leerstof, Programma en Opgaven 5 2.1 Leerstof..............................
1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A.
. Oefen opgaven Opgave... Van de lineaire afbeelding A : R 3 R 3 is gegeven dat A = Bepaal de matrix van A. 4, 4 A =, A = 3 4. In de volgende opgave wordt het begrip injectiviteit en surjectiviteit van
Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015
Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen
Toepassingen op discrete dynamische systemen
Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch
Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door
Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal
Functies van vectoren
Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.
Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA
Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting
M1 Wiskundig taalgebruik en notaties
M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =
Antwoorden op de theoretische vragen in de examen voorbereiding
Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie
FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j
FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van
Symmetrische matrices
Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie
PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011
PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011 Familienaam:....................................................................... Voornaam:.........................................................................
Toepassingen op differentievergelijkingen
Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij
Uitwerking opgaven 17 december. Spoilers!!
Uitwerking opgaven 7 december Spoilers!! (duh... 8 januari 206 Inhoudsopgave Complex diagonaliseren matrix 2. Opgave................................................ 2.2 Oplossing...............................................
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op maandag juni Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord vragen. De
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 2 J.Keijsper
Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie
CTB1002-D2 Lineaire Algebra 2
CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit
Algebra Determinanten en stelsels. Cursus voor de vrije ruimte
Algebra Determinanten en stelsels Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Determinanten 1.1 Determinant van de orde twee We gaan na wat de voorwaarde is waaraan
Inwendig product, lengte en orthogonaliteit in R n
Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T
UITWERKINGEN 1 2 C : 2 =
UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De
Lineaire Algebra (2DD12)
Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper
Inleiding in de lineaire algebra
Inleiding in de lineaire algebra (SV.9) W.Oele P.J. den Brok 6 maart 4 Inleiding De cursus lineaire algebra bestaat uit een aantal colleges in de matrix- en de vectorrekening. De colleges over en de oefenopdrachten
College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie
College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.
Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00
Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus
Wiskunde I voor Scheikunde en Medische Natuurwetenschappen
Wiskunde I voor Scheikunde en Medische Natuurwetenschappen Dr. A.C.M. Ran najaar 00 (gewijzigde druk Voorwoord Dit dictaat is bedoeld voor twee groepen studenten: de eerstejaars studenten scheikunde en
Kwantummechanica Donderdag, 13 oktober 2016 OPGAVEN SET HOOFDSTUK 4. Bestudeer Appendix A, bladzijden van het dictaat.
1 Kwantummechanica Donderdag, 1 oktober 016 OPGAVEN SET HOOFDSTUK 4 VECTOREN OVER DE REËLE RUIMTE DUS DE ELEMENTEN ZIJN REËLE GETALLEN Bestudeer Appendix A, bladzijden 110-114 van het dictaat. Opgave 1:
4 Positieve en niet-negatieve lineaire algebra
4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire
Vierde huiswerkopdracht Lineaire algebra 1
Vierde huiswerkopdracht Lineaire algebra December, 00 Opgave : Voor positieve gehele getallen m, n schrijven we Mat(m n, R) voor de vectorruimte van alle m n matrices, met de gebruikelijke optelling en
Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen
Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts
De wiskunde van computerberekeningen. Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam.
De wiskunde van computerberekeningen Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam 04 november 2015 Pluto en Charon New Horizons, launch date 19 January, 2006, speed
A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?
Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op dinsdag 9 april 8, 9.. uur. Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord
Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes
Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen
Voorbeeld theorie examen
Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht