Symmetrische matrices

Maat: px
Weergave met pagina beginnen:

Download "Symmetrische matrices"

Transcriptie

1 Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie eigenschappen De belangrijkste eigenschap van een symmetrische matrix is dat die altijd diagonaliseerbaar is We zullen dit in stappen laten zien We beginnen met : Stelling Als A een symmetrische matrix, dan zijn eigenvectoren van A behorende bij verschillende eigenwaarden orthogonaal Bewijs Stel dat Av = λ v en Av = λ v met λ λ Dan geldt : λ (v v = (λ v v = (λ v T v = (Av T v = v T A T v = v T Av = v T (λ v = v (λ v = λ (v v Dus : (λ λ (v v = Maar λ λ, dus : v v = en dat betekent dat v v Oftewel : v en v zijn orthogonaal We definiëren nu : Definitie Een matrix A heet orthogonaal diagonaliseerbaar als er een orthogonale matrix P en een diagonaalmatrix D bestaan zodat A = P DP = P DP T Een orthogonale matrix is een vierkante matrix met orthonormale kolommen (zie : Lay, 6 Voor een orthogonale matrix P geldt dus dat P T P = I en dat P vierkant is Dus : P is inverteerbaar en P = P T Nu geldt de volgende prachtige stelling : Stelling Een vierkante matrix A is orthogonaal diagonaliseerbaar dan en slechts dan als A symmetrisch is Deze stelling zegt dus dat elke symmetrische matrix niet alleen diagonaliseerbaar is, maar zelfs orthogonaal diagonaliseerbaar Bovendien is elke orthogonaal diagonaliseerbare matrix een symmetrische matrix Dat laatste is erg eenvoudig in te zien : Bewijs Als A orthogonaal diagonaliseerbaar is, dan geldt : A = P DP T voor zekere orthogonale matrix P en diagonaalmatrix D Maar dan geldt dus : A T = (P DP T T = (P T T D T P T = P D T P T = P DP T = A Dus : A T = A Oftewel : A is symmetrisch Het bewijs van het omgekeerde is lastiger In de vraagstukken 3 en 4 van van Lay hebben we al gezien dat een symmetrische matrix alleen reële eigenwaarden heeft In stelling

2 hebben we gezien dat eigenvectoren van een symmetrische matrix behorende bij verschillende eigenwaarden orthogonaal zijn Die eigenvectoren kunnen dus ook orthonormaal gekozen worden Als een eigenwaarde van een symmetrische matrix een meetkundige multipliciteit groter dan heeft, dan kunnen we met behulp van het proces van Gram-Schmidt eenvoudig een orthonormale basis van de bijbehorende eigenruimte construeren Het is echter niet zo eenvoudig om aan te tonen dat voor elke eigenwaarde de algebraïsche multipliciteit gelijk is aan de meetkundige multipliciteit Dat deel van het bewijs laten we achterwege Voorbeeld Stel A = ( 7 4, dan is A een symmetrische matrix Nu volgt : 7 λ 4 λ = λ λ + 4 = (λ 8(λ 3 De eigenwaarden van A zijn dus : λ = 8 en λ = 3 Verder volgt : ( ( ( λ = 8 : = E 4 8 = Span{ en λ = 3 : ( 4 ( ( = E 3 = Span{ Het is duidelijk dat E 8 E 3 Nu geldt dus (bijvoorbeeld : A = P DP T met P = ( en D = ( Voorbeeld Stel dat A = 4, dan is A een symmetrische matrix Nu volgt : λ 4 4 λ λ = λ λ 4 λ λ = ( λ 4 λ = ( λ 4 9 λ λ 4 λ = ( λ 9 λ 4 λ = ( λ(λ λ + = ( λ(λ (λ De eigenwaarden van A zijn dus : λ = met algebraïsche multipliciteit en λ = met algebraïsche multipliciteit Verder volgt : 4 λ = : 4 = E = Span{ } 8 } }

3 en λ = : = E = Span{, Ook nu is eenvoudig in te zien dat E E Met behulp van het orthogonaliseringsproces van Gram-Schmidt (eventueel kunnen we een orthogonale basis van E construeren : E = Span{, } met 4 4 Ten slotte vinden we dat : = 3, = en 4 = 8 = 3 Nu geldt dus (bijvoorbeeld : A = P DP T met D = diag(,, en /3 / /3 P = /3 / /3 /3 4/3 = } Spectraaldecompositie van een symmetrische matrix Een symmetrische (n n-matrix is orthogonaal diagonaliseerbaar Dit betekent dat er een orthonormale basis {u,, u n } van R n bestaat geheel bestaande uit eigenvectoren van A, zeg : Au i = λ i u i voor i =,,, n Dan geldt dus : A = P DP T met P = u u n en D = diag(λ,, λ n Dit kan ook geschreven worden in de vorm A = λ u u T + + λ n u n u T n Dit heet een spectraaldecompositie van de matrix A Merk op dat elke term in deze som een (n n-matrix is met rang, want elke kolom van λ i u i u T i is een veelvoud van u i Elke matrix u i u T i is een projectiematrix, want u i u T i x = (ut i xu i = (x u i u i is de (orthogonale projectie van x langs de vector u i Voorbeeld 3 In voorbeeld vonden we voor A = vonden we (bijvoorbeeld u = ( Nu geldt dus : A = λ u u T + λ u u T A = 8 ( ( ( 3 + oftewel ( 7 4 en u = ( ( = 8 ( 4 : λ = 8 en λ = 3 Verder + 3 ( 4 3

4 Het bewijs van de spectraaldecompositie volgt eenvoudig door uitschrijven : λ u T A = P DP T = u u n = λ u λ n u n u T λ n u T n = λ u u T + + λ n u n u T n u T n Kwadratische vormen Een aardige toepassing van symmetrische matrices treedt op bij kwadratische vormen : Definitie 3 Een kwadratische vorm op R n is een functie Q : R n R die voor elke x R n geschreven kan worden in de vorm Q(x = x T Ax met A een symmetrische (n n-matrix Deze symmetrische matrix A heet de matrix van de kwadratische vorm Q Enkele voorbeelden : ( 7 A = : Q 4 (x = x T Ax = ( ( ( 7 x x x = 7x 4 x + 4x x + 4x ( Q (x = x + x x + 3x = xt Ax met A = Dus : A is de matrix van de 3 kwadratische ( vorm Q Merk op, dat ook geldt : Q (x = x T Bx met (bijvoorbeeld B = Maar B is geen symmetrische matrix 3 3 Q 3 (x = x + x + 3x 3 + 4x x 8x x 3 6x x 3 = x T Ax met A = De coëfficiënten van de kwadraten komen op de hoofddiagonaal en de coëfficiënten van de zogenaamde kruisproducten worden netjes over twee plaatsen verdeeld zodat er een symmetrische matrix ontstaat Deze matrix is dus uniek en heet daarom de matrix van de kwadratische vorm Q 4 Q 4 (x = (x x +4(x +x 3 +(x 3x 3 Dan geldt : Q 4 (x = x 4x x +4x + 4x + 8x x 3 + 4x 3 + x x x 3 + 8x 3 = x + 6x + x 3 4x x + 8x x 3 x x 3 = 4 x T Ax met A = 6 6 Aan de eerste vorm zien we dat Q(x, omdat 4 6 het een som van kwadraten is met positieve coëfficiënten Verder zien we vrij gemakkelijk dat Q 4 (x = x = o Dus : Q 4 (x > voor alle x o We noemen zo n kwadratische vorm dan positief definiet of definiet positief Merk op, dat dit bij de laatste vorm niet zo evident is 4

5 We definiëren nu eerst : Definitie 4 Een kwadratische vorm Q heet positief definiet of definiet positief als Q(x > voor alle x o, negatief definiet of definiet negatief als Q(x < voor alle x o, 3 indefiniet als Q(x zowel positieve als negatieve waarden aanneemt Als slechts geldt dat Q(x voor alle x en Q(x = voor zekere x o, dan noemt men Q positief semidefiniet Als slechts geldt dat Q(x voor alle x en Q(x = voor zekere x o, dan noemt men Q negatief semidefiniet Enkele voorbeelden : Q (x = (x x (x + x 3 (x 4x 3 is negatief definiet Q (x = (x x (x + x 3 is negatief semidefiniet Immers, er geldt (bijvoorbeeld dat Q (x = voor x = o 3 Q 3 (x = (x +x (x x 3 is indefiniet Immers : Q 3 (x = > voor x = en Q 3 (x = < voor x = 4 Q 4 (x = x + 6x + x 3 + 4x x x x 3 is positief definiet, want : Q(x = (x + x + x + x 3 x x 3 = (x + x + (x 3x 3 + 4x 3 Stel nu Q(x = x T Ax met A een symmetrische matrix Dan is A orthogonaal diagonaliseerbaar, dat wil zeggen : A = P DP T voor zekere orthogonale matrix P en diagonaalmatrix D Stel nu x = P y, dan volgt : Q(x = x T Ax = (P y T AP y = y T P T AP y = y T Dy Omdat D een diagonaalmatrix is, D = diag(λ,, λ n, bevat de laatste uitdrukking géén kruisproducten : y T Dy = λ y + + λ n y n Hieraan is eenvoudig te zien of de kwadratische vorm Q positief definiet, negatief definiet of indefiniet is Er geldt :

6 Stelling 3 Als A een symmetrische matrix is en Q(x = x T Ax Dan geldt : Q is positief definiet dan en slechts dan als alle eigenwaarden van A positief zijn, Q is negatief definiet dan en slechts dan als alle eigenwaarden van A negatief zijn, 3 Q is indefiniet dan en slechts dan als A zowel positieve als negatieve eigenwaarden heeft Als er een eigenwaarde optreedt dan geldt : als alle andere eigenwaarden van A positief zijn, dan is Q positief semidefiniet en als alle andere eigenwaarden van A negatief zijn, dan is Q negatief semidefiniet Door de transformatie x = P y kunnen we de kwadratische vorm Q(x = x T Ax schrijven in de gedaante y T Dy zonder kruisproducten Dit noemt men het op hoofdassen brengen van de kwadratische vorm De kolommen van de matrix P worden wel de hoofdassen van de kwadratische vorm genoemd Deze terminologie wordt verklaard door de volgende voorbeelden : Beschouw de vergelijking x ( 4x x + x = 48 Dit kan geschreven worden in de vorm x T Ax = 48 met A = Dan volgt : Verder volgt : en λ λ = 7 : λ = 3 : ( ( λ = λ λ + = (λ 7(λ 3 ( ( = u = ( = u = ( De vergelijking is dus equivalent met 7y + 3y = 48 waarbij x = P y met P = u u = ( Dit leidt tot de ellips in figuur 3 op pagina 44 van Lay Beschouw de vergelijking ( x 8x x x = 6 Dit kan geschreven worden in de vorm 4 x T Ax = 6 met A = Dan volgt : 4 λ 4 4 λ = λ + 4λ = (λ + 7(λ 3 6

7 Verder volgt : en λ = 3 : λ = 7 : ( ( ( ( = u = ( = u = ( De vergelijking is dus equivalent met 3y 7y = 6 waarbij x = P y met P = u u = ( Dit leidt tot de hyperbool in figuur 3 op pagina 44 van Lay Voorbeeld 4 De kwadratische ( vorm Q(x = 7x + 4x x + 4x is positief definiet, want 7 Q(x = x T Ax met A = en in voorbeeld hebben we gezien dat A de eigenwaarden 4 λ = 8 en λ = 3 heeft Voorbeeld De kwadratische vorm Q(x = x + x + x 3 8x x 4x x 3 + 4x x 3 is 4 positief definiet, want Q(x = x T Ax met A = 4 en in voorbeeld hebben we gezien dat A de eigenwaarden λ = (eenmaal en λ = (tweemaal heeft Voorbeeld 6 De kwadratische vorm Q(x = x T Bx met B = Immers, Q(x = x T Ax met A = is indefiniet en A is symmetrisch Dus : A is de matrix van de kwadratische vorm Q (en dus niet B De eigenwaarden van A zijn λ =, λ = en λ 3 =, want : λ 3 3 λ 3 λ = λ + λ 3 λ 3 λ = ( + λ 3 λ = ( + λ 3 λ 3 4 λ 4 λ = ( + λ(λ 7λ + = (λ + (λ (λ De eigenwaarden van B zeggen dus blijkbaar niets over de kwadratische vorm Q 7

Eigenwaarden en eigenvectoren in R n

Eigenwaarden en eigenvectoren in R n Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante

Nadere informatie

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het

Nadere informatie

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt).

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt). 76 Complexe eigenwaarden Ook dit hebben we reeds gezien bij Lineaire Algebra Zie: Lay, 57 Als xt ve rt een oplossing is van de homogene differentiaalvergelijking x t Axt, dan moet r een eigenwaarde van

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B = Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 2015 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B = Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 215 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan. Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt

Nadere informatie

Tentamen Lineaire Algebra B

Tentamen Lineaire Algebra B Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Oefensommen tentamen Lineaire algebra 2 - december A =

Oefensommen tentamen Lineaire algebra 2 - december A = Oefensommen tentamen Lineaire algebra 2 - december 2012 Opg 1 De schaakbordmatrix A is de 8 bij 8 matrix 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 A = 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00

Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00 Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

Tentamen Lineaire Algebra

Tentamen Lineaire Algebra Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur.

Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op vrijdag mei 7, 9: : uur. U mag bij het tentamen geen computer (notebook, laptop), boeken

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A.

1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A. . Oefen opgaven Opgave... Van de lineaire afbeelding A : R 3 R 3 is gegeven dat A = Bepaal de matrix van A. 4, 4 A =, A = 3 4. In de volgende opgave wordt het begrip injectiviteit en surjectiviteit van

Nadere informatie

Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)

Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets) Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N

Nadere informatie

Geadjungeerde en normaliteit

Geadjungeerde en normaliteit Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I

EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I Theorie Opgave 1. In deze opgave wordt gevraagd om een aantal argumenten of overgangen uit de cursusnota s in detail te verklaren. In delen (a) (b) peilen we naar

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Dit tentamen bestaat uit 4 open vragen, en kort-antwoord vragen. De uitwerkingen van de open vragen dienen volledig, duidelijk geformuleerd

Nadere informatie

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30) Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Tentamen Lineaire Algebra 1 (Wiskundigen)

Tentamen Lineaire Algebra 1 (Wiskundigen) Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren

Nadere informatie

Tentamen lineaire algebra 2 17 januari 2014, 10:00 13:00 zalen 174, 312, 412, 401, 402

Tentamen lineaire algebra 2 17 januari 2014, 10:00 13:00 zalen 174, 312, 412, 401, 402 Tentamen lineaire algebra 2 17 januari 214, 1: 13: zalen 174, 312, 412, 41, 42 Dit zijn geen complete uitwerkingen. Er is dus geen garantie dat het overschrijven met andere getallen voldoende is voor huiswerk

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 10 13 oktober 2016 1 Samenvatting Hoofdstuk 4.1 Een constante λ is een eigenwaarde van een n n matrix A als er een niet-nul vector x bestaat, zodat Ax =

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

Eigenwaarden en Diagonaliseerbaarheid

Eigenwaarden en Diagonaliseerbaarheid Hoofdstuk 3 Eigenwaarden en Diagonaliseerbaarheid 31 Diagonaliseerbaarheid Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Tentamina Lineaire Algebra Cursussen. Uitgangspunten, aanbevelingen en opmerkingen

Tentamina Lineaire Algebra Cursussen. Uitgangspunten, aanbevelingen en opmerkingen Tentamina Lineaire Algebra Cursussen Fons Daalderop, Joost de Groot, Roelof Koekoek Mei 4 Uitgangspunten, aanbevelingen en opmerkingen De inhoud van de cursus Lineaire Algebra is voor wat betreft de basisstof

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L Habets HG 809, Tel: 040-2474230, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y650 1 Herhaling: Oplossing homogene DV ẋ = Ax Aanname: A is diagonaliseerbaar

Nadere informatie

Wiskundigen. Tentamen Lineaire Algebra 1. Donderdag 18 december 2008, a ( )

Wiskundigen. Tentamen Lineaire Algebra 1. Donderdag 18 december 2008, a ( ) Wiskundigen Tentamen Lineaire Algebra Donderdag 8 december 8,.-3. Naam: () Bepaal voor alle reële waarden van a de rang van de matrix a C a = a. 4a () Zij n een geheel getal en laat P n de vectorruimte

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004, TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

Uitwerkingen tentamen Lineaire Algebra 2

Uitwerkingen tentamen Lineaire Algebra 2 Uitwerkingen tentamen Lineaire Algebra 2 15 januari, 2016 Opgave 2 (10 punten (a Het karakteristiek polynoom van A is det(ti A = (t 1 5, dus er is maar één eigenwaarde, namelijk λ = 1 Er geldt (A I 2 =

Nadere informatie

11.0 Voorkennis V

11.0 Voorkennis V 11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix

Nadere informatie

(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie.

(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie. Vraag op 5 punten de sfeer met middelpunt in,, 4 en straal 6; de omwentelingscilinder met straal 6 en als as de rechte door,, met richtingsvector,, Bepaal een affiene transformatie of een coördinatentransformatie,

Nadere informatie

Het orthogonaliseringsproces van Gram-Schmidt

Het orthogonaliseringsproces van Gram-Schmidt Het orthogonaliseringsproces an Gram-Schmidt Voor het berekenen an een orthogonale projectie an een ector y op een deelruimte W an R n is een orthogonale basis {u,, u p } zeer gewenst De orthogonale projectie

Nadere informatie

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Bij het vak Lineaire Algebra hebben we reeds kennis gemaakt met stelsels eerste orde lineaire differentiaalvergelijkingen We hebben

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer Samenvatting Lineaire Algebra 1 - Collegejaar 2013-2014 Dictaat met verwijzing naar het boek Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015

Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015 Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Herhaling: opspansel De vectoren v 1,..., v k V spannen

Nadere informatie

Studiehandleiding. Lineaire Algebra 2. voor. Werktuigbouwkunde. wi1314wb. Dr. R. Koekoek. gebouw ITS, kamer HB tel (tst.

Studiehandleiding. Lineaire Algebra 2. voor. Werktuigbouwkunde. wi1314wb. Dr. R. Koekoek. gebouw ITS, kamer HB tel (tst. Studiehandleiding Lineaire Algebra 2 voor Werktuigbouwkunde wi1314wb Dr. R. Koekoek gebouw ITS, kamer HB 04.300 tel. 015-2787218 (tst. 87218) e-mail : R.Koekoek@ITS.TUDelft.NL website : http://aw.twi.tudelft.nl/

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Tentamen Lineaire Algebra UITWERKINGEN

Tentamen Lineaire Algebra UITWERKINGEN Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door

Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal

Nadere informatie

extra sommen bij Numerieke lineaire algebra

extra sommen bij Numerieke lineaire algebra extra sommen bij Numerieke lineaire algebra 31 oktober 2012 1. Stel, we willen met een rekenapparaat (dat arithmetische bewerkingen uitvoert met een relatieve nauwkeurigheid ξ, ξ ξ) voor twee getallen

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Geef niet alleen antwoorden, maar bewijs al je beweringen.

Geef niet alleen antwoorden, maar bewijs al je beweringen. Tentamen Lineaire Algebra maandag 3--27, 3.3-6.3 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken. Schrijf op elk

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Uitwerking opgaven 17 december. Spoilers!!

Uitwerking opgaven 17 december. Spoilers!! Uitwerking opgaven 7 december Spoilers!! (duh... 8 januari 206 Inhoudsopgave Complex diagonaliseren matrix 2. Opgave................................................ 2.2 Oplossing...............................................

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A. TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT (2DM20) op vrijdag 12 juni 2009, 9.00 Dit tentamen bestaat uit 5 open vragen, en 4 kort-antwoord vragen.

Nadere informatie

Studiehandleiding. Lineaire Algebra. voor. Werktuigbouwkunde. wi1311wb. Dr. R. Koekoek. gebouw ITS, kamer HB tel (tst.

Studiehandleiding. Lineaire Algebra. voor. Werktuigbouwkunde. wi1311wb. Dr. R. Koekoek. gebouw ITS, kamer HB tel (tst. Studiehandleiding Lineaire Algebra voor Werktuigbouwkunde wi1311wb Dr. R. Koekoek gebouw ITS, kamer HB 04.300 tel. 015-2787218 (tst. 87218) e-mail : R.Koekoek@ITS.TUDelft.NL website : http://aw.twi.tudelft.nl/

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Meetkunde en Lineaire Algebra

Meetkunde en Lineaire Algebra Hoofdstuk 1 Meetkunde en Lineaire Algebra Vraag 1.1 Zij p en q twee veeltermfuncties met reële coëfficiënten en A een reële vierkante matrix. Dan is p(a) diagonaliseerbaar over R als en slechts dan als

Nadere informatie

Matrixoperaties. Definitie. Voorbeelden. Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten.

Matrixoperaties. Definitie. Voorbeelden. Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten. Definitie Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten. Voorbeelden De coëfficiëntenmatrix of aangevulde matrix bij een stelsel lineaire vergelijkingen. Een rij-echelonmatrix

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen Vector-en matrixvergelijkingen (a) Parallellogramconstructie (b) Kop aan staartmethode Figuur: Vectoren, optellen (a) Kop aan staartmethode, optellen (b) Kop aan staart methode, aftrekken Figuur: Het optellen

Nadere informatie

Meetkunde en Lineaire Algebra

Meetkunde en Lineaire Algebra Hoofdstuk 1 Meetkunde en Lineaire Algebra Vraag 1.1 Zij p en q twee veeltermfuncties met reële coëfficiënten en A een reële vierkante matrix. Dan is p(a) diagonaliseerbaar over R als en slechts dan als

Nadere informatie

1 Triangulatiestellingen voor lineaire transformaties

1 Triangulatiestellingen voor lineaire transformaties Triangulatiestellingen voor lineaire transformaties Zoals bekend kan niet iedere lineaire transformatie L : V V van een vectorruimte (V, K) gediagonaliseerd worden. Als het lichaam K echter algebraïsch

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Overzicht. Eigenwaarden. Beurzen en afhankelijkheid. Eigenwaarden: Intro

Overzicht. Eigenwaarden. Beurzen en afhankelijkheid. Eigenwaarden: Intro Overzicht Eigenwaarden VU Numeriek Programmeren. Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, A april Waarom? Voorbeelden Eigenwaarden/eigenvectoren Hoe vind ik ze? Polynoom Powermethode Andere

Nadere informatie

wordt de stelling van Pythagoras toegepast, in dit geval twee keer: eerst in de x y-vlakte en vervolgens in de vlakte loodrecht op de vector y.

wordt de stelling van Pythagoras toegepast, in dit geval twee keer: eerst in de x y-vlakte en vervolgens in de vlakte loodrecht op de vector y. Wiskunde voor kunstmatige intelligentie, 2 Les 5 Inproduct Als we het in de meetkunde (of elders) over afstanden en hoeken hebben, dan hebben we daar intuïtief wel een idee van. Maar wat is eigenlijk de

Nadere informatie

Het karakteristieke polynoom

Het karakteristieke polynoom Hoofdstuk 6 Het karakteristieke polynoom We herhalen eerst kort de definities van eigenwaarde en eigenvector, nu in een algemene vectorruimte Definitie 6 Een eigenvector voor een lineaire transformatie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)

Nadere informatie

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie

Nadere informatie

Gelijkvormigheid en de Jordan normaalvorm Aanvullende leerstof Lineaire Algebra C (2WF09)

Gelijkvormigheid en de Jordan normaalvorm Aanvullende leerstof Lineaire Algebra C (2WF09) Gelijkvormigheid en de Jordan normaalvorm Aanvullende leerstof Lineaire Algebra C (2WF09) LCGJM Habets Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Abstract In de syllabus bij het

Nadere informatie

Examenvragen Meetkunde en lineaire algebra Eerste examenperiode

Examenvragen Meetkunde en lineaire algebra Eerste examenperiode Examenvragen Meetkunde en lineaire algebra Eerste examenperiode 2008-2009 Door rotatie van de rechte r die bepaald wordt door de punten P(3, 1, 2) en Q(1, 1, 2) omheen de rechte s die gaat door het punt

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting

Nadere informatie

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding V Kegelsneden en Kwadratische Vormen in R IV.0 Inleiding V. Homogene kwadratische vormen Een vorm als H (, ) = 5 4 + 8 heet een homogene kwadratische vorm naar de twee variabelen en. Een vorm als K (,

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie