Het orthogonaliseringsproces van Gram-Schmidt

Maat: px
Weergave met pagina beginnen:

Download "Het orthogonaliseringsproces van Gram-Schmidt"

Transcriptie

1 Het orthogonaliseringsproces an Gram-Schmidt Voor het berekenen an een orthogonale projectie an een ector y op een deelruimte W an R n is een orthogonale basis {u,, u p } zeer gewenst De orthogonale projectie is dan gelijk aan de som an de orthogonale projecties langs de (orthogonale basisectoren : ( y u proj W y u u u + + ( y up u p u p u p Een interessante raag is nu : Hoe kunnen we een orthogonale basis an een deelruimte W construeren als we slechts een willekeurige (niet-orthogonale basis kennen? Hieroor dient het orthogonaliseringsproces an Gram-Schmidt : Stelling Stel dat {x,, x p } een basis is an een deelruimte W an R n Definieer dan : x ( x x ( ( x x x p ( xp x p ( xp Dan geldt : {,, p } is een orthogonale basis an W ( xp p p p p Opmerking In elke stap wordt an de basisector x k de orthogonale projecties langs de nieuwe (orthogonale basisectoren,, k afgetrokken De resulterende ector k staat dan loodrecht op alle ectoren,, k, die al orthogonaal zijn Boendien geldt : Span{,, k } Span{x,, x k } oor iedere k Een orthogonale basis kan eenoudig omgezet worden naar een orthonormale basis door elke ector te normeren (of schalen : als {,, p } een orthogonale basis an W is, dan is {u,, u p } met u i i i oor alle i,,, p een orthonormale basis an W Voorbeeld Stel W Span{x, x, x, x } met x, x, x en x dan is W dus een deelruimte an R We bepalen eerst een basis an W :,

2 Hieruit olgt dat {x, x, x, x } lineair afhankelijk is, dat x Span{x, x, x } en dat {x, x, x } lineair onafhankelijk is (in elke kolom een piot {x, x, x } is een basis an W Nu passen we het orthogonaliseringsproces an Gram-Schmidt toe : x, x ( x ( ( , x ( x ( x ( ( ( (

3 Omdat de lengte (of norm an de ectoren niet an belang is oor de orthogonaliteit olgt nu dat {,, } een orthogonale basis an W is Dat deze drie ectoren orthogonaal zijn kan eenoudig gecontroleerd worden door de (drie onderlinge inwendige producten uit te rekenen Hieruit kan eenoudig een orthonormale basis geconstrueerd worden door de drie ectoren te normeren : + + +, en { is een orthonormale basis an W + + +,, Het orthogonaliseringsproces an Gram-Schmidt kan gebruikt worden om een QR-ontbinding an een matrix te maken : Stelling Als A een (m n-matrix is met lineair onafhankelijke kolommen, dan kan A geschreen worden als A QR, waarbij Q een (m n-matrix is waaran de kolommen een orthonormale basis an Col A ormen en R een inerteerbare (n n-boendriehoeksmatrix Bewijs Het bewijs olgt meteen uit de constructie Omdat de kolommen an A lineair onafhankelijk zijn ormen deze een basis an Col A Passen we het proces an Gram-Schmidt toe op die kolommen an A dan inden we uiteindelijk een orthonormale basis an Col A De ectoren an deze basis ormen de kolommen an Q Dat R een boendriehoeksmatrix is olgt uit het feit dat de eerste k kolommen an A lineaire combinaties zijn an de eerste k kolommen an Q Stel nu dat Rx o, dan olgt Ax QRx Qo o Omdat de kolommen an A lineair onafhankelijk zijn olgt hieruit dat x o Dit betekent dat Rx o slechts de triiale oplossing x o heeft en dat betekent dat R inerteerbaar is }

4 Opmerking De matrix Q wordt erkregen met behulp an het proces an Gram-Schmidt Omdat de kolommen an Q orthonormaal zijn geldt Q T Q I Hieruit olgt dat Q T A Q T (QR (Q T QR IR R De matrix R kan dus heel eenoudig geonden worden uit R Q T A Voorbeeld Stel A an A lineair onafhankelijk zijn en dat {, een orthonormale basis an Col A is Q In oorbeeld hebben we gezien dat de kolommen, } Voor R inden we dan R Q T A Kleinste-kwadratenproblemen Een stelsel ergelijkingen Ax b is alleen oplosbaar als b Col A In de praktijk komt het aak oor dat zo n stelsel ergelijkingen niet oplosbaar is, bijoorbeeld door meetfouten en/of afrondfouten Dit is aak erg onberedigend Om het stelsel oplosbaar te maken erangt men dan de ector b door een ector die wel in Col A zit Om de fout daarbij zo klein mogelijk te houden wordt díe ector in Col A gekozen die het dichtst bij b ligt : de (orthogonale projectie an b op Col A Een oplossing an een op deze manier erkregen stelsel ergelijkingen heet een kleinste-kwadratenoplossing an Ax b : Definitie Stel dat A een (m n-matrix is en b R m Dan heet ˆx R n een kleinstekwadratenoplossing an Ax b als b Aˆx b Ax oor alle x R n

5 Het inden an zo n kleinste-kwadratenoplossing komt dus neer op het minimaliseren an de afstand b Ax of an b Ax, een som an kwadraten Dat erklaart de term kleinste-kwadratenprobleem We gaan nu op zoek naar zo n kleinste-kwadratenoplossing Stel dat ˆb proj Col A b, dan geldt dat Ax ˆb oplosbaar is Stel dat ˆx een oplossing is, dan geldt dus : Aˆx ˆb Dan geldt dat b ˆb loodrecht staat op Col A b Aˆx staat loodrecht op elke kolom an A Als a j zo n kolom an A is, dan geldt dus : a j (b Aˆx oftewel a T j (b Aˆx Dit geldt oor iedere j, dus : A T (b Aˆx o A T b A T Aˆx o A T Aˆx A T b Dit laatste stelsel ergelijkingen wordt aangeduid met de term normale ergelijking(en : Stelling De erzameling an kleinste-kwadratenoplossingen an Ax b komt oereen met de niet-lege erzameling an oplossingen an de normale ergelijking(en : A T Aˆx A T b Bewijs Hierboen hebben we al gezien dat een kleinste-kwadratenoplossing an Ax b moet oldoen aan de normale ergelijkingen A T Aˆx A T b Omgekeerd, als ˆx een oplossing is an A T Aˆx A T b, dan staat b Aˆx dus loodrecht op alle rijen an A T en dus op alle kolommen an A b Aˆx staat loodrecht op Col A Dit betekent dat b Aˆx + (b Aˆx een ontbinding an b is met Aˆx Col A en b Aˆx Col A Aangezien zo n ontbinding uniek is geldt dus dat Aˆx de orthogonale projectie an b op Col A moet zijn Aˆx ˆb en dat betekent dat ˆx een kleinste-kwadratenoplossing an Ax b is Opmerking Een kleinste-kwadratenoplossing is uniek als de matrix A T A inerteerbaar is Dit is het geal als de kolommen an A lineair onafhankelijk zijn We zullen dit niet bewijzen De afstand b ˆb b Aˆx wordt wel de kleinste-kwadratenfout genoemd Voorbeeld Als A We inden nu A T A ( A T Aˆx A T b : Er geldt dus dat ( en b ( ( ˆb Aˆx, dan is Ax b niet oplosbaar (ga na! en A T b ( ( ( 7 ˆx de orthogonale projectie an b op Col A is De kleinste-kwadratenfout is dus b ˆb b Aˆx 7 ( (

6 Voorbeeld Stel dat A en b Dan zijn de kolommen an A duidelijk afhankelijk (de derde kolom is de som an de eerste twee kolommen Ook is onmiddellijk duidelijk dat Ax b niet oplosbaar is We inden nu : A T A en A T Aˆx A T b : A T b In dit geal zijn er dus oneindig eel oplossingen : x x x x x ˆx x x x is rij De orthogonale projectie an b op Col A is (uiteraard wel uniek : x ˆb Aˆx x + x x x + x x x + x x + x + x De QR-ontbinding an een matrix kan helpen om het rekenwerk te bekorten : Stelling Als A een (m n-matrix is met lineair onafhankelijke kolommen en A QR is een QR-ontbinding an A, dan geldt : Ax b heeft oor iedere b R m een unieke kleinstekwadratenoplossing ˆx bepaald door : Rˆx Q T b Opmerking De kleinste-kwadratenoplossing ˆx is uniek omdat de kolommen an A lineair onafhankelijk zijn Omdat R een boendriehoeksmatrix is kan Rˆx Q T b (snel opgelost worden ia terugsubstitutie Bewijs Voor een QR-ontbinding an A geldt dat Q T Q I (want Q heeft orthonormale kolommen en dat R inerteerbaar is A T A (QR T QR R T Q T QR R T IR R T R

7 en A T b (QR T b R T Q T b Als R inerteerbaar is (det R, dan is R T ook inerteerbaar, want : det R T det R A T Aˆx A T b R T Rˆx R T Q T b Rˆx Q T b Toepassingen an de kleinste-kwadratenmethode De kleinste-kwadratenoplossing wordt gebruikt om bijoorbeeld een grafiek (zoals een rechte lijn te inden die zo goed mogelijk door een puntenwolk loopt Voorbeeld Beschouw de puntenwolk : (,, (,, (, en (, We zoeken nu een rechte lijn y ax + b die het best bij deze puntenwolk past Door inullen an de erschillende waarden oor x en y zien we dat a en b zouden moeten oldoen aan : a + b a + b a + b a + b Ax b met A en b Al snel is duidelijk dat Ax b niet oplosbaar is De ier punten liggen blijkbaar niet netjes op een rechte lijn We bepalen nu een kleinste-kwadratenoplossing an Ax b : en A T A A T b ( ( A T Aˆx A T b ˆx (A T A A T b We kiezen nu : a 77 9 en b 9 9 ( ( ( ( 9 ( We inden zo de kleinste-kwadratenlijn : y x+ 9 9 Op deze manier kunnen ook andere kleinste-kwadratenkrommen door een puntenwolk worden geonden Het inullen an de erschillende waarden oor x en y leert een stelsel ergelijkingen op met de coëfficiënten als onbekenden Hieroor kiezen we dan de coördinaten an kleinste-kwadratenoplossing Zie an Lay oor meer oorbeelden 7

De kleinste kwadratenmethode. Figuur: Probleem uit video 8.1 (Video)

De kleinste kwadratenmethode. Figuur: Probleem uit video 8.1 (Video) De kleinste kwadratenmethode Figuur: Probleem uit video 8.1 (Video) Laat A een m n matrix zijn en b een vector in R m. Veronderstel dat de matrixvergelijking A x = b geen oplossingen heeft omdat b / Col(A).

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Herhaling: opspansel De vectoren v 1,..., v k V spannen

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

Tentamen Lineaire Algebra

Tentamen Lineaire Algebra Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004, TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen

Nadere informatie

Tentamen Lineaire Algebra B

Tentamen Lineaire Algebra B Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Tentamen Lineaire Algebra UITWERKINGEN

Tentamen Lineaire Algebra UITWERKINGEN Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen

Nadere informatie

2 Vectorrekening - Peter Bueken

2 Vectorrekening - Peter Bueken ÀÓ Ö Ú ÖØ ÓÓÐ ÒØÛ ÖÔ Ò ÙÐØ Ø Ï Ø Ò ÔÔ Ò Î ÖÓ Ô ÌÓ Ô Ø Ò Ü Ø Ï Ø Ò ÔÔ Ò Î ØÓÖÖ Ò Ò È Ø Ö Ù Ò HZS-OE5-NW142 Eerste jaar Bachelor Nautische Wetenschappen Versie 14.0 31 oktober 2014 2 Vectorrekening - Peter

Nadere informatie

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A.

1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A. . Oefen opgaven Opgave... Van de lineaire afbeelding A : R 3 R 3 is gegeven dat A = Bepaal de matrix van A. 4, 4 A =, A = 3 4. In de volgende opgave wordt het begrip injectiviteit en surjectiviteit van

Nadere informatie

Coördinatiseringen. Definitie 1. Stel dat B = {b 1,..., b n } een basis is van een vectorruimte V en dat v V. iedere vector v V :

Coördinatiseringen. Definitie 1. Stel dat B = {b 1,..., b n } een basis is van een vectorruimte V en dat v V. iedere vector v V : Coördinatiseringen Het rekenen met vectoren in R n gaat erg gemakkelijk De coördinaten bieden de mogelijkheid om handig te rekenen (vegen Het is nu ook mogelijk om coördinaten in te voeren voor vectoren

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

7 Het uitwendig product

7 Het uitwendig product 7 Het itwendig prodct Wees niet bezorgd oer je moeilijkheden met wisknde. Ik kan je erzekeren dat de mijne groter zijn. Albert Einstein (1879-1955) In onze Cartesische rimte 3 hebben we n en dan behoefte

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer Samenvatting Lineaire Algebra 1 - Collegejaar 2013-2014 Dictaat met verwijzing naar het boek Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college en scalarelden in R Vandaag collegejaar college build slides : : : : 4-5 7 augustus 4 33 Coördinatenstelsels in R VA andaag Voorkennis Zelf bestuderen uit.,. en.3: ptellen en scalair ermeniguldigen

Nadere informatie

Geef niet alleen antwoorden, maar bewijs al je beweringen.

Geef niet alleen antwoorden, maar bewijs al je beweringen. Tentamen Lineaire Algebra maandag 3--27, 3.3-6.3 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken. Schrijf op elk

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Hoofdstuk 4 Vergelijkingen. Kern 1 Numeriek oplossen. Netwerk 4 HAVO B uitwerkingen, Hoofdstuk 4, Vergelijkingen 1

Hoofdstuk 4 Vergelijkingen. Kern 1 Numeriek oplossen. Netwerk 4 HAVO B uitwerkingen, Hoofdstuk 4, Vergelijkingen 1 Netwerk HAVO B uitwerkingen, Hoofdstuk, Vergelijkingen Hoofdstuk Vergelijkingen Kern Numeriek oplossen a Teken Y = + 0.* (X) en Y = + 0.00 * X op WINDOW [0,00] [0, 0]. b X = 6.5 en Y =.78. Dus na 6,5 dag

Nadere informatie

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30) Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I

EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I Theorie Opgave 1. In deze opgave wordt gevraagd om een aantal argumenten of overgangen uit de cursusnota s in detail te verklaren. In delen (a) (b) peilen we naar

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

Tentamina Lineaire Algebra Cursussen. Uitgangspunten, aanbevelingen en opmerkingen

Tentamina Lineaire Algebra Cursussen. Uitgangspunten, aanbevelingen en opmerkingen Tentamina Lineaire Algebra Cursussen Fons Daalderop, Joost de Groot, Roelof Koekoek Mei 4 Uitgangspunten, aanbevelingen en opmerkingen De inhoud van de cursus Lineaire Algebra is voor wat betreft de basisstof

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Optelling en scalaire vermenigvuldiging zijn weer plaatsgewijs gedefinieerd, bijvoorbeeld: 7 (x 1, x 2, x 3,...)

Optelling en scalaire vermenigvuldiging zijn weer plaatsgewijs gedefinieerd, bijvoorbeeld: 7 (x 1, x 2, x 3,...) 5. Lineaire ruimten Tot nu toe hebben we ons uitsluitend met de R n bezig gehouden. We gaan de behandelde theorie nu uitbreiden tot verzamelingen die een sterke overeenkomst met een R n vertonen. Een dergelijke

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen Vector-en matrixvergelijkingen (a) Parallellogramconstructie (b) Kop aan staartmethode Figuur: Vectoren, optellen (a) Kop aan staartmethode, optellen (b) Kop aan staart methode, aftrekken Figuur: Het optellen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT (2DM20) op vrijdag 12 juni 2009, 9.00 Dit tentamen bestaat uit 5 open vragen, en 4 kort-antwoord vragen.

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00

Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00 Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus

Nadere informatie

Bepaling van oplegreacties van spanten

Bepaling van oplegreacties van spanten epaling an oplegreacties an spanten Naast liggers, ijn ook spanten of portalen eel oorkomende constructies. Portalen ijn in de steunpunten owel in oriontale als erticale ricting ondersteund en aak scarnierend

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

De wiskunde van computerberekeningen. Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam.

De wiskunde van computerberekeningen. Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam. De wiskunde van computerberekeningen Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam 04 november 2015 Pluto en Charon New Horizons, launch date 19 January, 2006, speed

Nadere informatie

wordt de stelling van Pythagoras toegepast, in dit geval twee keer: eerst in de x y-vlakte en vervolgens in de vlakte loodrecht op de vector y.

wordt de stelling van Pythagoras toegepast, in dit geval twee keer: eerst in de x y-vlakte en vervolgens in de vlakte loodrecht op de vector y. Wiskunde voor kunstmatige intelligentie, 2 Les 5 Inproduct Als we het in de meetkunde (of elders) over afstanden en hoeken hebben, dan hebben we daar intuïtief wel een idee van. Maar wat is eigenlijk de

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op maandag juni Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord vragen. De

Nadere informatie

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

Dimensie van een deelruimte en rang van een matrix

Dimensie van een deelruimte en rang van een matrix Dimensie van een deelruimte en rang van een matrix Definitie (Herinnering) Een basis voor een deelruimte H van R n is een lineair onafhankelijke verzameling vectoren die H opspant. Notatie Een basis van

Nadere informatie

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

1. Vectoren in R n. y-as

1. Vectoren in R n. y-as 1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale

Nadere informatie

Eerste deeltentamen Lineaire Algebra A

Eerste deeltentamen Lineaire Algebra A Eerste deeltentamen Lineaire Algebra A 8 november 2011, 13u30-16u30 Bij dit tentamen mag het dictaat niet gebruikt worden. Schrijf op elk vel je naam, studnr en naam practicumleider (Victor Blasjo, Esther

Nadere informatie

Lineair voor CT College 2a. Echelon vorm 1.2 Duncan van der Heul

Lineair voor CT College 2a. Echelon vorm 1.2 Duncan van der Heul Lineair voor CT College 2a Echelon vorm 1.2 Duncan van der Heul Speciale vormen van een matrix Een stelsel oplossen komt overeen met door elementaire rijopera-es bepalen van de gereduceerde echelon vorm

Nadere informatie

Ruimtemeetkunde deel 1

Ruimtemeetkunde deel 1 Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen

Nadere informatie

Langere vraag over de theorie

Langere vraag over de theorie Langere raag oer de theorie a) Veld eroorzaakt door een lange cilinderorige draad [oorbeeld 8-6] We willen het eld berekenen op een afstand r an het centru an een draad et straal R die een constante stroo

Nadere informatie

Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door

Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

11.0 Voorkennis V

11.0 Voorkennis V 11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Uitwerking 1 Uitwerkingen eerste deeltentamen Lineaire Algebra (WISB121) 3 november 2009

Uitwerking 1 Uitwerkingen eerste deeltentamen Lineaire Algebra (WISB121) 3 november 2009 Departement Wiskunde, Faculteit Bètawetenschappen, UU. In elektronische vorm beschikbaar gemaakt door de TBC van A Eskwadraat. Het college WISB werd in 9- gegeven door Prof. Dr. F. Beukers. Uitwerking

Nadere informatie

Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur.

Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op vrijdag mei 7, 9: : uur. U mag bij het tentamen geen computer (notebook, laptop), boeken

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB1002 deel 1 - Lineaire algebra 1 College 6 27 februari 2014 1 Opbouw college Vandaag behandelen we de rest van hoofdstuk 1.8 en 1.9 Voor de pauze: hoofdstuk 1.8 Na de pauze: hoofdstuk 1.9 2 Transformatie

Nadere informatie

PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016

PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016 PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016 1. Zi (R, V, +) een eindigdimensionale vectorruimte en veronderstel dat U en W deelruimten van V zin. Toon aan dat 2. Waar of fout? Argumenteer e antwoord.

Nadere informatie

Frobenius lage rang benaderingen

Frobenius lage rang benaderingen Falcuteit Wetenschappen en Bio-Ingenieurswetenschappen Departement Wiskunde Frobenius lage rang benaderingen Proefschrift ingediend met het oog op het behalen van de graad Bachelor in de Wiskunde Dina

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire

Nadere informatie

Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen

Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen Tweede huiswerkopdracht Lineaire algebra 1 en opmerkingen November 10, 2009 Opgave 1 Gegeven een vectorruimte V met deelruimtes U 1 en U 2. Als er geldt dim U 1 = 7, dimu 2 = 9, en dim(u 1 U 2 ) = 4, wat

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

Vierde huiswerkopdracht Lineaire algebra 1

Vierde huiswerkopdracht Lineaire algebra 1 Vierde huiswerkopdracht Lineaire algebra December, 00 Opgave : Voor positieve gehele getallen m, n schrijven we Mat(m n, R) voor de vectorruimte van alle m n matrices, met de gebruikelijke optelling en

Nadere informatie

Schooljaar: Leerkracht: M. Smet Leervak: Wiskunde Leerplan: D/2002/0279/048

Schooljaar: Leerkracht: M. Smet Leervak: Wiskunde Leerplan: D/2002/0279/048 Blz: 1/5 04 09 09 1.1 STELLING VAN PYTHAGORAS ouwregel tot Pythagoras: formulering. 07 09 09 11 09 09 14 09 09 18 09 09 21 09 09 22 09 09 25 09 09 29 09 09 01 10 09 02 10 09 06 10 09 08 10 09 09 10 09

Nadere informatie

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen

Nadere informatie

Examen HAVO. wiskunde A (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 1 tijdak woensdag juni 13.3-16.3 uur wiskunde A (pilot) Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 ragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Eigenwaarden en eigenvectoren in R n

Eigenwaarden en eigenvectoren in R n Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Tentamen Lineaire Algebra 1 (Wiskundigen)

Tentamen Lineaire Algebra 1 (Wiskundigen) Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 8 J.Keijsper

Nadere informatie

Uitwerkingen toets 12 juni 2010

Uitwerkingen toets 12 juni 2010 Uitwerkingen toets 12 juni 2010 Opgave 1. Bekijk rijen a 1, a 2, a 3,... van positieve gehele getallen. Bepaal de kleinst mogelijke waarde van a 2010 als gegeven is: (i) a n < a n+1 voor alle n 1, (ii)

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Studiewijzer Lineaire Algebra voor ST (2DS06), blok D, januari 2009

Studiewijzer Lineaire Algebra voor ST (2DS06), blok D, januari 2009 Studiewijzer Lineaire Algebra voor ST (2DS06), blok D, januari 2009 1 Algemeen 1.1 Docenten De cursus wordt gegeven door Judith Keijsper (Dr. J.C.M. Keijsper, HG 9.31, tel 5583, email J.C.M.Keijsper(AT)tue(DOT)nl).

Nadere informatie