Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Maat: px
Weergave met pagina beginnen:

Download "Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b"

Transcriptie

1 Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan /k

2 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen of onbekenden x 1,..., x n is van de vorm a 1 x a n x n = b a j is de coëfficiënt van x j b heet de constante van de vergelijking VOORBEELD: x 1 x 2 + 5x 3 = 7

3 Stelsel lineaire vergelijkingen 3/64 DEFINITIE: Een stelsel lineaire vergelijkingen in de variabelen x 1,..., x n is van de vorm a 11 x a 1n x n = b 1.. a i1 x a in x n = b i.. a m1 x a mn x n = b m a ij is de coëfficiënt van x j in de i-e vergelijking b i is de constante van de i-e vergelijking

4 Oplossing van stelsel vergelijkingen 4/64 DEFINITIE: Een oplossing van een stelsel is een toekenning van speciale waarden x 1 = s 1,..., x n = s n aan de onbekenden die aan de vergelijkingen voldoet. VOORBEELD: x 1 = 7, x 2 = 5, x 3 = 1 is een oplossing van x 1 x 2 + 5x 3 = 7

5 Stelsels lineaire vergelijkingen 5/64 DEFINITIE: Een stelsel heet homogeen indien b i = 0 voor alle i. DEFINITIE: Een oplossing heet triviaal indien de toekenning x i = 0 voor alle i een oplossing is. STELLING: Een stelsel is homogeen dan en slecht dan als het een triviale oplossing heeft.

6 Stelsels lineaire vergelijkingen 6/64 DEFINITIE: Twee stelsels lineaire vergelijkingen a 11 x a 1n x n = b 1.. a m1 x a mn x n = b m en /k c 11 x c 1n x n = d 1.. c l1 x c ln x n = d l in hetzelfde aantal variabelen heten equivalent indien ze precies dezelfde oplossingen hebben.

7 Stelsels lineaire vergelijkingen 7/64 VOORBEELD: { x1 + 2x 2 = 3 3x 1 + 4x 2 = 7 heeft x 1 = 1, x 2 = 1 als enige oplossing. 4x 1 + 6x 2 = 10 6x 1 + 8x 2 = 14 x 1 + x 2 = 2 heeft x 1 = 1, x 2 = 1 als enige oplossing. CONCLUSIE: beide stelsels zijn equivalent.

8 Consistent stelsel vergelijkingen 8/64 DEFINITIE: Een stelsel heet consistent als het een oplossing heeft. Een stelsel heet strijdig of inconsistent indien er geen oplossing is. VOORBEELD: { x1 + 2x 2 = 3 2x 1 + 4x 2 = 4 heeft geen oplossing, anders is 6 = 4.

9 Stelsels lineaire vergelijkingen 9/64 STELLING: Een stelsel lineaire vergelijkingen heeft de volgende drie mogelijkheden: (a) geen oplossingen (strijdig=inconsistent) (b) precies één oplossing (consistent) (c) oneindig veel oplossingen (consistent) VOORBEELD: (a) twee evenwijdige lijnen (b) twee lijnen snijden in één punt (c) twee samenvallende lijnen

10 Afhankelijk stelsel vergelijkingen 10/64 DEFINITIE: Een stelsel heet afhankelijk indien een vergelijking het gevolg is van de overige vergelijkingen. VOORBEELD: { x1 + 2x 2 = 3 2x 1 + 4x 2 = 6

11 Elementaire rij operaties 11/64 STELLING: Twee stelsels zijn equivalent indien de een uit de ander verkregen kan worden door de volgende drie elementaire rij operaties: 1. verwisselen van rijen 2. een rij vermenigvuldigen met een getal ongelijk nul 3. een rij bij een andere rij optellen OPMERKING: De omkering zal ook blijken te gelden. /k

12 De uitgebreide matrix 12/64 Neem weer het voorbeeld: 1 x 1 + ( 1) x x 3 = 0 4 x x x 3 = 8 0 x x x 3 = 9 Laat de variabelen, plussen en gelijktekens weg Zet coëffieciënten en constanten in een uitgebreide matrix:

13 Vegen van een matrix 13/64 x 1 x 2 + x 3 = 0 4x 1 + 2x = x 2 + 5x 3 = 9 x 1 x 2 + x 3 = x 2 + 4x 3 = x 2 + 5x 3 = 9 x 1 x 2 + x 3 = x 3 = x 2 + 5x 3 =

14 Vegen van een matrix 14/64 x 1 x 2 + x 3 = x 3 = x 2 + 5x 3 = 9 x 1 x 2 + x 3 = x 2 + 5x 3 = x 3 = 1 x 1 x = x = x 3 =

15 Vegen van een matrix 15/64 x 1 x = x = x 3 = 1 x 1 x = x = x 3 = 1 x = x = x 3 = 1 Dus x 1 = 1, x 2 = 2, x 3 = 1 is de unieke oplossing

16 Vegen van een matrix 16/64 Voortaan wordt een stelsel lineaire vergelijkingen direct omgezet in de uitgebreide matrix en met deze matrix wordt geveegd. De vergelijkingen worden verder weggelaten

17 Elementaire rij operaties 17/64 STELLING: Twee stelsels zijn equivalent dan en slechts dan als de een uit de ander verkregen kan worden door de volgende drie elementaire rij operaties: 1. verwisselen van rijen 2. een rij vermenigvuldigen met een getal ongelijk nul 3. een rij bij een andere rij optellen OPMERKING: Dezelfde operaties kunnen ook op kolommen worden uitgevoerd maar dan zijn de vergelijkingen niet meer equivalent! /k

18 Gauss eliminatie en vegen van een matrix 18/64 Gauss eliminatie of vegen van een matrix het element 1 wordt een spil genoemd tel de eerste rij bij de tweede op trek de eerste rij van de derde af /k met een spil wordt de kolom schoon geveegd verwissel de tweede en derde rij

19 Vegen van een matrix 19/ De matrix is in echelon of trap vorm. vermenigvulig tweede rij met 1/2 vermenigvulig derde rij met 1/

20 Terugwaardse substitutie 20/64 /k Het bijbehorende stelsel is: x 1 + 3x 2 6x 3 = 9 x 2 x 3 = 1 x 3 = 2 Dus x 3 = 2. Terugwaardse substitutie in de tweede rij geeft x = 1, ofwel x 2 = 3. Terugwaardse substitutie in de eerste rij geeft x = 9, ofwel x 1 = 6.

21 Gauss-Jordan eliminatie 21/64 Gauss-Jordan eliminatie trek 3 maal de tweede rij af van de eerste het element 1 is nu de nieuwe spil het element 0 is al nul

22 Gauss-Jordan eliminatie 22/ tel 3 maal de derde rij bij de eerste op tel de derde rij bij de tweede op het element 1 is nu de nieuwe spil dit is de gereduceerde rij trap vorm ofwel de reduced row echelon form

23 Gereduceerde rij trap vorm 23/64 DEFINITIE: Een matrix is in row echelon form ofwel in rij trap vorm als geldt: alle nulrijen zitten onderaan de spillen vormen een trap in elke rij is het eerste element ongelijk 0 gelijk aan 1, dit is de kopterm of spil De matrix is in reduced row echelon form ofwel in gereduceerde rij trap vorm als bovendien geldt: in de kolom van een spil staan verder alleen nullen /k

24 Gereduceerde rij trap vorm 24/

25 Voorbeeld 25/ is in gereduceerde rij trap vorm is wel in rij trap vorm, maar is niet gereduceerd /k

26 Voorbeeld 26/ is niet in rij trap vorm

27 Elementaire operaties en rref 27/64 STELLING: 1) Iedere matrix A is door middel van de drie elementaire operaties over te brengen in een matrix in gereduceerde rij trap vorm (rref). Dit proces heet vegen. 2) Voor gegeven A is op heel veel verschillende manieren een matrix in rref te verkrijgen, maar het eindresultaat is uniek en wordt genoteerd door rref(a).

28 Matrix vergelijking 28/64 Het stelsel vergelijkingen a 11 x a 1n x n = b 1.. a m1 x a mn x n = b m wordt ook weergegeven door de matrix vergelijking AX = B: a a 1n x 1 b =. a m1... a mn x n b m

29 Uitgebreide matrix 29/64 De matrix vergelijking AX = B: a a 1n... a m1... a mn x 1. x n = wordt ook genoteerd door de uitgebreide matrix [A B] a a 1n b 1 [A B] =.... a m1... a mn b m b 1. b m

30 Voorbeeld 30/64 x 1 + 3x 2 6x 3 = 9 x 1 3x 2 + 4x 3 = 5 x 1 + 5x 2 8x 3 = x 1 x 2 x 3 = stelsel vergelijkingen matrix vergelijking uitgebreide matrix

31 Voorbeeld 31/ We hebben gezien dat door vegen bovenstaande matrix overgaat in Dus x 1 = 6, x 2 = 3 en x 3 = 2.

32 Equivalente stelsels vergelijkingen 32/64 STELLING: Beschouw de volgende stelsels lineaire vergelijkingen: AX = B en CX = D Dan zijn de volgende beweringen equivalent: (in matrix notatie) 1) de stelsels hebben dezelfde oplossingen 2) de matrices [A B] en [C D] zijn rij equivalent 3) door elementaire rij operaties zijn ze in elkaar over te voeren 4) rref [A B] = rref [C D] met weglating van de nulrijen

33 Homogeen stelsel 33/64 Herinner: DEFINITIE: Een stelsel vergelijkingen AX = B heet homogeen als B = 0. VOORBEELD: Beschouw het stelsel vergelijkingen: met /k x 1 + x 2 + x 3 + x 4 = 0 x 1 + x 4 = 0 x 1 + 2x 2 + x 3 = als uitgebreide matrix

34 Homogeen stelsel 34/64 Het vegen van deze matrix geeft verwissel eerste en tweede rij het element 1 is nu de nieuwe spil trek de eerste rij af van de tweede trek de eerste rij af van de derde het element 1 is nu de nieuwe spil trek de 2 maal de tweede rij af van de derde

35 Homogeen stelsel 35/ vermenigvuldig derde rij met -1 trek de derde rij af van de tweede het element 1 is nu de nieuwe spil de matrix is nu in rref

36 Vrije en gebonden variabelen 36/ de spillen corresponderen met de gebonden variabelen x 1, x 2, x 3 de vierde kolom correspondeert met de vrije variabele x 4 x 1 + x 4 = 0 x 2 x 4 = 0 x 3 + x 4 = 0 ofwel x 1 = x 4 x 2 = x 4 x 3 = x 4

37 Parameter voorstelling 37/64 X = x 1 x 2 x 3 x 4 = x 4 x 4 x 4 x 4 Parametervoorstelling van de oplossing: x 1 X = x 2 x 3 = r x 4 hierin is r een willekeurig te kiezen getal = r r r r /k

38 Homogeen stelsel 38/64 STELLING: 1) Een homogeen stelsel van m lineaire vergelijkingen in n variabelen heeft een oplossing, n.l. de nuloplossing. 2) Als bovendien m < n, dan is er een oplossing ongelijk aan 0. BEWIJS: Het aantal spillen van rref(a) is hoogstens m < n. Deze spillen corresponderen met gebonden variabelen. Er zijn dus minstens n m > 0 vrije variabelen. Er is dus een oplossing ongelijk aan 0.

39 Particuliere oplossing 39/64 DEFINITIE: Stel AX = B is een stelsel vergelijkingen. Dan heet AX = 0 het bijbehorende homogene stelsel. X p heet een particuliere oplossing als AX p = B. X h heet een homogene oplossing als AX h = 0.

40 Particuliere oplossing 40/64 STELLING: Stel X p is een gegeven particuliere oplossing van AX = B. Voor elke andere oplossing X is er een homogene oplossing X h zodanig dat BEWIJS: Stel AX = B, dan is /k X = X p + X h. A(X X p ) = AX AX p = B B = 0. Dus X h = X X p is een homogene oplossing, en X = X p + X h.

41 Equivalente beweringen 41/64 STELLING: Stel A is een n n matrix. Dan zijn de volgende beweringen equivalent: (1) A is inverteerbaar. (2) AX = 0 heeft alleen de triviale oplossing. (3) De gereduceerde rij trap vorm is de n n eenheidsmatrix. (4) rref(a) = I n.

42 Het vinden van A 1 42/64 OPMERKING: Stel A is een inverteerbare n n matrix. Dan is er een B zodanig dat AB = I n. Dus B is een oplossing van de matrix vergelijking AX = I n. Dus rref [A I n ] = [I n B]. CONCLUSIE: Door het vegen van [A I n ] in rref weten we of A inverteerbaar is en wat de inverse is.

43 Het vinden van A 1 43/64 VOORBEELD: Is de volgende matrix A = inverteerbaar? Zo ja, dan heeft de matrix vergelijking AX = I 3, ofwel heeft x 11 x 12 x x 21 x 22 x 23 = x 31 x 32 x een oplossing?

44 Het vinden van A 1 44/64 De bijbehorende uitgebreide matrix is [A I 3 ] = het element 1 is nu de nieuwe spil trek de eerste rij af van de tweede trek 5 maal de eerste rij af van de derde trek 3 maal de tweede rij af van de derde /k Dit geeft een strijdig stelsel De matrix heeft dus geen inverse

45 Het vinden van A 1 45/64 VOORBEELD: Is de volgende matrix A = [ ] inverteerbaar? Zo ja, dan heeft de matrix vergelijking AX = I 2 een oplossing De bijbehorende uitgebreide matrix is [A I 2 ] = [ ] 0 het element 1 is nu de nieuwe spil trek 3 maal de eerste rij af van de tweede [ ] vermenigvulidg de tweede rij met -1

46 Het vinden van A 1 46/64 [ ] [ het element 1 is nu de nieuwe spil trek 2 maal de tweede rij af van de eerste ] A 1 = dus A is inverteerbaar en [ ]

47 Inverse matrix en unieke oplossing 47/64 STELLING: Stel A is een inverteerbare n n matrix, en B = [b 1,..., b n ] T. Dan heeft het stelsel vergelijkingen a 11 x a 1n x n = b 1.. a n1 x a nn x n = b n de unieke oplossing X = [x 1,..., x n ] T met X = A 1 B.

48 Inverse matrix 48/64 BEWIJS: Het oplossen van het stelsel vergelijkingen is equivalent met het oplossen van de matrix vergelijking AX = B A 1 B is een oplossing, want A(A 1 B) = (AA 1 )B = I n B = B. De oplossing is uniek, want uit AX = B volgt X = I n X = (A 1 A)X = A 1 (AX) = A 1 B, want A is inverteerbaar. /k

49 Aantal oplossingen 49/64 STELLING: Een stelsel lineaire vergelijkingen heeft de volgende drie mogelijkheden: (a) geen oplossingen (strijdig=inconsistent) (b) precies één oplossing (consistent) (c) oneindig veel oplossingen (consistent)

50 Aantal oplossingen 50/64 BEWIJS: Het stelsel van m lineaire vergelijkingen in n variabelen kan weergegeven worden door de matrix vergelijking AX = B. Stel er is meer dan één oplossing, zeg X 1 en X 2. Dan is AX 1 = B en AX 2 = B. Stel X 0 = X 1 X 2. Dan is AX 0 = A(X 1 X 2 ) = AX 1 AX 2 = B B = 0. Stel c is een willekeurig getal. Dan is A(X 1 + cx 0 ) = AX 1 + cax 0 = B + 0 = B. Dus er zijn oneindig veel oplossingen.

51 Equivalente beweringen 51/64 STELLING: Stel A is een n n matrix. Dan zijn de volgende beweringen equivalent: (1) A is inverteerbaar. (2) AX = 0 heeft alleen de triviale oplossing. (3) De gereduceerde rij trap vorm is de n n eenheidsmatrix. (4) rref(a) = I n. (5) AX = B heeft een oplossing voor elke B. (6) AX = B heeft precies één oplossing voor elke B.

52 Bovendriehoeksmatrix 52/64 DEFINITIE: Stel A is een n n matrix. Dan is A een bovendriehoeksmatrix als alle elementen onder de diagonaal nul zijn. Dat wil zeggen a ij = 0 voor alle i > j. VOORBEELD: A =

53 Benedendriehoeksmatrix 53/64 DEFINITIE: Stel A is een n n matrix. Dan is A een benedendriehoeksmatrix als alle elementen boven de diagonaal nul zijn. Dat wil zeggen a ij = 0 voor alle i < j. VOORBEELD: A =

54 Boven- en benedendriehoeksmatrix 54/64 EIGENSCHAP: A is een bovendriehoeksmatrix dan en slechts dan als A T is een benedendriehoeksmatrix.

55 Diagonaalmatrix 55/64 DEFINITIE: Stel A is een n n matrix. Dan heet A een diagonaalmatrix als buiten de hoofddiagonaal van A alleen maar nullen staan. Dus A is een bovendriehoeksmatrix is en een benedendriehoeksmatrix.

56 product van driehoeksmatrices 56/64 EIGENSCHAP: Het product van bovendriehoeksmatrices is weer een bovendriehoeksmatrix. Evenzo geldt: Het product van benedendriehoeksmatrices is weer een benedendriehoeksmatrix.

57 Inverteerbare bovendriehoeksmatrix 57/64 EIGENSCHAP: Een boven- of benedendriehoeksmatrix is inverteerbaar dan en slechts dan als alle elementen op de hoofddiagonaal zijn ongelijk nul

58 Symmetrisch 58/64 DEFINITIE: Een matrix A heet symmetrisch als In het bijzonder is A dan vierkant. A T = A. VOORBEELD: A =

59 Symmetrisch 59/64 Stel is een A een n n matrix. Dan is B = A + A T symmetrisch. Want B T = (A + A T ) T = A T + (A T ) T = A T + A = B.

60 Anti-symmetrisch 60/64 DEFINITIE: Een matrix A heet anti-symmetrisch of scheef-symmetrisch als In het bijzonder is A dan vierkant. A T = A. VOORBEELD: A =

61 Anti-symmetrisch 61/64 EIGENSCHAP: Op de diagonaal van een anti-symmetrische matrix staan alleen maar nullen. BEWIJS: Stel A is anti-symmetrisch. Dan is A T = A. a ii = a T ii = a ii Dus a ii = 0.

62 Anti-symmetrisch 62/64 VOORBEELD: De matrix A = is niet anti-symmetrisch en ook niet symmetrisch.

63 Anti-symmetrisch 63/64 Stel is een A een n n matrix. Dan is C = A A T anti-symmetrisch. Want C T = (A A T ) T = A T (A T ) T = A T A = C.

64 symmetrisch + anti-symmetrisch 64/64 Stel is een A een n n matrix. Dan is A te schrijven als som A = B + C met B symmetrische en C anti-symmetrisch. Deze schrijfwijze is uniek met: BEWIJS: /k B = 1 2 (A + A T ) en C = 1 2 (A A T ). 1 2 (A + A T ) (A A T ) = A Stel A = B + C met B symmetrische en C anti-symmetrisch. Dan is A T = (B + C) T = B T + C T = B C. Dus A + A T = 2B en A A T = 2C.

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Matrixoperaties. Definitie. Voorbeelden. Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten.

Matrixoperaties. Definitie. Voorbeelden. Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten. Definitie Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten. Voorbeelden De coëfficiëntenmatrix of aangevulde matrix bij een stelsel lineaire vergelijkingen. Een rij-echelonmatrix

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 J.Keijsper

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

4.0 Voorkennis [1] Stap 1: Maak bij een van de vergelijkingen een variabele vrij.

4.0 Voorkennis [1] Stap 1: Maak bij een van de vergelijkingen een variabele vrij. 3x4 y26 4x y3 4.0 Voorkennis [1] Voorbeeld 1 (Elimineren door substitutie): Los op: Stap 1: Maak bij een van de vergelijkingen een variabele vrij. 4x y = 3 y = 4x 3 Stap 2: Vul de vrijgemaakte variabele

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 10 13 oktober 2016 1 Samenvatting Hoofdstuk 4.1 Een constante λ is een eigenwaarde van een n n matrix A als er een niet-nul vector x bestaat, zodat Ax =

Nadere informatie

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen.

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen. college 4 collegejaar college build slides Vandaag : : : : 16-17 4 29 maart 217 38 1 2 3.16-17[4] 1 vandaag Vectoren De notatie (x 1, x 2,..., x n ) wordt gebruikt voor het punt P met coördinaten (x 1,

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 6 26 september 2016 1 Hoofdstuk 3.1 en 3.2 Matrix operaties Optellen van matrices Matrix vermenigvuldigen met een constante Matrices vermenigvuldigen Machten

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Matrices en Grafen (wi1110ee)

Matrices en Grafen (wi1110ee) Matrices en Grafen (wi1110ee) Electrical Engineering TUDelft September 1, 2010 September 1, 2010 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http:

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 8 J.Keijsper

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Supplement Wiskunde 2017/2018. Inhoudsopgave

Supplement Wiskunde 2017/2018. Inhoudsopgave Inhoudsopgave Hoofdstuk 1: Missende stof in de verslagen... 2 Hoofdstuk 2: Overbodige stof in de verslagen... 7 Hoofdstuk 3: Fouten in de verslagen... 8 Tentamen halen? www.rekenmaarverslagen.nl 1 Hoofdstuk

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

Uitwerking 1 Uitwerkingen eerste deeltentamen Lineaire Algebra (WISB121) 3 november 2009

Uitwerking 1 Uitwerkingen eerste deeltentamen Lineaire Algebra (WISB121) 3 november 2009 Departement Wiskunde, Faculteit Bètawetenschappen, UU. In elektronische vorm beschikbaar gemaakt door de TBC van A Eskwadraat. Het college WISB werd in 9- gegeven door Prof. Dr. F. Beukers. Uitwerking

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Lineair voor CT College 2a. Echelon vorm 1.2 Duncan van der Heul

Lineair voor CT College 2a. Echelon vorm 1.2 Duncan van der Heul Lineair voor CT College 2a Echelon vorm 1.2 Duncan van der Heul Speciale vormen van een matrix Een stelsel oplossen komt overeen met door elementaire rijopera-es bepalen van de gereduceerde echelon vorm

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB1002 deel 1 - Lineaire algebra 1 College 1 11 februari 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire

Nadere informatie

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1. Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Tentamen Lineaire Algebra 1 (Wiskundigen)

Tentamen Lineaire Algebra 1 (Wiskundigen) Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

Lineaire Algebra WI1048WbMt. I.A.M. Goddijn, Faculteit EWI 4 september 2016

Lineaire Algebra WI1048WbMt. I.A.M. Goddijn, Faculteit EWI 4 september 2016 Lineaire Algebra WI1048WbMt, 4 september 2016 Informatie over de docent Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard

Nadere informatie

Eerste deeltentamen Lineaire Algebra A. De opgaven

Eerste deeltentamen Lineaire Algebra A. De opgaven Eerste deeltentamen Lineaire Algebra A 3 november 9, 3-6 uur Bij dit tentamen mogen dictaat en/of rekenmachine niet gebruikt worden. Schrijf op elk vel je naam, collegekaartnummer en naam van de practicumleider

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Zomercursus Wiskunde. Lineaire algebra (versie 15 september 2008)

Zomercursus Wiskunde. Lineaire algebra (versie 15 september 2008) Katholieke Universiteit Leuven September 2008 Lineaire algebra (versie 15 september 2008) 2 Lineaire algebra Deze module wordt zowel gegeven in het A-programma als in het B-programma van de zomercursus

Nadere informatie

Tentamen Lineaire Algebra UITWERKINGEN

Tentamen Lineaire Algebra UITWERKINGEN Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen

Nadere informatie

Dimensie van een deelruimte en rang van een matrix

Dimensie van een deelruimte en rang van een matrix Dimensie van een deelruimte en rang van een matrix Definitie (Herinnering) Een basis voor een deelruimte H van R n is een lineair onafhankelijke verzameling vectoren die H opspant. Notatie Een basis van

Nadere informatie

Eerste deeltentamen Lineaire Algebra A

Eerste deeltentamen Lineaire Algebra A Eerste deeltentamen Lineaire Algebra A 8 november 2011, 13u30-16u30 Bij dit tentamen mag het dictaat niet gebruikt worden. Schrijf op elk vel je naam, studnr en naam practicumleider (Victor Blasjo, Esther

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)

Nadere informatie

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen Vector-en matrixvergelijkingen (a) Parallellogramconstructie (b) Kop aan staartmethode Figuur: Vectoren, optellen (a) Kop aan staartmethode, optellen (b) Kop aan staart methode, aftrekken Figuur: Het optellen

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011

PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011 PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011 Familienaam:....................................................................... Voornaam:.........................................................................

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004, TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen

Nadere informatie

Lineaire algebra toegepast

Lineaire algebra toegepast Lineaire algebra toegepast voor wiskunde D ( 5 VWO) H. van Gendt R.A.C. Dames Versie 4, november 008 Deze module is ontwikkeld in opdracht van ctwo. Copyright 008 R.Dames en H. van Gendt Inhoudsopgave

Nadere informatie

Zomercursus Wiskunde. Module 16 Lineaire algebra B (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 16 Lineaire algebra B (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 16 Lineaire algebra B (versie 22 augustus 2011) Inhoudsopgave 1 Vectoren in R n en matrices 1 2 Lineaire stelsels 11 21 Formulering en interpretatie

Nadere informatie

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

Hoofdstuk 1 : Vectoren (A5D)

Hoofdstuk 1 : Vectoren (A5D) 1 Hoofdstuk 1 : Vectoren (A5D) Hoofdstuk 1 : Vectoren (A5D) Les 1 : Stelsels en Echelon vorm DOEL : WE GAAN EEN AANTAL VERGELIJKINGEN MET EEN AANTAL VARIABELEN PROBEREN OP TE LOSSEN. Definities Stelsel

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Vierde huiswerkopdracht Lineaire algebra 1

Vierde huiswerkopdracht Lineaire algebra 1 Vierde huiswerkopdracht Lineaire algebra December, 00 Opgave : Voor positieve gehele getallen m, n schrijven we Mat(m n, R) voor de vectorruimte van alle m n matrices, met de gebruikelijke optelling en

Nadere informatie

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix Hoofdstuk 3 Matrices en stelsels 3.1 Matrices Een matrix is in DERIVE gedefinieerd als een vector van vectoren. De rijen van de matrix zijn de elementen van de vector. Op de volgende manier kan je een

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 5 J.Keijsper (TUE)

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

11.0 Voorkennis V

11.0 Voorkennis V 11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Determinanten. Definities en eigenschappen

Determinanten. Definities en eigenschappen Determinanten Definities en eigenschappen Definities (korte herhaling) Determinant van een 2x2-matrix: a b ad bc c d S. Mettepenningen Determinanten 2 Definities (korte herhaling) Determinant van een 3x3-matrix:

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Stelsels lineaire vergelijkingen Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven In het vak Meetkunde voor Bouwkunde kom je stelsels lineaire vergelijkingen tegen en matrices tegen.

Nadere informatie

Zomercursus Wiskunde. Module 3 Lineaire algebra A (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 3 Lineaire algebra A (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 3 Lineaire algebra A (versie 22 augustus 2011) Inhoudsopgave 1 Vectoren in R n 1 2 Lineaire combinaties 2 3 Matrices 7 31 Het begrip matrix 7 32 Som

Nadere informatie

Lineaire Algebra (wi2142tn) Les 5: Determinanten. Joost de Groot Les 5. Faculteit EWI, Toegepaste Wiskunde. Technische Universiteit Delft

Lineaire Algebra (wi2142tn) Les 5: Determinanten. Joost de Groot Les 5. Faculteit EWI, Toegepaste Wiskunde. Technische Universiteit Delft Lineaire Algebra (wi2142tn) Les 5: Determinanten Joost de Groot Les 5 1 Technische Universiteit Delft Doel van deze les Determinanten ben je al tegengekomen bij de behandeling van het in en het uitwendig

Nadere informatie

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Inleiding in de lineaire algebra

Inleiding in de lineaire algebra Inleiding in de lineaire algebra (SV.9) W.Oele P.J. den Brok 6 maart 4 Inleiding De cursus lineaire algebra bestaat uit een aantal colleges in de matrix- en de vectorrekening. De colleges over en de oefenopdrachten

Nadere informatie

b + b c + c d + d a + a

b + b c + c d + d a + a Voorwoord De wiskundige vorming die in de wiskundig sterke richtingen van het Vlaamse secundair onderwijs wordt aangeboden, vormt een zeer degelijke basis voor hogere studies in wetenschappelijke, technologische

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Lineaire vergelijkingen II: Pivotering

Lineaire vergelijkingen II: Pivotering 1/25 Lineaire vergelijkingen II: Pivotering VU Numeriek Programmeren 2.5 Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, 1A40 15 april 2013 2/25 Overzicht Pivotering: Methodes Norm en conditionering

Nadere informatie

2 De Jordannormaalvorm voor lineaire transformaties

2 De Jordannormaalvorm voor lineaire transformaties 2 De Jordannormaalvorm voor lineaire transformaties We zagen dat iedere lineaire transformatie L : V V van een vectorruimte (V, K) over een algebraïsch afgesloten lichaam K op bovendriehoeksvorm kan worden

Nadere informatie

2 De Jordannormaalvorm van een lineaire transformatie

2 De Jordannormaalvorm van een lineaire transformatie 2 De Jordannormaalvorm van een lineaire transformatie We zagen dat iedere lineaire transformatie L : V V van een vectorruimte (V, K) over een algebraïsch afgesloten lichaam K op bovendriehoeksvorm kan

Nadere informatie

Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015

Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015 Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen

Nadere informatie

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud college 6 en lineaire collegejaar college build slides Vandaag : : : : 6-7 6 9 juni 27 3 2 3 van een matrix Toepassing: oppervlakte en inhoud.6-7[6] vandaag van de 2 2-matrix a b c d is gelijk aan ad bc.

Nadere informatie

OPLOSSINGEN PROEFEXAMEN LINEAIRE ALGEBRA donderdag 18 november 2010

OPLOSSINGEN PROEFEXAMEN LINEAIRE ALGEBRA donderdag 18 november 2010 OPLOSSINGEN PROEFEXAMEN LINEAIRE ALGEBRA donderdag 18 november 2010 1. Zij V een vectorruimte en A = {v 1,..., v m } een deelverzameling van m vectoren uit V die voortbrengend is voor V, m.a.w. V = A.

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A.

1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A. . Oefen opgaven Opgave... Van de lineaire afbeelding A : R 3 R 3 is gegeven dat A = Bepaal de matrix van A. 4, 4 A =, A = 3 4. In de volgende opgave wordt het begrip injectiviteit en surjectiviteit van

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector Les 3 Matrix product We hebben gezien hoe we matrices kunnen gebruiken om lineaire afbeeldingen te beschrijven. Om het beeld van een vector onder een afbeelding te bepalen hebben we al een soort product

Nadere informatie

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 4.b.1 Orthogonaliteit en de meetkunde van lineaire systemen

Lineaire Algebra en Vectorcalculus 2DN60 College 4.b.1 Orthogonaliteit en de meetkunde van lineaire systemen Lineaire Algebra en Vectorcalculus 2DN60 College 4.b.1 Orthogonaliteit en de meetkunde van lineaire systemen Ruud Pellikaan g.r.pellikaan@tue.nl 2015-2016 Lijn in het vlak 2/37 Een lijn in het vlak wordt

Nadere informatie