Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Maat: px
Weergave met pagina beginnen:

Download "Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014"

Transcriptie

1 Lineaire Algebra TW1205TI, 12 februari 2014

2 Contactgegevens Mekelweg 4, kamer tel : (015 27) homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http: //blackboard.tudelft.nl Spreekuur : volgens afspraak 12 februari

3 Stelsels lineaire vergelijkingen Definitie Als a 1, a 2, a n, b constanten zijn dan heet a 1 x 1 + a 2 x a n x n = b (1) een lineaire vergelijking in de onbekenden x 1, x 2, x n. a 1, a 2, a n heten de coëfficiënten van de vergelijking en b de constante term of het rechterlid van de vergelijking. Een oplossing van (1) is een rijtje getallen (s 1, s 2,, s n ) met de eigenschap dat wanneer, voor x 1, x 2, x n in (1) s 1, s 2, s n, worden gesubstitueerd (1) een gelijkheid wordt. 12 februari

4 Substitueren we dus x 1 = s 1, x 2 = s 2,, x n = s n in (1) dan vinden we de gelijkheid a 1 s 1 + a 2 s a n s n = b. Definitie De oplossingsverzameling van een lineaire vergelijking is de verzameling van alle oplossingen van deze vergelijking. Dit wordt ook wel de algemene oplossing genoemd. 12 februari

5 Definitie Een stelsel lineaire vergelijkingen is een eindig aantal lineaire vergelijkingen in dezelfde onbekenden. Definitie Een oplossing van een stelsel lineaire vergelijkingen is een oplossing van alle vergelijkingen uit het stelsel. Definitie De oplossingsverzameling van een stelsel lineaire vergelijkingen is de verzameling van alle oplossingen van dit stelsel. Dit wordt ook wel de algemene oplossing van dit stelsel lineaire vergelijkingen genoemd. 12 februari

6 Een stelsel lineaire vergelijkingen heeft (a.) een unieke oplossing of (b.) oneindig veel oplossingen of (c.) géén oplossingen. Definitie Een stelsel vergelijkingen met tenminste één oplossing heet consistent anders inconsistent. Definitie Twee stelsels lineaire vergelijkingen heten equivalent of gelijkwaardig als ze dezelfde oplossingsverzameling hebben. 12 februari

7 Als we in een lineair stelsel vergelijkingen 1. twee vergelijkingen verwisselen, 2. een vergelijking met een constante ongelijk nul vermenigvuldigen, 3. een veelvoud van één vergelijking bij een andere optellen dan krijgen we een equivalent stelsel vergelijkingen. Deze operaties willen we natuurlijk zo inzetten dat we de oplossingsverzameling van ons oorspronkelijke stelsel vergelijkingen eenvoudig kunnen bepalen. 12 februari

8 Bij elk stelsel lineaire vergelijkingen hoort een aangevulde matrix en omgekeerd. De aangevulde matrix bij a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a m1 x 1 + a m2 x a mn x n = b m (2) is a 11 a 12 a 1n b 1 a 21 a 22 a 2n b a m1 a m2 a mn b m 12 februari

9 Ook hoort bij een stelsel lineaire vergelijkingen een coëfficiëntenmatrix. De coëfficiëntenmatrix bij (2) is a 11 a 12 a 1n a 21 a 22 a 2n.... a m1 a m2 a mn Notaties A voor de coëfficiëntenmatrix en [A b] voor de aangevulde of toegevoegde matrix bij (2). 12 februari

10 De drie operaties die een stelsel lineaire vergelijkingen omzetten in een equivalent stelsel corresponderen met drie elementaire rijoperaties toegepast op de bijbehorende aangevulde matrix. Laat (S) een stelsel van m vergelijkingen zijn en 1 i, j m. We geven de i-de en j-de rij van de aangevulde matrix [A b] bij (S) aan met R i en R j. 12 februari

11 1. Het verwisselen van de i-de en j-de vergelijking correspondeert met het verwisselen van R i en R j. 12 februari

12 1. Het verwisselen van de i-de en j-de vergelijking correspondeert met het verwisselen van R i en R j. 2. Het vermenigvuldigen van de i-de vergelijking met een factor k 0 correspondeert met het vermenigvuldigen van R i met een factor k Het optellen van k maal de j-de vergelijking bij de i-de vergelijking correspondeert met het optellen van k maal R j bij R i. 12 februari

13 Definitie Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte van het eerste niet nul element in de volgende rijen. Definitie Het eerste niet-nul van een rij heet het leidende element van die rij, pivot of hoofdelement. 12 februari

14 Definitie Een matrix heeft een gereduceerde rij-echelon vorm als het de volgende eigenschappen heeft: 1. Het is in rij-echelon vorm. 2. Het leidende element in een rij is gelijk aan De kolom waarin een leidend element staat bevat verder alleen nullen. 12 februari

15 Definitie Als A een matrix is met gereduceerde echelon vorm U dan is een pivotpositie van A een plaats waar U een pivot heeft staan. Een pivotkolom van A is een kolom waarin U een pivot heeft staan. Laat [A b] de aangevulde matrix is bij een consistent stelsel vergelijkingen (S) in de onbekenden x 1, x 2, x n. Als de i-de kolom van A een pivotkolom is dan heet x i een basisvariabele. De variabelen die geen basisvariabelen zijn heten vrije variabelen. Geven we de vrije variabelen een willekeurige (vrije) waarde dan liggen de basisvariabelen vast. 12 februari

16 Stelling (Over existentie en éénduidigheid) Een stelsel lineaire vergelijkingen is consistent als de laatste kolom van de bijbehorende aangevulde matrix géén pivotkolom is. Als een stelsel lineaire vergelijkingen consistent is dan heeft dit (i) oneindige veel oplossingen als er vrije variabelen zijn, (ii) precies één oplossing als er geen vrije variabelen zijn. 12 februari

17 Vectorvergelijkingen

18 Vectoren Definitie Een gericht lijnstuk heeft naast een grootte en een richting. Zo n lijnstuk heeft dus een beginpunt en een eindpunt. Het eindpunt wordt meestal van een pijltje voorzien om de richting aan te geven. Notaties AB, AB of AB 12 februari

19 Definitie Twee gerichte lijnstukken zijn equivalent of gelijk als ze door een verplaatsing in elkaar zijn over te voeren. Kiezen we een oorsprong in het platte vlak of de ruimte dan wordt een gericht lijnstuk dat in de oorsprong begint ook wel vector genoemd. Elk gericht lijnstuk is dus equivalent met een vector. 12 februari

20 Er geldt dus: CD = AB Notatie u of u of u 12 februari

21 De nulvector De nulvector is de vector met lengte 0. Dit is de enige vector zonder richting. Notatie 0 De tegengestelde vector Als u een vector is en v is de vector die even lang is als u maar tegengesteld gericht dan heet v de tegengestelde van u. Notatie u 12 februari

22 Vermenigvuldiging met een factor Als u een vector is en c een reëel getal en v is de vector die c maal zo lang is als u en dezelfde richting heeft als u als c > 0 en tegengesteld is aan u als c < 0 dan heet v de vermenigvuldiging van u met c. Notatie cu 12 februari

23 De som van twee vectoren Om de som van twee vectoren u en v te bepalen worden twee technieken gebruikt: de parallellogramconstructie en de kop-aan-staartmethode Notatie u + v en u + ( v) wordt genoteerd als u v 12 februari

24 De som van twee vectoren Om de som van twee vectoren u en v te bepalen worden twee technieken gebruikt: de parallellogramconstructie en de kop-aan-staartmethode Notatie u + v en u + ( v) wordt genoteerd als u v 12 februari

25 De som van twee vectoren Om de som van twee vectoren u en v te bepalen worden twee technieken gebruikt: de parallellogramconstructie en de kop-aan-staartmethode Notatie u + v en u + ( v) wordt genoteerd als u v 12 februari

26 De som van twee vectoren Om de som van twee vectoren u en v te bepalen worden twee technieken gebruikt: de parallellogramconstructie en de kop-aan-staartmethode Notatie u + v en u + ( v) wordt genoteerd als u v 12 februari

27 De som van twee vectoren Om de som van twee vectoren u en v te bepalen worden twee technieken gebruikt: de parallellogramconstructie en de kop-aan-staartmethode Notatie u + v en u + ( v) wordt genoteerd als u v 12 februari

28 De som van twee vectoren Om de som van twee vectoren u en v te bepalen worden twee technieken gebruikt: de parallellogramconstructie en de kop-aan-staartmethode Notatie u + v en u + ( v) wordt genoteerd als u v 12 februari

29 De som van twee vectoren Om de som van twee vectoren u en v te bepalen worden twee technieken gebruikt: de parallellogramconstructie en de kop-aan-staartmethode Notatie u + v en u + ( v) wordt genoteerd als u v 12 februari

30 Om het werken met vectoren te vergemakkelijken tekenen we een rechthoekig assenstelsel in het platte vlak (de ruimte) en noemen we de eenheidsvectoren (vectoren [ ] met lengte [ 1) in ] de 1 0 richting van de positieve assen, e 1 = en e 2 = 0 1 (e 1 = 1 0 0, e 2 = en e 3 = ). 12 februari

31 12 februari

32 ] ] ] Als a = [ a1 a 2 en b = [ b1 b 2 dan a + b = [ a1 + b 1 a 2 + b 2 12 februari

33 Ook geldt: als a = als a = a + b = [ a1 a 2 a 1 a 2 a 3 ] en c R dan ca =, b = a 1 + b 1 a 2 + b 2 a 3 + b 3 b 1 b 2 b 3 en ca = [ ca1 ca 2 en c R dan ca 1 ca 2 ca 3 ] en verder: 12 februari

34 De vectorvergelijking Definitie De R n bestaat uit alle geordende n-tallen reële getallen. Notatie Als u R n dan u =. u 1 u 2 u n, u 1, u 2,, u n heten de kentallen of componenten van u. 12 februari

35 Definitie Als u, v R n en u = u 1 u 2., v = v 1 v 2. dan wordt de som u n v n van u en v gedefinieerd door: u 1 + v 1 u 2 + v 2. u n + v n Notatie u + v 12 februari

36 Definitie Als u = u 1 u 2. u n R n en c R is een scalar dan wordt de scalaire vermenigvuldiging van u met c gedefinieerd door: c u 1 c u 2.. c u n Notatie c u 12 februari

Matrices en Grafen (wi1110ee)

Matrices en Grafen (wi1110ee) Matrices en Grafen (wi1110ee) Electrical Engineering TUDelft September 1, 2010 September 1, 2010 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http:

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Lineaire Algebra WI1048WbMt. I.A.M. Goddijn, Faculteit EWI 4 september 2016

Lineaire Algebra WI1048WbMt. I.A.M. Goddijn, Faculteit EWI 4 september 2016 Lineaire Algebra WI1048WbMt, 4 september 2016 Informatie over de docent Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen Vector-en matrixvergelijkingen (a) Parallellogramconstructie (b) Kop aan staartmethode Figuur: Vectoren, optellen (a) Kop aan staartmethode, optellen (b) Kop aan staart methode, aftrekken Figuur: Het optellen

Nadere informatie

Matrixoperaties. Definitie. Voorbeelden. Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten.

Matrixoperaties. Definitie. Voorbeelden. Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten. Definitie Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten. Voorbeelden De coëfficiëntenmatrix of aangevulde matrix bij een stelsel lineaire vergelijkingen. Een rij-echelonmatrix

Nadere informatie

Lineair voor CT College 2a. Echelon vorm 1.2 Duncan van der Heul

Lineair voor CT College 2a. Echelon vorm 1.2 Duncan van der Heul Lineair voor CT College 2a Echelon vorm 1.2 Duncan van der Heul Speciale vormen van een matrix Een stelsel oplossen komt overeen met door elementaire rijopera-es bepalen van de gereduceerde echelon vorm

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen.

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen. college 4 collegejaar college build slides Vandaag : : : : 16-17 4 29 maart 217 38 1 2 3.16-17[4] 1 vandaag Vectoren De notatie (x 1, x 2,..., x n ) wordt gebruikt voor het punt P met coördinaten (x 1,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 5 J.Keijsper (TUE)

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB1002 deel 1 - Lineaire algebra 1 College 1 11 februari 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 8 J.Keijsper

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Hoofdstuk 1 : Vectoren (A5D)

Hoofdstuk 1 : Vectoren (A5D) 1 Hoofdstuk 1 : Vectoren (A5D) Hoofdstuk 1 : Vectoren (A5D) Les 1 : Stelsels en Echelon vorm DOEL : WE GAAN EEN AANTAL VERGELIJKINGEN MET EEN AANTAL VARIABELEN PROBEREN OP TE LOSSEN. Definities Stelsel

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 J.Keijsper

Nadere informatie

Dimensie van een deelruimte en rang van een matrix

Dimensie van een deelruimte en rang van een matrix Dimensie van een deelruimte en rang van een matrix Definitie (Herinnering) Een basis voor een deelruimte H van R n is een lineair onafhankelijke verzameling vectoren die H opspant. Notatie Een basis van

Nadere informatie

Zomercursus Wiskunde. Lineaire algebra (versie 15 september 2008)

Zomercursus Wiskunde. Lineaire algebra (versie 15 september 2008) Katholieke Universiteit Leuven September 2008 Lineaire algebra (versie 15 september 2008) 2 Lineaire algebra Deze module wordt zowel gegeven in het A-programma als in het B-programma van de zomercursus

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 1 8 september 2016 1 Even voorstellen Theresia van Essen Universitair docent bij Technische Wiskunde j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Zomercursus Wiskunde. Module 16 Lineaire algebra B (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 16 Lineaire algebra B (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 16 Lineaire algebra B (versie 22 augustus 2011) Inhoudsopgave 1 Vectoren in R n en matrices 1 2 Lineaire stelsels 11 21 Formulering en interpretatie

Nadere informatie

Zomercursus Wiskunde. Module 3 Lineaire algebra A (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 3 Lineaire algebra A (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 3 Lineaire algebra A (versie 22 augustus 2011) Inhoudsopgave 1 Vectoren in R n 1 2 Lineaire combinaties 2 3 Matrices 7 31 Het begrip matrix 7 32 Som

Nadere informatie

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2

Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen voor studenten IO, concept. Emiel van Elderen

Het oplossen van stelsels lineaire vergelijkingen voor studenten IO, concept. Emiel van Elderen Het oplossen van stelsels lineaire vergelijkingen voor studenten IO, concept Emiel van Elderen April 8, 28 Inleiding In dit document zullen we ons bezig houden met het systematisch oplossen van stelsels

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)

Nadere informatie

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van

Nadere informatie

4.0 Voorkennis [1] Stap 1: Maak bij een van de vergelijkingen een variabele vrij.

4.0 Voorkennis [1] Stap 1: Maak bij een van de vergelijkingen een variabele vrij. 3x4 y26 4x y3 4.0 Voorkennis [1] Voorbeeld 1 (Elimineren door substitutie): Los op: Stap 1: Maak bij een van de vergelijkingen een variabele vrij. 4x y = 3 y = 4x 3 Stap 2: Vul de vrijgemaakte variabele

Nadere informatie

OPLOSSINGEN PROEFEXAMEN LINEAIRE ALGEBRA donderdag 18 november 2010

OPLOSSINGEN PROEFEXAMEN LINEAIRE ALGEBRA donderdag 18 november 2010 OPLOSSINGEN PROEFEXAMEN LINEAIRE ALGEBRA donderdag 18 november 2010 1. Zij V een vectorruimte en A = {v 1,..., v m } een deelverzameling van m vectoren uit V die voortbrengend is voor V, m.a.w. V = A.

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 10 13 oktober 2016 1 Samenvatting Hoofdstuk 4.1 Een constante λ is een eigenwaarde van een n n matrix A als er een niet-nul vector x bestaat, zodat Ax =

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Herhaling: opspansel De vectoren v 1,..., v k V spannen

Nadere informatie

Lineaire Algebra (wi2142tn) Les 5: Determinanten. Joost de Groot Les 5. Faculteit EWI, Toegepaste Wiskunde. Technische Universiteit Delft

Lineaire Algebra (wi2142tn) Les 5: Determinanten. Joost de Groot Les 5. Faculteit EWI, Toegepaste Wiskunde. Technische Universiteit Delft Lineaire Algebra (wi2142tn) Les 5: Determinanten Joost de Groot Les 5 1 Technische Universiteit Delft Doel van deze les Determinanten ben je al tegengekomen bij de behandeling van het in en het uitwendig

Nadere informatie

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix Hoofdstuk 3 Matrices en stelsels 3.1 Matrices Een matrix is in DERIVE gedefinieerd als een vector van vectoren. De rijen van de matrix zijn de elementen van de vector. Op de volgende manier kan je een

Nadere informatie

Vierde huiswerkopdracht Lineaire algebra 1

Vierde huiswerkopdracht Lineaire algebra 1 Vierde huiswerkopdracht Lineaire algebra December, 00 Opgave : Voor positieve gehele getallen m, n schrijven we Mat(m n, R) voor de vectorruimte van alle m n matrices, met de gebruikelijke optelling en

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

11.0 Voorkennis V

11.0 Voorkennis V 11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix

Nadere informatie

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica Examen GO7E Wiskunde II (3sp maandag juni 3, 8:3-:3 uur Bachelor Geografie en Bachelor Informatica Auditorium De Molen: A D Auditorium MTM3: E-Se Auditorium MTM39: Sh-Z Naam: Studierichting: Naam assistent:

Nadere informatie

Lineaire algebra toegepast

Lineaire algebra toegepast Lineaire algebra toegepast voor wiskunde D ( 5 VWO) H. van Gendt R.A.C. Dames Versie 4, november 008 Deze module is ontwikkeld in opdracht van ctwo. Copyright 008 R.Dames en H. van Gendt Inhoudsopgave

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

Calculus TI1 106M. I.A.M. Goddijn, Faculteit EWI 1 september 2014

Calculus TI1 106M. I.A.M. Goddijn, Faculteit EWI 1 september 2014 Calculus TI1 106M, 1 september 2014 Inleiding Studiemateriaal Onderwerpen Calculus 1 september 2014 1 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage :

Nadere informatie

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten.

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten. WIS8 8 Vectoren 8. Vectoren Vectoren Een vector met dimensie is een kolom bestaande uit twee reële getallen, bijvoorbeeld [ We kunnen deze meetkundig interpreteren als een pijl in het platte vlak van de

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

Linalg.nb 1. Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes!

Linalg.nb 1. Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes! Linalg.nb Lineaire Algebra Andr Heck AMSTEL Instituut, Universiteit van Amsterdam Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes! Å Introductie

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 0 juli 008) Rekenen met vectoren is een basisvaardigheid voor vakken natuurkunde.

Nadere informatie

Cursus analytische meetkunde

Cursus analytische meetkunde Cursus analytische meetkunde René Déscartes 3 mei 596 La Haye en Touraine (Frankrijk) februari 650 Stockholm (Zweden) Cursus analytische meetkunde Sven Mettepenningen ) Herhaling a) Vectoren Definities

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Wiskunde 1 voor kunstmatige intelligentie (WB033B) Bernd Souvignier

Wiskunde 1 voor kunstmatige intelligentie (WB033B) Bernd Souvignier Wiskunde voor kunstmatige intelligentie (WB33B Bernd Souvignier voorjaar 24 Deel I Lineaire Algebra Wiskunde voor kunstmatige intelligentie, 24 Les Stelsels lineaire vergelijkingen Om te beginnen is hier

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur Examen GO7D Wiskunde II (6sp maandag juni 3, 8:3-:3 uur Bachelor Biochemie & Biotechnologie Bachelor hemie, Bachelor Geologie Schakelprogramma Master Biochemie & Biotechnologie en Schakelprogramma Master

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

Tentamen Lineaire Algebra 2

Tentamen Lineaire Algebra 2 Lineaire algebra (NP010B) januari 013 Tentamen Lineaire Algebra Vermeld op ieder blad je naam en studentnummer. Lees eerst de opgaven voordat je aan de slag gaat. Schrijf leesbaar en geef uitleg over je

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 2 Gröbnerbases 1. Vragen We hebben gezien dat de studie van stelsels polynoomvergelijkingen in meerdere variabelen op natuurlijke manier leidt

Nadere informatie

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

xxii Handleiding Maple 10

xxii Handleiding Maple 10 xxii Handleiding Maple 10 dat geval kun je van de vectorvergelijking een stelsel vergelijkingen maken in de vorm van een verzameling of een lijst naar keuze en dit stelsel te lijf gaan met solve of andere

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector Les 3 Matrix product We hebben gezien hoe we matrices kunnen gebruiken om lineaire afbeeldingen te beschrijven. Om het beeld van een vector onder een afbeelding te bepalen hebben we al een soort product

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Zomercursus Wiskunde. Module 6 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 6 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 6 Goniometrie, vlakke meetkunde en rekenen met vectoren in de (versie augustus 011) Inhoudsopgave 1 Goniometrie 1 1.1 Goniometrische cirkel............................

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel C Lineaire Algebra Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Seymour Lipschutz, Marc L. Lipson: (Schaum s Outline of Theory and Problems of) Linear Algebra. McGraw-Hill Companies,

Nadere informatie

PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016

PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016 PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016 1. Zi (R, V, +) een eindigdimensionale vectorruimte en veronderstel dat U en W deelruimten van V zin. Toon aan dat 2. Waar of fout? Argumenteer e antwoord.

Nadere informatie