Lineaire Algebra en Vectorcalculus 2DN60 College 4.b.1 Orthogonaliteit en de meetkunde van lineaire systemen

Maat: px
Weergave met pagina beginnen:

Download "Lineaire Algebra en Vectorcalculus 2DN60 College 4.b.1 Orthogonaliteit en de meetkunde van lineaire systemen"

Transcriptie

1 Lineaire Algebra en Vectorcalculus 2DN60 College 4.b.1 Orthogonaliteit en de meetkunde van lineaire systemen Ruud Pellikaan Lijn in het vlak 2/37 Een lijn in het vlak wordt gegeven door een vergelijking: ax + by + c = 0 met constanten a, b en c waarbij a en b die niet beide nul zijn. Elke veelvoud d = 0 van de constanten definieert dezelfde lijn met vergelijking: dax + dby + dc = 0

2 Lijn met vergelijking: 3x + 4y = 12 3/ Lijn in het vlak 4/37 Beschouw de lijn gegeven door de vergelijking: 3x + 4y 12 = 0 De lijn wordt ook gegeven door de vergelijking: 3 4 x + y 3 = 0 of door: y = 3 4 x + 3

3 Richtingscoëficiënt 5/37 Een lijn in het vlak wordt gegeven door de vergelijking: ax + by + c = 0 Als b = 0, d.w.z. de lijn is niet evenwijdig met de y-as dan heeft de lijn ook vergelijking of vergelijking: a b x + y + c b = 0 y = a b x c b De richtingscoëficiënt van de lijn is: a b Evenwijdige lijnen 6/37 Twee lijnen heten evenwijdig als ze samenvallen of geen punt gemeenschappelijk hebben Stel de lijnen hebben vergelijkingen a 1 x + b 1 y + c 1 = 0 en a 2 x + b 2 y + c 2 = 0 dan zijn ze evenwijdig dan en slechts dan als ze zijn beide evenwijdig met de y-as: b 1 = b 2 = 0 of ze hebben dezelfde richtingscoëficiënt: a 1 b 1 = a 2 b 2 dan en slechts dan als (a 2, b 2 ) is een veelvoud van (a 1, b 1 )

4 Lijnen evenwijdig met 3x + 4y = 12 7/37 3x + 4y = 12 3x + 4y = 6 3x + 4y = 0 3x + 4y = 6 Evenwijdige lijnen 8/37 Beschouw de lijn met vergelijking: ax + by + c = 0 De lijn evenwijdig hieraan en door de oorsprong heeft vergelijking: ax + by = 0

5 Vlak in de ruimte 9/37 Een vlak in de ruimte wordt gegeven door een vergelijking: ax + by + cz + d = 0 met constanten a, b, c en d waarbij a, b en c niet alle drie nul zijn. Elk veelvoud e = 0 van de constanten definieert hetzelfde vlak met vergelijking: eax + eby + ecz + ed = 0 Richtingscoëficiënten 10/37 Een vlak in de ruimte wordt gegeven door de vergelijking: ax + by + cz + d = 0 Als c = 0, d.w.z. het vlak is niet evenwijdig met de z-as dan heeft het vlak ook vergelijking of vergelijking: a c x + b c y + z + d c = 0 z = a c x b c y d c

6 Evenwijdige vlakken 11/37 Twee vlakken heten evenwijdig als ze samenvallen of geen punt gemeenschappelijk hebben Stel de vlakken hebben vergelijkingen a 1 x + b 1 y + c 1 z + d 1 = 0 en a 2 x + b 2 y + c 2 z + d 2 = 0 dan zijn ze evenwijdig dan en slechts dan als (a 2, b 2, c 2 ) is een veelvoud van (a 1, b 1, c 1 ) Evenwijdige vlakken 12/37 Beschouw het vlak met vergelijking: ax + by + cz + d = 0 Het vlak evenwijdig hieraan en door de oorsprong heeft vergelijking: ax + by + cz = 0

7 Normaal vector van een lijn in het vlak 13/37 Beschouw een lijn in het vlak Een vector n = 0 die loodrecht staat op elke vector met begin- en eindpunt op die lijn heet een normaal vector van de lijn STELLING: De vector (a, b) is een normaal vector van de lijn met vergelijking: ax + by + c = 0 Normaal vector van een lijn in het vlak 14/37 STELLING: De vector (a, b) is een normaal vector van de lijn met vergelijking: ax + by + c = 0 BEWIJS: Stel P 1 (x 1, y 1 ) en P 2 (x 2, y 2 ) liggen op de lijn, dan geldt: ax 1 + by 1 + c = 0 en ax 2 + by 2 + c = 0 Dus P 1 P 2 = (x 2 x 1, y 2 y 1 ) en (a, b) P 1 P 2 = a(x 2 x 1 ) + b(y 2 y 1 ) = 0

8 Normaal vector van 3x + 4y = 12 15/37 n 3,4 3 4 Normaal vector van een vlak in de ruimte 16/37 Beschouw een vlak in de ruimte Een vector n = 0 die loodrecht staat op elke vector met begin- en eindpunt in dat vlak heet een normaal vector van dat vlak STELLING: De vector (a, b, c) is een normaal vector van het vlak met vergelijking: ax + by + cz + d = 0

9 Punt en normaal vector van een lijn in het vlak 17/37 Een punt P(x 0, y 0 ) op een lijn in het vlak en een normaal vector n = (a, b) van die lijn bepalen de lijn met vergelijking ax + by + c = 0 eenduidig: want ax 0 + by 0 + c = 0, dus c = ax 0 by 0 Punt normaal vorm van een lijn in het vlak 18/37 Stel P(x 0, y 0 ) is een punt op een lijn in het vlak en n = (a, b) is een normaal vector van die lijn Dan wordt de punt normaalvorm van de lijn gegeven door: a(x x 0 ) + b(y y 0 ) = 0

10 Punt en normaal vector van een vlak in de ruimte 19/37 Een punt P(x 0, y 0, z 0 ) op een vlak in de ruimte en een normaal vector n = (a, b, c) van dat vlak bepalen het vlak met vergelijking: eenduidig: want ax + by + cz + d = 0 ax 0 + by 0 + cz 0 + d = 0, dus d = ax 0 by 0 cz 0 Punt en normaal vector van een vlak in de ruimte 20/37 Stel P(x 0, y 0, z 0 ) is een punt op een vlak in de ruimte en n = (a, b, c) is een normaal vector van dat vlak Dan wordt de punt normaalvorm van dat vlak gegeven door: a(x x 0 ) + b(y y 0 ) + c(z z 0 ) = 0

11 Afstand van een punt tot een lijn 21/37 STELLING: De afstand D van het punt P(x 0, y 0 ) tot de lijn met vergelijking: ax + by + c = 0 wordt gegeven door: D = ax 0 + by 0 + c a2 + b 2 Afstand van een punt tot een vlak 22/37 STELLING: De afstand D van het punt P(x 0, y 0, z 0 ) tot het vlak met vergelijking: wordt gegeven door: ax + by + cz + d = 0 D = ax 0 + by 0 + cz 0 a2 + b 2 + c 2

12 Vectorvoorstelling van een lijn 23/37 De lijn in het vlak met vergelijking: gaat door het punt (0, c) op de y-as y = mx + c Stel x is gelijk aan de parameter t, dan is y = mt + c Dus (x, y) = (t, mt + c) = (0, c) + t(1, m) Vectorvoorstelling van een lijn 24/37 Een lijn in R n wordt gegeven door een vectorvoorstelling: x = u + tv u heet een steunvector en v = 0 een richtingsvector of parallel vector en t een parameter

13 Vectorvoorstelling van een lijn 25/37 Beschouw de lijn met vectorvoorstelling: x = u + tv Dan is elk veelvoud dv van v met d = 0 weer een richtingsvector van dezelfde lijn Een vector met beginpunt en eindpunt op de lijn is een richtingsvector Elke vector met beginpunt in de oorsprong en eindpunt op de lijn is weer een steunvector van dezelfde lijn Parameter vergelijkingen van een lijn 26/37 De lijn in R n gegeven door de vectorvoorstelling: x = u + tv heeft n parameter vergelijkingen: x 1 = u 1 + tv 1 x 2 = u 2 + tv 2. x n = u n + tv n

14 Richtingsvectoren van 3x + 4y = 12 27/37 0 ( 4, 3) 6 6 ( 2, 3 2 ) Steunvectoren van 3x + 4y = 12 28/37 0 u 4 = ( 4, 6) u 3 = (0, 3) u 2 = (2, 3 2 ) u 1 = (4, 0)

15 Vectorvoorstelling van 3x + 4y = 12 29/37 De lijn met vergelijking 3x + 4y = 12 heeft de volgende parametervoorstellingen: (x, y) = (4, 0) + t( 4, 3), (x, y) = (0, 3) + t( 4, 3), (x, y) = ( 4, 6) + t( 4, 3) maar ook (x, y) = (4, 0) + t( 2, 3 2 ), (x, y) = (0, 3) + t( 2, 3 2 ), (x, y) = ( 4, 6) + t( 2, 3 2 ) Van vectorvoorstelling naar vergelijking 30/37 Beschouw de lijn in het vlak met vectorvoorstelling: (x, y) = u + tv dan worden de twee parameter vergelijkingen gegeven door: Dus { x = u1 + tv 1 y = u 2 + tv 2 dus { v2 x = u 1 v 2 + tv 1 v 2 v 1 y = u 2 v 1 + tv 1 v 2 is een vergelijking van de lijn v 2 x v 1 y = u 1 v 2 u 2 v 1

16 Van vectorvoorstelling naar vergelijkingen 31/37 Beschouw de lijn in R n met vectorvoorstelling: (x 1,..., x n ) = u + tv dan worden de n parameter vergelijkingen gegeven door: x 1 = u 1 + tv 1. x n = u n + tv n Door eliminatie van de parameter t krijgen we n 1 vergelijkingen die de lijn definiëren Vectorvoorstelling van een vlak 32/37 Het vlak in de ruimte met vergelijking: z = lx + my + d gaat door het punt (0, 0, d) op de z-as Stel x is gelijk aan de parameter s en y is gelijk aan de parameter t, dan is z = ls + mt + d Dus (x, y, z) = (s, t, ls + mt + d) = (0, 0, d) + s(1, 0, l) + t(0, 1, m)

17 Vectorvoorstelling van een vlak 33/37 Een vlak in R n wordt gegeven door een vectorvoorstelling: u heet een steunvector en x = u + sv + tw v = 0 en w geen veelvoud van v heten richtingsvectoren of parallel vectoren en s en t parameters Vectorvoorstelling van een vlak 34/37 Stel het vlak in R n wordt gegeven door de vectorvoorstelling: x = u + sv + tw Dan is elke vector met beginpunt in de oorsprong en eindpunt in het vlak, een steunvector van het vlak Elk tweetal vectoren v en w ongelijk 0 met beginpunt en eindpunt in het vlak en die geen veelvoud van elkaar zijn vormen parallel vectoren of richtingsvectoren van het vlak

18 Parameter vergelijkingen van een vlak 35/37 Het vlak in R n gegeven door de vectorvoorstelling: x = u + sv + tw heeft n parameter vergelijkingen: x 1 = u 1 + sv 1 + tw 1 x 2 = u 2 + sv 2 + tw 2. x n = u n + sv n + tw n Van vectorvoorstelling naar vergelijking 36/37 Beschouw het vlak in de ruimte met vectorvoorstelling: (x, y, z) = u + sv + tw dan worden de drie parameter vergelijkingen gegeven door: x = u 1 + sv 1 + tw 1 y = u 2 + sv 2 + tw 2 z = u 2 + sv 2 + tw 3 Door eliminatie van de parameters s en t krijgen we een vergelijking van het vlak

19 Van vectorvoorstelling naar vergelijkingen 37/37 Beschouw het vlak in R n met vectorvoorstelling: (x 1,..., x n ) = u + sv + tw dan worden de n parameter vergelijkingen gegeven door: x 1 = u 1 + sv 1 + tw 1. x n = u n + sv n + tw n Door eliminatie van de parameters s en t krijgen we n 2 vergelijkingen die het vlak definiëren

Ruimtewiskunde. college 3 Lijnen, vlakken en oppervlakken in de ruimte. Vandaag

Ruimtewiskunde. college 3 Lijnen, vlakken en oppervlakken in de ruimte. Vandaag college 3 Lijnen, vlakken en in de collegejaar : 16-17 college : 3 build : 6 juni 2017 slides : 37 Vandaag 1 Lijnen 2 Vlakken 3 4 Toepassing: perspectivische.16-17[3] 1 vandaag Lijnen in het platte vlak

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Tentamen Lineaire Algebra UITWERKINGEN

Tentamen Lineaire Algebra UITWERKINGEN Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen

Nadere informatie

Ruimtemeetkunde deel 1

Ruimtemeetkunde deel 1 Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

Vlakke Meetkunde Ruimtemeetkunde. Meetkunde. 1 december 2012. Meetkunde

Vlakke Meetkunde Ruimtemeetkunde. Meetkunde. 1 december 2012. Meetkunde Vlakke Ruimtemeetkunde 1 december 2012 Vlakke Ruimtemeetkunde 1 Vlakke Vectoren Vergelijking van een rechte 2 Ruimtemeetkunde Vectoren Vergelijking van een vlak Vergelijkingen van een rechte Vlakke Ruimtemeetkunde

Nadere informatie

8.0 Voorkennis. a De pijlen van O(0, 0) naar A(4, 2) en van A(4, 2) naar B(2, 3) zijn vectoren.

8.0 Voorkennis. a De pijlen van O(0, 0) naar A(4, 2) en van A(4, 2) naar B(2, 3) zijn vectoren. 8.0 Voorkennis De pijlen van O(0, 0) naar A(4, 2) en van A(4, 2) naar B(2, 3) zijn vectoren. 4 OA a 2 en AB 2 1 Het bovenste kengetal geeft aan hoeveel de vector naar links of rechts gaat. Het onderste

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

Lijnen en vlakken. Lijnen in het vlak. Aansluitingsproject Wiskunde en Chemisch Rekenen, 6BP00 Wiskunde, 6BP20 Cursus a - b.

Lijnen en vlakken. Lijnen in het vlak. Aansluitingsproject Wiskunde en Chemisch Rekenen, 6BP00 Wiskunde, 6BP20 Cursus a - b. Lijnenvlak.nb Lijnen en vlakken Aansluitingsproject Wiskunde en Chemisch Rekenen, 6BP Wiskunde, 6BP Cursus 7-8 Zowel in vlak als in ruimte is de vector BA is gelijk aan de verschilvector a - b. a A a -

Nadere informatie

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten.

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten. WIS8 8 Vectoren 8. Vectoren Vectoren Een vector met dimensie is een kolom bestaande uit twee reële getallen, bijvoorbeeld [ We kunnen deze meetkundig interpreteren als een pijl in het platte vlak van de

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004, TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen

Nadere informatie

Paragraaf 10.1 : Vectoren en lijnen

Paragraaf 10.1 : Vectoren en lijnen Hoofdstuk 10 Meetkunde met Vectoren (V5 Wis B) Pagina 1 van 13 Paragraaf 10.1 : Vectoren en lijnen Les 1 : Vectoren tekenen Definities Vector x = ( a ) wil zeggen a naar rechts en b omhoog. b Je kunt vectoren

Nadere informatie

Voorbeeldopgaven Meetkunde voor B

Voorbeeldopgaven Meetkunde voor B Voorbeeldopgaven Meetkunde voor B Hoofdstuk 2: Opgave 2 1 Gegeven zijn de vlakken U : x + y + z = 0 en V : x y + az = 0 waarbij a een parameter is. a) Bereken de cosinus van de hoek tussen de twee vlakken

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A. TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 2 Ruimte en oppervlakken collegejaar : 18-19 college : 2 build : 5 september 2018 slides : 25 Vandaag Ruimte 1 Vectoren in R 3 recap 2 Oppervlakken 3 Ruimte 4 1 intro VA Voorkennis uit Ruimtewiskunde

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Les 1 : Vectoren. Hoofdstuk 6 Vectormeetkunde (H4 Wiskunde D) Pagina 1 van 14. Definities Vector x = ( a ) wil zeggen a naar rechts en b omhoog.

Les 1 : Vectoren. Hoofdstuk 6 Vectormeetkunde (H4 Wiskunde D) Pagina 1 van 14. Definities Vector x = ( a ) wil zeggen a naar rechts en b omhoog. Hoofdstuk 6 Vectormeetkunde (H4 Wiskunde D) Pagina 1 van 14 Les 1 : Vectoren Definities Vector x = ( a ) wil zeggen a naar rechts en b omhoog. b Je kunt vectoren tekenen en berekenen. We doen dat aan de

Nadere informatie

10.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.

10.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. 10.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0, b) y = -4x + 8 kan

Nadere informatie

Hoofdstuk 6 : Vectormeetkunde

Hoofdstuk 6 : Vectormeetkunde 1 Hoofdstuk 6 : Vectormeetkunde Les 1 : Vectoren Definities Vector x = ( a ) wil zeggen a naar rechts en b omhoog. b Je kunt vectoren tekenen en berekenen. We doen dat aan de hand van een voorbeeld. Neem

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

14.0 Voorkennis. sin sin sin. Sinusregel: In elke ABC geldt de sinusregel:

14.0 Voorkennis. sin sin sin. Sinusregel: In elke ABC geldt de sinusregel: 14.0 Voorkennis Sinusregel: In elke ABC geldt de sinusregel: a b c sin sin sin Voorbeeld 1: Gegeven is ΔABC met c = 1, α = 54 en β = 6 Bereken a in twee decimalen nauwkeurig. a c sin sin a 1 sin54 sin64

Nadere informatie

Uitwerking 1 Uitwerkingen eerste deeltentamen Lineaire Algebra (WISB121) 3 november 2009

Uitwerking 1 Uitwerkingen eerste deeltentamen Lineaire Algebra (WISB121) 3 november 2009 Departement Wiskunde, Faculteit Bètawetenschappen, UU. In elektronische vorm beschikbaar gemaakt door de TBC van A Eskwadraat. Het college WISB werd in 9- gegeven door Prof. Dr. F. Beukers. Uitwerking

Nadere informatie

Paragraaf 8.1 : Lijnen en Hoeken

Paragraaf 8.1 : Lijnen en Hoeken Hoofdstuk 8 Meetkunde met coördinaten (V5 Wis B) Pagina 1 van 11 Paragraaf 8.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30) Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,

Nadere informatie

15 Uitwerkingen Lineaire Algebra

15 Uitwerkingen Lineaire Algebra 5 Uitwerkingen Lineaire lgebra 5 Uitwerkingen hoofdstuk s Figuur 5: De som van twee vectoren b a d c Figuur 5: Het verschil van twee vectoren v d Figuur 5: De vector van naar c a + b b b c b + c a a a

Nadere informatie

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen.

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen. college 4 collegejaar college build slides Vandaag : : : : 16-17 4 29 maart 217 38 1 2 3.16-17[4] 1 vandaag Vectoren De notatie (x 1, x 2,..., x n ) wordt gebruikt voor het punt P met coördinaten (x 1,

Nadere informatie

Tentamen Lineaire Algebra

Tentamen Lineaire Algebra Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische

Nadere informatie

Eerste deeltentamen Lineaire Algebra A. De opgaven

Eerste deeltentamen Lineaire Algebra A. De opgaven Eerste deeltentamen Lineaire Algebra A 3 november 9, 3-6 uur Bij dit tentamen mogen dictaat en/of rekenmachine niet gebruikt worden. Schrijf op elk vel je naam, collegekaartnummer en naam van de practicumleider

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 7 les 2

Wiskunde D Online uitwerking 4 VWO blok 7 les 2 Wiskunde D Online uitwerking 4 VWO lok 7 les Paragraaf Loodrechte stand en inproduct Opgave De lijnen HM En BD snijden elkaart, want ze liggen eide in het vlak door de punten H, D, B en M Ze snijden elkaar

Nadere informatie

Zomercursus Wiskunde. Module 14 Rechten en vlakken (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 14 Rechten en vlakken (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 14 Rechten en vlakken (versie 22 augustus 2011) Inhoudsopgave 1 Parametervergelijking van rechten en vlakken door de oorsprong 1 2 Cartesiaanse vergelijking

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

EEN OUDE STELLING UIT DE MEETKUNDE

EEN OUDE STELLING UIT DE MEETKUNDE www.raves.nl ton@raves.nl EEN OUDE STELLING UIT DE MEETKUNDE LUIDT: Als drie cirkels elkaar onderling snijden, dan zullen de drie koorden (*) ofwel precies in e e n punt snijden, ofwel evenwijdig zijn

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van

Nadere informatie

College WisCKI. Albert Visser. 28 november, Department of Philosophy, Faculty Humanities, Utrecht University. Lijn, Vlak, etc.

College WisCKI. Albert Visser. 28 november, Department of Philosophy, Faculty Humanities, Utrecht University. Lijn, Vlak, etc. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 28 november, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Vectorvoorstelling Lijn: x = b + λa. b is steunvector

Nadere informatie

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde Analytische Meetkunde Lieve Houwaer, Unit informatie, team wiskunde . VECTOREN EN RECHTEN.. Vectoren... Het vectorbegrip De verzameling punten van het vlak noteren we door π. Kies in het vlak π een vast

Nadere informatie

5 Lijnen en vlakken. Verkennen. Uitleg

5 Lijnen en vlakken. Verkennen. Uitleg 5 Lijnen en vlakken Verkennen Lijnen en vlakken Inleiding Verkennen Bekijk de applet. Je ziet hoe een vlak kan worden beschreven met behulp van een vergelijking in x, en z. In de applet kun je de drie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB1002 deel 1 - Lineaire algebra 1 College 6 27 februari 2014 1 Opbouw college Vandaag behandelen we de rest van hoofdstuk 1.8 en 1.9 Voor de pauze: hoofdstuk 1.8 Na de pauze: hoofdstuk 1.9 2 Transformatie

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

Lineaire algebra toegepast

Lineaire algebra toegepast Lineaire algebra toegepast voor wiskunde D ( 5 VWO) H. van Gendt R.A.C. Dames Versie 4, november 008 Deze module is ontwikkeld in opdracht van ctwo. Copyright 008 R.Dames en H. van Gendt Inhoudsopgave

Nadere informatie

Lineaire Algebra A en B. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven

Lineaire Algebra A en B. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Lineaire Algebra A en B Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven 2007 2008 ii Syllabus bij Lineaire Algebra A (2WF07) en Lineaire Algebra B (2WF08) Inhoudsopgave 0 Vectorrekening

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

College WisCKI. Albert Visser. 21 november, Department of Philosophy, Faculty Humanities, Utrecht University. Vectorruimte

College WisCKI. Albert Visser. 21 november, Department of Philosophy, Faculty Humanities, Utrecht University. Vectorruimte College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 21 november, 2012 1 Overview 2 Overview 2 Overview 2 Overview 2 Overview 3 Lichaam Lichaam (Körper, Field):

Nadere informatie

héöéäëåéçéå=~äë=ãééíâìåçáöé=éä~~íëéå=ãéí=`~äêá= = hçéå=píìäéåë= = = = = = = =

héöéäëåéçéå=~äë=ãééíâìåçáöé=éä~~íëéå=ãéí=`~äêá= = hçéå=píìäéåë= = = = = = = = héöéäëåéçéå~äëãééíâìåçáöééä~~íëéåãéí`~äêá hçéåpíìäéåë De algemene vergelijking van een kegelsnede is van de vorm : 2 2 ax by 2cxy 2dx 2ey f 0 met a, b, c, d, e, f + + + + +. Indien je vijf punten van een

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2

Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2 Lijnen en vlkken in Kls N en N Wiskunde perioden Kees Temme Versie . Coördinten in R³.... De vergelijking vn een vlk ().... De vectorvoorstelling vn een lijn.... De vectorvoorstelling vn een vlk... 8.

Nadere informatie

Dualiteit. Raymond van Bommel. 6 april 2010

Dualiteit. Raymond van Bommel. 6 april 2010 Dualiteit Raymond van Bommel 6 april 2010 1 Inleiding Op veel manieren kan meetkunde worden bedreven. De bekendste en meest gebruikte meetkunde is de Euclidische meetkunde. In dit artikel gaan we kijken

Nadere informatie

College WisCKI. Albert Visser. 5 december, Department of Philosophy, Faculty Humanities, Utrecht University. Lijn, Vlak, etc.

College WisCKI. Albert Visser. 5 december, Department of Philosophy, Faculty Humanities, Utrecht University. Lijn, Vlak, etc. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 5 december, 2012 1 Overview 2 Overview 2 Overview 2 Overview 2 Overview 3 Vectorvoorstelling Lijn: x = b +

Nadere informatie

Paragraaf 7.1 : Lijnen en Hoeken

Paragraaf 7.1 : Lijnen en Hoeken Hoofdstuk 7 Lijnen en cirkels (V5 Wis B) Pagina 1 van 11 Paragraaf 7.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier y =

Nadere informatie

Ruimtemeetkunde. (

Ruimtemeetkunde. ( Ruimtemeetkunde (http://wwwboredpandacom/3d-lines-notepad-drawings-5-years-old-joao-carvalho/) ) Herhaling a) Grondbegrippen en notaties In de ruimtemeetkunde zijn de bouwstenen punten, rechten en vlakken

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I

EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I Theorie Opgave 1. In deze opgave wordt gevraagd om een aantal argumenten of overgangen uit de cursusnota s in detail te verklaren. In delen (a) (b) peilen we naar

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding V Kegelsneden en Kwadratische Vormen in R IV.0 Inleiding V. Homogene kwadratische vormen Een vorm als H (, ) = 5 4 + 8 heet een homogene kwadratische vorm naar de twee variabelen en. Een vorm als K (,

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 10 13 oktober 2016 1 Samenvatting Hoofdstuk 4.1 Een constante λ is een eigenwaarde van een n n matrix A als er een niet-nul vector x bestaat, zodat Ax =

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/7 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Algebra en meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 25 april 2018 1 Presentatie en opgeloste oefeningen zijn digitaal beschikbaar

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters

Nadere informatie

HOEKEN, AFSTANDEN en CIRKELS IN Klas 5N Wiskunde 6 perioden

HOEKEN, AFSTANDEN en CIRKELS IN Klas 5N Wiskunde 6 perioden HOEKEN, AFSTANDEN en CIRKELS IN Klas 5N Wiskunde 6 erioden INHOUD. Het inroduct van vectoren... 3. De normaalvector van een lijn... 3. DE AFSTAND VAN TWEE PUNTEN.... 5. De afstand van een unt tot een lijn...

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT (2DM20) op vrijdag 12 juni 2009, 9.00 Dit tentamen bestaat uit 5 open vragen, en 4 kort-antwoord vragen.

Nadere informatie

Matrices en Grafen (wi1110ee)

Matrices en Grafen (wi1110ee) Matrices en Grafen (wi1110ee) Electrical Engineering TUDelft September 1, 2010 September 1, 2010 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http:

Nadere informatie

Meetkunde en Algebra Een korte beschrijving van de inhoud

Meetkunde en Algebra Een korte beschrijving van de inhoud Meetkunde en Algebra Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige

Nadere informatie

KWADRATISCHE VERGELIJKINGEN, HET GULDEN ZADELVLAK, EN DE REGELMATIGE VIJFHOEK.

KWADRATISCHE VERGELIJKINGEN, HET GULDEN ZADELVLAK, EN DE REGELMATIGE VIJFHOEK. KWADRATISCHE VERGELIJKINGEN, HET, EN DE REGELMATIGE. VIÈTE Johan A.C. Kolk Mathematisch Instituut, Universiteit Utrecht Met medewerking van Rogier Bos Christelijk Gymnasium Utrecht & Freudenthal Instituut,

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 J.Keijsper

Nadere informatie

WI1708TH Analyse 2. College 5 24 november Challenge the future

WI1708TH Analyse 2. College 5 24 november Challenge the future WI1708TH Analyse 2 College 5 24 november 2014 1 Programma Vandaag 2 e orde lineaire differentiaal vergelijking (17.1) 2 1 e orde differentiaal vergelijking Definitie Een 1 e orde differentiaal vergelijking

Nadere informatie

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ² 1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur 4 Van D naar 3D Verkennen Van D naar 3D Inleiding Verkennen Bekijk de applet. Met de rechter muisknop kun je het assenstelsel om de oorsprong draaien en de fig van alle kanten bekijken. Beantwoord nu de

Nadere informatie

Lineaire Algebra A en B. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven

Lineaire Algebra A en B. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Lineaire Algebra A en B Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven 2010 2011 ii Syllabus bij Lineaire Algebra A (2WF07) en Lineaire Algebra B (2WF08) Inhoudsopgave 0 Vectorrekening

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Hoofdstuk 1 : Vectoren (A5D)

Hoofdstuk 1 : Vectoren (A5D) 1 Hoofdstuk 1 : Vectoren (A5D) Hoofdstuk 1 : Vectoren (A5D) Les 1 : Stelsels en Echelon vorm DOEL : WE GAAN EEN AANTAL VERGELIJKINGEN MET EEN AANTAL VARIABELEN PROBEREN OP TE LOSSEN. Definities Stelsel

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het

Nadere informatie

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015 Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen

Nadere informatie

Een korte beschrijving van de inhoud

Een korte beschrijving van de inhoud Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige toepassingen op

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)

Nadere informatie

Overview. Goniometrie. Goniometrie. Loodrechte Deelruimten. Vergelijkingen en Loodrechte Projecties

Overview. Goniometrie. Goniometrie. Loodrechte Deelruimten. Vergelijkingen en Loodrechte Projecties College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 9 december, 202 Overview 2 Overview 2 Overview 2 Overview 3 Cosinuswet Stel we hebben een driehoek ABC. Stelling

Nadere informatie

Lineaire Algebra WISB121. F.Beukers 2013 Departement Wiskunde

Lineaire Algebra WISB121. F.Beukers 2013 Departement Wiskunde Lineaire Algebra WISB F.Beukers 3 Departement Wiskunde UU Inhoudsopgave Vectoren in de ruimte 7. Het intuïtieve vectorbegrip..................... 7. Vlakke en ruimtelijke meetkunde.................. 9.3

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L Habets HG 809, Tel: 040-2474230, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y650 1 Herhaling: Oplossing homogene DV ẋ = Ax Aanname: A is diagonaliseerbaar

Nadere informatie

Cursus analytische meetkunde

Cursus analytische meetkunde Cursus analytische meetkunde René Déscartes 3 mei 596 La Haye en Touraine (Frankrijk) februari 650 Stockholm (Zweden) Cursus analytische meetkunde Sven Mettepenningen ) Herhaling a) Vectoren Definities

Nadere informatie