Wiskundige Methoden in de Fysica examen met modeloplossing

Maat: px
Weergave met pagina beginnen:

Download "Wiskundige Methoden in de Fysica examen met modeloplossing"

Transcriptie

1 Wiskundige Methoden in de Fysica examen met modeopossing januari 7 Voor dit examen krijg je u tijd en mag je de cursus en de oefeningenopgaven gebruiken. Niet toegeaten zijn opgeoste oefeningen, handboeken, rekenmachines en communicatiemiddeen. Gebruik een apart antwoordbad voor eke vraag. Schrijf je naam op ek bad! Vee succes!. pt Bewijs onderstaande operator-identiteiten, waarbij ˆ L = i r de kwantummechanische draaimomentoperator is: a = e r ˆ L r i r r b ˆ L ˆ L = iˆ L Hint: Laat beide eden inwerken op een scaair ved f.. 6pt Toon aan dat n x π3 dx = + x 8, met behup van compexe contourintegratie. Vertrek hiervoor van de vogende compexe contour integraa, LN 3 z dz. + z en eg de vertakkingsijn angs de positieve reëe as. Hint: De binomiaaformue a + b 3 = a 3 + 3a b + 3ab + b 3 en de integraa arctan x + C kunnen van pas komen. a a 3. pt Bereken yt voor t > die vodoet aan dx = x +a y t + y t + 5yt = exp t 3 met y = en y = via de Lapacetransformatie.

2 . 6pt We beschouwen een afgesoten rechthoekig gebied x, y b waarin een stof met concentratie cx, y, t zich za verspreiden met diffusiecoëfficiënt D. De initiëe concentratie is c x en er wordt stof toegevoegd aan een tempo Ix, t. a Formueer het probeem in een partiëe differentiaavergeijking, incusief de rand- en beginvoorwaarden. b Weke voorwaarden zijn aanwezig die je toeaten om dit probeem op te ossen zonder y-afhankeijkheid? We ossen nu 3 verwante probemen op met toenemende moeiijkheidsgraad: c Probeem : Geef de agemene opossing c x, t van de homogene vergeijking d.w.z. met bronterm Ix, t =, via de methode van scheiden der veranderijken. Hierin komen onbekende coëfficiënten a n voor. d Probeem : Beschouw het diffusieprobeem met beginvoorwaarde cx, = en een bronterm Ix, t = IδtHa x met H de Heaviside stapfunctie. D.w.z. dat er stof wordt geïnjecteerd in het gebied x < a op t =. i. Integreer de diffusievergeijking met deze bronterm tussen t = ɛ en t = +ɛ met ɛ, en gebruik dat c ɛ =. Waarom gedt dat +ɛ ɛ xcdt =? ii. Substitueer de agemene opossing die je vond voor probeem en bepaa zo de coëfficiënten a n voor het huidige geva. Toon aan dat deze opossing de vorm heeft van c x, t = ai L Ht + I L voor zekere k n. n= sin k n a k n Ht exp k ndt cosk n x e Probeem 3: Er vindt een constante injectie van stof paats over het tijdsinterva [, T ], aan een sneheid I. Door ineaire superpositie kan men inzien dat de opossing van dit probeem gegeven wordt door c 3 x, t = T dt c x, t t. 5 i. Bereken c 3 x, t uit het resutaat van probeem. Maak hierbij onderscheid tussen t < T en t > T. ii. Wat za de concentratieverdeing zijn voor t +? Vind je dezefde waarde door enke de injectiesneheid, duur en grootte van het gebied te beschouwen?

3 . vectoranayse a pt ˆ L = i r = e r r i r ˆ L r = e r r i r i r r = e r r r r r = e r r r r r r r = r r + e r r r = b pt ˆ L = i e x e y e z x y z x y z L x = iz y y z L y = iz x x z L z = ix y y x ˆ L ˆ Lz = il z ˆ L ˆ Lz = L x L y L y L x L x L y f = z y y z z x x z f = z xyf xz yzf yz xzf y x f + xy zf L y L x f = z x x z z y y z f = z xyf xz yzf yz xzf x y f + xy zf L x L y L y L x = y x x y = iix y y x = il z 3

4 . Compexe contourintegratie Toon aan dat n x π3 dx = + x 8, 6 met behup van compexe contourintegratie. Vertrek hiervoor van de vogende compexe contour integraa, LN 3 z dz. 7 + z en eg de vertakkingsijn angs de positieve reëe as. Opossing: Zoas gegeven, gaan we voor het berekenen van Eq. 6 uit van de compexe functie fz = LN3 z + z, 8 die een vertakkingspunt heeft in z = en poen in + z = z = ±i. We eggen de vertakkingsijn angs de positieve reëe as omwie van de integratiegrenzen we zuen de gevraagde integraa haen uit een faseverschi angs de positieve reëe as. Met deze informatie kiezen we een contour C = C R C I C ε C I die de positieve reëe as tweemaa bevat en dus de integraa I zie Fig. en gesoten wordt op oneindig. We berekenen dus de reëe integraa I, die we niet zomaar kunnen opossen, as dee van de compexe contourintegraa die we we kunnen opossen! C fz dz = C LN 3 z dz, 9 + z Aangezien de poen z = ±i binnen de contour C iggen, zegt de residusteing dat fz dz = πi Res z=i [fz] + Res z= i [fz]. C Maar we hebben ook dat fz dz = C fz dz + C R fz dz + C I fz dz + C ε fz dz. C I Voor de eerste term maken we gebruik van de grote imietsteing voor een cirkeboog met middepunt z =, straa R en middepuntshoek π. Hiervoor gaan we na dat im z LN3 z z + z = im n R + iθ3 n 3 R Reiθ = im R + R e iθ R R H = im R R n R =.

5 Imz C R z = i C ε C I Rez z = i C I Figuur : Contour voor de compexe contourintegraa Eq. 9. waarbij we L Hôpita gebruikt hebben bij het berekenen van de imiet en enke rekening hebben gehouden met de dominante termen voor R. Er vogt dat im fz dz =, 3 R C R zodat de bijdrage van C R wegvat voor R. Voor de derde term maken we gebruik van de keine imietsteing voor een cirkeboog met middepunt z =, straa ε en middepuntshoek π gemeten in tegenwijzerzin. Hiervoor gaan we, gewapend met de gegeven binomiaaformue, na dat im z LN3 z z + z = im ε εeiθ n ε + iθ3 + ε e iθ = im n 3 ε + 3i n εθ 3 n εθ iθ 3 ε. Na herhaadeijk toepassen van L Hôpita kunnen ae termen hereid worden tot termen van de vorm im ε ε nε =. Er vogt dat im fz dz =, 5 ε C ε zodat de bijdrage van C ε wegvat voor ε. Voor R en ε, wordt het stuk C I boven de vertakkingsijn met de parametrizatie z = x geijk aan n 3 x fz dz = dx, 6 C I + x 5 ε

6 terwij voor het stuk C I onder de vertakkingsijn gedt dat n x + πi 3 fz dz = dx. 7 C I + x We vinden dus dat, voor R en ε, n 3 x fz dz = + x dx n x + πi 3 dx 8 + x C = 6πi = 6πi n x + x dx + π n x dx + π + x n x + x dx + 8π3 i dx 9 + x n x + x dx + π i, waar we de hints gebruikt hebben binomiaaformue en arctan-integraa. De uitdrukking moet geijk zijn aan de som van de vogende residus, z iln 3 z LN 3 z Res z=i [fz] = im = im z i + z z i z + i z + iln 3 z LN 3 z Res z=i [fz] = im = im z i + z z i z i = n i + iπ/3 i = n i + i3π/3 i = iπ/3, i = i3π/3. i Merk op dat de hoek in tegenwijzerzin oopt van tot π door de keuze van onze vertakkingsijn angs de positieve reëe as. We krijgen dat n x n x iπ/ 3 6πi dx + π + x + x dx + π i = πi + i3π/3 3 i i = π iπ 3 /8 + i7π 3 /8 = 3π i. 5 Hieruit eren we dat het reëe dee geijk moet zijn aan, wat impiceert dat en dat voor het imaginaire dee moet geden dat wat betekent dat 6πi n x + x dx = 6πi n x dx =, 6 + x n x + x dx + π i = 3π i, 7 3iπ 6π i = 6πi 3iπ = π

7 3. Integraatransformatie We starten met uitvoeren van de apace transformatie en vuen de gegeven beginvoorwaarden in en herschrijven tot we een uitdrukking bekomen voor Ys Y s = y + y + 5y = exp t y = y = s + s + 5Y s + s + = s + Y s = s+ s + s + s + 5 s + s + s + + s + + Vervogens dienen we te spitsen in partiee breuken : s + s + + = A s + + B s Cs s + + = As + As + 5A + Bs + B + Cs + Cs A = C A = B 5A + B = A =, B =, C = Y s = s + s + + s s + + Gebruik maken van inverse apace transformatie en vogende eigenschappen : resuteert in yt : L { } = exp t s + L { s + } = sint L { } = exp kt s k L s { s + } = cost Y s = s + s + + s + s + + L {Y s} = exp t sint exp t exp tcost sint = yt 7

8 . Opossing: a t D xc = Ix, t, 9 De beginvoorwaarde is cx, y, = c x, y en as randvoorwaarden hebben we homogene Neumannrandvoorwaarden, dus x c, y, t = x c, y, t = y cx,, t = y cx, b, t =. b Rand- en beginvoorwaarden en de vergeijking zef zijn invariant onder transaties in y, dus opossing za onafhankeijk zijn van y. c d dus c x, t = +ɛ ɛ n= t cdt = D cɛ = D a n exp Dt cos +ɛ ɛ +ɛ ɛ xcdt + IHa x +ɛ ɛ. 3 δtdt 3 xcdt + IHa x 3 im cɛ = IHa x 33 ɛ im c ɛ, t = a n cos = IHa x. 3 ɛ n= Doordat xc continu is voor t < en t > vinden we dat de oppervakte onder een functie naar nu gaat as het domein waarover we integreren naar nu gaat. Geen punten op zetten Door te projecteren op cos mπx vinden we { Ia, m = a m = I sin mπa mπ, m 35 We moeten er ook nog voor zorgen dat c = voor t < en dit kan eenvoudig door de gevonden opossing te vermenigvudigen met de Heaviside stapfunctie. Zo vinden we dus c x, t = Ia I Ht + n= sin nπa Ht exp nπ 8 nπ Dt cos. 36

9 e We werken de vogende integraa uit voor n : T Ht t exp Dt t dt = 37 t nπ HT t exp Dt exp Dt dt + 38 T nπ Ht T exp Dt exp Dt dt = 39 exp nπ Dt HT t exp Dt + D Ht T exp en geijkaardig voor n = : Dus voor t <= T: T nπ exp nπ DT Dt. D nπ Ht t dt = HT tt + Ht T T. c 3 x, t T = IaT We krijgen dus: c 3 x, t > T = IaT I sin nπa HT tt + D nπ 3 n= nπ HT t exp Dt exp I sin nπa Ht T T + D nπ 3 n= nπ Ht T exp DT nπ Dt cos exp nπ Dt cos f im t + cx, t = IaT. Aternatieve opossing: a t D xc = f, 7 met fx, t = IHa xht t H is de Heaviside stapfunctie. De beginvoorwaarde is cx, = c en as randvoorwaarden hebben we homogene Neumannrandvoorwaarden, dus x c, t = x c, t =. 9

10 b As basisfuncties nemen we de opossingen van het Sturm-Liouvie probeem c D xφ n = λ n φ n, 8 met homogene Neumannrandvoorwaarden in x = en x =. Dus φ n x = cos. ċ n t + D waarvan de opossing is: c n t = c n exp Dt + d De opossing is dus: cx, t = = + n= n= n= = c + nπ cn t = f n t, 9 t exp Dt t f n t dt. 5 c n tφ n x 5 c n exp t n= exp t exp nπ Dt cos nπ Dt t f n t dt cos nπ Dt t f n t dt cos Om dit verder uit te werken moeten we dus eerst nog f n berekenen: Dus: f n x, t = δ n IHa xht t cos = δ a n nπx IHT t cos { IHT t a =, n = nπa sin IHT t, n nπ cx, t = c + n= dx 55 dx d n t cos. 58

11 met IaT HT tt + Ht T T, n = I sin nπa [ nπ d n t = HT t exp Dt D nπ 3 nπ ], n +Ht T exp DT 59 e im t + cx, t = c + IaT.

2 de Bachelor IR 2 de Bachelor Fysica

2 de Bachelor IR 2 de Bachelor Fysica de Bachelor IR de Bachelor Fysica 6 augustus 05 Er worden 4 vragen gesteld. Vul op ieder blad je naam in. Motiveer of bewijs iedere uitspraak. Los alle vragen op, op een apart blad! Het examen duurt u30.

Nadere informatie

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen de Bachelor EIT 2de en de Bachelor Wiskunde Academiejaar 215-216 1ste semester 26 januari 216 Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen 1. Gegeven een homogene lineaire partiële

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 3de Bachelor EIT - de Bachelor Fysica Academiejaar 014-015 1ste semester 7 januari 015 Aanvullingen van de Wiskunde 1. Gegeven is een lineaire partiële differentiaalvergelijking van orde 1: a 1 (x 1,,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Functietheorie (2Y480) op ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Functietheorie (2Y480) op , 1 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking van het tentamen Functietheorie (2Y480) op 25-11-1998, 9.00-12.00 uur Opgave 1 1. Formuleer de Cauchy-Riemann-vergelijkingen.

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Functietheorie (2Y480) op 25 november 1998, uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Functietheorie (2Y480) op 25 november 1998, uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Functietheorie (2Y480) op 25 november 1998, 9.00-12.00 uur. Dit tentamen bestaat uit 5 opgaven. De uitwerkingen van deze opgaven dienen

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen 1ste Bachelor Fysica en Sterrenkunde Academiejaar 014-015 1ste semester 1 oktober 014 Wiskundige Technieken 1. Beschouw een scalaire functie f : R R en een vectorveld

Nadere informatie

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm 5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm x y + xy + (x ν )y = met ν R (1) heet een Bessel (differentiaal)vergelijking. De waarde van ν noemt men ook wel de orde

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (2Y480) op 22 november 1999,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (2Y480) op 22 november 1999, TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (Y480) op november 999, 4.00-7.00 uur Formuleer de uitwerkingen der opgaven duidelijk en schrijf ze overzichtelijk

Nadere informatie

Wiskunde: Voortgezette Analyse

Wiskunde: Voortgezette Analyse de Bach. IR Wet.: Architectuur Academiejaar 0-04 ste zittijd, januari 04 Wiskunde: Voortgezette Analyse. Gegeven is de reeks n x (x + ) n+ Toon aan dat de reeks puntsgewijs convergeert over R. Toon aan

Nadere informatie

Tentamen CT2031 ConstructieMechanica 3 2 april 2007 MODELUITWERKING. a) De grenzen kunnen m.b.v. de basisgevallen van Euler worden bepaald:

Tentamen CT2031 ConstructieMechanica 3 2 april 2007 MODELUITWERKING. a) De grenzen kunnen m.b.v. de basisgevallen van Euler worden bepaald: MODELUITWERKING VRAAGSTUK : Theorie Dee a) De grenzen kunnen m.b.v. de basisgevaen van Euer worden bepaad: r 0 en k 0 : π k 4 r inf en k 0 : r inf en k inf: 4π k r 0 en k inf : De knikast kan, afhankeijk

Nadere informatie

l reeds gezien hebben in paragraaf De zwaartekracht leidt dus tot een extra term in de bewegingsvergelijkingen:

l reeds gezien hebben in paragraaf De zwaartekracht leidt dus tot een extra term in de bewegingsvergelijkingen: Hoofdstuk 4 N gekoppede singers 4.1 De bewegingsvergeijkingen We beschouwen een systeem vn N identieke singers met engte, wrvn de nburige singers met identieke veren gekopped zijn, zos ngegeven in figuur

Nadere informatie

Opmerking: Kan ook sneller door met impulsmomentbehoud de nieuwe snelheid uit te rekenen en daarmee een uitspraak te doen over de energie.

Opmerking: Kan ook sneller door met impulsmomentbehoud de nieuwe snelheid uit te rekenen en daarmee een uitspraak te doen over de energie. Antwoorden ronde 04 toets RONDDRAAIENDE MASSA 5 (.9 van a guide to phys prob ) Trekken aan het touw evert geen krachtmoment aan de massa, dus impusmoment is behouden. Dus:. Voor de arbeid die nodig is

Nadere informatie

Mathematical Modelling

Mathematical Modelling 1 / 95 Mathematical Modelling Ruud van Damme Creation date: 21-08-08 Last adapt: 30-08-09 2 / 95 Overzicht 1 Inleiding 2 Complexe getallen: rekenen 3 Complexe getallen: iets meer dan rekenen alleen 3 /

Nadere informatie

KeCo-opgaven elektricitietsleer VWO4

KeCo-opgaven elektricitietsleer VWO4 KeCo-opgaven eektricitietseer VWO4 1 KeCo-opgaven eektricitietseer VWO4 E.1. a. Wat is een eektrische stroom? b. Vu in: Een eektrische stroomkring moet atijd.. zijn. c. Een negatief geaden voorwerp heeft

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

Tentamenopgaven over hfdst. 1 t/m 4

Tentamenopgaven over hfdst. 1 t/m 4 Ttamopgav over hfdst. 1 t/m 4 1. donderdag 31 oktober 1996 Bepaal de oplossing van het beginwaardeprobleem y + 4y = 4 cos 2x, y(0) = 1, y (0) = 0. 2. donderdag 31 oktober 1996 Bepaal de algeme oplossing

Nadere informatie

ARBEIDS- en ENERGIEMETHODEN. Opgave 0 : Ligger met een koppel. Opgave 1 : Niet-lineair last-zakkingsdiagram. Opgave 2 : Horizontaal belast raamwerk

ARBEIDS- en ENERGIEMETHODEN. Opgave 0 : Ligger met een koppel. Opgave 1 : Niet-lineair last-zakkingsdiagram. Opgave 2 : Horizontaal belast raamwerk ARBDS- en ENERGIEMETHODEN Opgave 0 : Ligger met een koppe Van de rechts weergegeven igger wordt gevraagd om de rotatie in het rechter steunpunt ten gevoge van het koppe T te bepaen met behup van de e steing

Nadere informatie

Tentamen Gewone Differentiaal Vergelijkingen II

Tentamen Gewone Differentiaal Vergelijkingen II Tentamen Gewone Differentiaal Vergelijkingen II.0.007 Jullie mogen een willekeurige van de vier opgaven als bonusopgave bekijken. (Dus drie opgaven volledig en goed gedaan is al een 10.) Opgave 1 Bekijk

Nadere informatie

opgave 1. (2 pt) kies het juiste antwoord; motiveer kort je antwoord s b) de overdrachtsfunctie van een systeem is H( s) =

opgave 1. (2 pt) kies het juiste antwoord; motiveer kort je antwoord s b) de overdrachtsfunctie van een systeem is H( s) = ECHNISCHE UNIVERSIEI EINDHOVEN FAC. BIOMEDISCHE ECHNOLOGIE Schriftelijk tentamen Signaal en Systeemanalyse (8E8) gehouden op maandag 3 oktober van 9:-: (4 opgaven) - Je mag bij dit tentamen gebruik maken

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differtiaalvergelijking Fourierreeks Partiële differtiaalvergelijking zijn vergelijking waarin e onbekde functie van twee of meer variabel z n partiële afgeleide(n) voorkom. Dit in

Nadere informatie

Oplossing Ijkingstoets industrieel ingenieur UGent/VUB, juli 2015

Oplossing Ijkingstoets industrieel ingenieur UGent/VUB, juli 2015 Opossin IJkinstoets jui 5 - reeks - p. / Opossin Ijkinstoets industriee inenieur UGent/VUB, jui 5 Oefenin Om een pank een heinshoek α te even, wordt een ronde staaf ebruikt zoas aaneeven in onderstaande

Nadere informatie

Hertentamen CT2031. ConstructieMechanica 3

Hertentamen CT2031. ConstructieMechanica 3 Subfacuteit iviee Techniek Vermed op baden van uw werk: onstructiemechanica STUDIENUMMER : NM : Hertentamen T01 onstructiemechanica 18 ug 008 van 14:00 17:00 uur s de kandidaat niet vodoet aan de voorwaarden

Nadere informatie

11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm :

11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm : 11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm : L[y] := [p(x)y ] + q(x)y = µr(x)y + f(x), < x < 1 (1) a 1 y() + a 2 y () =, b 1 y(1)

Nadere informatie

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen?

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen? Vraag Een vloeistoftank met onbeperkte capaciteit, bevat aanvankelijk V liter zuiver water. Tijdens de eerste faze stroomt water, dat zout bevat met een concentratie van k kilogram per liter, de tank binnen

Nadere informatie

Examen Algemene natuurkunde 1 18 januari 2016

Examen Algemene natuurkunde 1 18 januari 2016 Examen Agemene natuurkunde 8 januari 206 Lees zorgvudig de vragen en aarze niet om uiteg te vragen indien je iets onduideijk vindt. Denk er ook aan om je antwoorden vodoende te motiveren, aeen de uitkomst

Nadere informatie

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx )

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx ) .4. Ev onev functies. E functie f heet ev als voor elke x in het domein van f ook x tot dat domein behoort f( x) = f(x) voor alle x in het domein van f. En e functie f heet onev als voor elke x in het

Nadere informatie

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #1 Uitwerking.

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #1 Uitwerking. Math D Gauss Wiskunde leerlijn TOM) Deelnemende Modules: 14-144/FMHT/14161/14144-1A Oefententamen #1 Uitwerking Vraagstuk 1 Bereken de oppervlakte integraal F ˆn d, waarbij Fx, y, z) x î + y ĵ z ˆk en

Nadere informatie

OPGAVE 7 : ARBEID EN ENERGIE

OPGAVE 7 : ARBEID EN ENERGIE OPGAVE 7 : ARBD EN ENERGIE In de onderstaande figuur is een op druk beaste buigzame staaf weergegeen die haerwege beast wordt met een etra kracht. De normaakracht in de staaf is hierdoor niet constant.

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica Examen GO7E Wiskunde II (3sp maandag juni 3, 8:3-:3 uur Bachelor Geografie en Bachelor Informatica Auditorium De Molen: A D Auditorium MTM3: E-Se Auditorium MTM39: Sh-Z Naam: Studierichting: Naam assistent:

Nadere informatie

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8,

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8, UITWERKINGEN TENTAMEN DIFFERENTIËREN EN INTEGREREN 20 OKTOBER 2008. a) f(x) < is equivalt aan < f(x)

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

Examen Wiskundige Analyse I 1ste bach ir wet. dinsdag 5 januari Vraag 1.1. Waar of vals (1pt) Het beginvoorwaardenprobleem

Examen Wiskundige Analyse I 1ste bach ir wet. dinsdag 5 januari Vraag 1.1. Waar of vals (1pt) Het beginvoorwaardenprobleem Examen Wiskundige Analyse I ste bach ir wet dinsdag 5 januari 206 Vraag.. Waar of vals (pt) Het beginvoorwaardenprobleem 32x 3 y = (y ) 3, y() = 2, y () = 4 bezit een unieke oplossing, die geldig is in

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

Examen Complexe Analyse (September 2008)

Examen Complexe Analyse (September 2008) Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst

Nadere informatie

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten)

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten) 8.I.00 Wiskundige Analyse I, theorie 60% van de punten) Beantwoord elk van de vragen I,II,III en IV op één van de dubbele geruite bladen. Schrijf op elk van die dubbele geruite bladen, bovenaan de eerste

Nadere informatie

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur Examen GO7D Wiskunde II (6sp maandag juni 3, 8:3-:3 uur Bachelor Biochemie & Biotechnologie Bachelor hemie, Bachelor Geologie Schakelprogramma Master Biochemie & Biotechnologie en Schakelprogramma Master

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013 Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Systeem 2 wordt beschreven door de differentiaalvergelijking y y x

Systeem 2 wordt beschreven door de differentiaalvergelijking y y x TECHNISCHE UNIVERSITEIT EINDHOVEN FAC. BIOMEDISCHE TECHNOLOGIE Schriftelijk tentamen Signaal en Systeemanalyse (8E080) gehouden op maandag 3 oktober 0 van 4:00-7:00 (4 opgaven) - Je mag bij dit tentamen

Nadere informatie

(vi) Als u een stelling, eigenschap,... gebruikt, formuleer die dan, toon aan dat de voorwaarden vervuld zijn, maar bewijs die niet.

(vi) Als u een stelling, eigenschap,... gebruikt, formuleer die dan, toon aan dat de voorwaarden vervuld zijn, maar bewijs die niet. Examen Functieruimten - Deel theorie 15 januari 2016, 08:30 uur Naam en Voornaam: Lees eerst dit: (i) Naam en voornaam hierboven invullen. (ii) Nietje niet losmaken. (iii) Enkel deze bundel afgeven; geen

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

WI1708TH Analyse 3. College 5 23 februari Challenge the future

WI1708TH Analyse 3. College 5 23 februari Challenge the future WI1708TH Analyse 3 College 5 23 februari 2015 1 Programma Vandaag Richtingsafgeleide (14.6) Gradiënt (14.6) Maximalisatie richtingsafgeleide (14.6) Raakvlak voor niveauoppervlakken (14.6) 2 Richtingsafgeleide

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Hertentamen Topologie, Najaar 2009

Hertentamen Topologie, Najaar 2009 Hertentamen Topologie, Najaar 2009 Toelichting: 06.05.2010 Je mag geen hulpmiddelen (zoals aantekeningen, rekenmachine etc.) gebruiken, behalve het boek van Runde en het aanvullende dictaat. Als je stellingen

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.3, maandag K. P. Hart Faculteit EWI TU Delft Delft, 2 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 34 Outline 1 Conforme afbeeldingen 2 K. P. Hart TW2040:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Functietheorie (2Y480) op 23 januari 2002,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Functietheorie (2Y480) op 23 januari 2002, TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (2Y8) op 23 januari 22, 9.-2. uur De uitwerkingen der opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

Uitwerking tentamen Klassieke Mechanica II Maandag 21 oktober 2002

Uitwerking tentamen Klassieke Mechanica II Maandag 21 oktober 2002 OPGAVE : Heend va Uitwering tentamen Kassiee Mechanica II Maandag otober m y m x θ a) Aangezien de beweging gehee paatsvindt in het va van de teening, hebben we per bo coördinaten nodig om zijn positie

Nadere informatie

Tentamen CT2031. ConstructieMechanica 3

Tentamen CT2031. ConstructieMechanica 3 Subfacuteit Civiee Techniek Vermed op baden van uw werk: Constructiemechanica STUDIENUMMER : NM : Tentamen CT031 ConstructieMechanica 3 14 apri 010 van 14:00 17:00 uur s de kandidaat niet vodoet aan de

Nadere informatie

Tentamen Analyse 4 (wi2602) 17 juni 2011, uur. ) (1 gratis)) Deel 2: opgaven 2b, 4ab, 5, 6 (normering: 2 + (

Tentamen Analyse 4 (wi2602) 17 juni 2011, uur. ) (1 gratis)) Deel 2: opgaven 2b, 4ab, 5, 6 (normering: 2 + ( TU Delft Mekelweg 4 Faculteit EWI, DIAM 68 CD Delft Tentamen Analyse 4 (wi6) 7 juni, 4-7 uur Het tentamen bestaat uit twee delen: Deel : opgaven, a, 3ab, 4c (normering: + + ( + ) + + ( gratis)) Deel :

Nadere informatie

Mathematical Modelling

Mathematical Modelling 1 / 94 Mathematical Modelling Ruud van Damme Creation date: 15-09-09 2 / 94 Overzicht 1 Herhaling 2 Deels oud, deels nieuw integreren 3 Lijnintegralen 3 / 94 Waarschuwing vooraf! Dit college heeft een

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

Tentamen WISN101 Wiskundige Technieken 1 Ma 2 nov :30 16:30

Tentamen WISN101 Wiskundige Technieken 1 Ma 2 nov :30 16:30 Tentamen WISN Wiskundige Technieken Ma nov 5 3:3 6:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes. 3pt Grote

Nadere informatie

Resultaten IJkingstoets Bio-ingenieur 1 september Nummer vragenreeks: 1

Resultaten IJkingstoets Bio-ingenieur 1 september Nummer vragenreeks: 1 Resultaten IJkingstoets Bio-ingenieur september 8 Nummer vragenreeks: Resultaten IJkingstoets Bio-ingenieur september 8 - p. / Aan de KU Leuven namen in totaal 8 aspirant-studenten deel aan de ijkingstoets

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele

Nadere informatie

Tentamen Analyse van Continua

Tentamen Analyse van Continua Tentamen Anase van Continua d.d. 10 januari 2008, 14.00-17.00 uur Code: 4Q410 BMT-2.1 Facuteit Biomedische Technoogie Technische Universiteit Eindhoven Dit tentamen omvat 10 vraagstukken. De vraagstukken

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.10, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 23 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 46 Outline 1 2 3 K. P. Hart TW2040: Complexe Functietheorie

Nadere informatie

Tentamen Functies en Reeksen

Tentamen Functies en Reeksen Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

Voortplanting van trillingen - lopende golven

Voortplanting van trillingen - lopende golven Voortpanting van triingen - opende goven 8. Eigenschappen van goven Interferentie van goven Interferentie doet zich voor as goven ekaar samentreffen. Het is dus een samensteen van goven. COHERENTIEVOORWAARDE:

Nadere informatie

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n. Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Examen Complexe Analyse vrijdag 21 juni 2013, 14:00 18:00 uur Auditorium De Molen

Examen Complexe Analyse vrijdag 21 juni 2013, 14:00 18:00 uur Auditorium De Molen Examen Complexe Analyse vrijdag 1 juni 013, 14:00 18:00 uur Auditorium De Molen Naam: Studierichting: Het examen bestaat uit 4 schriftelijke vragen. Elke vraag telt even zwaar mee. Er is een bonusvraag

Nadere informatie

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0.

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0. OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE (COLLEGE NAJAAR 6).. Bepaal alle oplossingen van de vergelijking (z + i) 4 = 6 in het complee vlak. a. Schrijf het getal i in poolcoördinaten. b. Bereken de rechthoekige

Nadere informatie

(10 pnt) Bepaal alle punten waar deze functie een relatief extreem of een zadelpunt heeft. Opgave 3. Zij D het gebied gegeven door

(10 pnt) Bepaal alle punten waar deze functie een relatief extreem of een zadelpunt heeft. Opgave 3. Zij D het gebied gegeven door Calculus 3. Tentamen Calculus 3, 8 April 11 Opgave 1. Zij f(x, y, z) = xy z 3xz en g(x, y, z) = x 3 +z sin(y) y sin(z). i) (5 pnt) Laat zien dat p = (, 1, 1) op de oppervlakken {f(x, y, z)} = en {g(x,

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differentiaalvergelijkingen en Fourierreeksen Partiële differentiaalvergelijkingen zijn vergelijkingen waarin een onbekende functie van twee of meer variabelen en z n partiële afgeleide(n)

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking Math D Gauss Wiskunde leerlijn TOM Deelnemende Modules: 14-144/FMHT/14161/14144-1A Oefententamen # Uitwerking Vraagstuk 1. tel de doorsnijding van de oppervlakken x + y + z 4 en z 1. Van bovenaf bekijkt

Nadere informatie

Antwoorden Natuurkunde Olympiade pagina 1

Antwoorden Natuurkunde Olympiade pagina 1 1. Voeyba 6pt a. (1) F = ps, met S = πr het oppervak van de ba op de paat. Er gedt r = (R h)h, zodat F = pπh(r h) 10 N. b. () Tijdens de botsing is de vervorming as in de tekening. De bo bijft bo, voor

Nadere informatie

Hertentamen WISN101 Wiskundige Technieken 1 Do 5 jan :30 16:30

Hertentamen WISN101 Wiskundige Technieken 1 Do 5 jan :30 16:30 Hertentamen WISN0 Wiskundige Technieken Do 5 jan 207 3:30 6:30 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I ste Bachelor Wiskunde Academiejaar 6-7 ste semester november 6 Tussentijdse evaluatie Analyse I. Toon aan dat een niet-stijgende begrensde rij convergent is.. Onderstel dat f : [a, b] R continu is over

Nadere informatie

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer)

Nadere informatie

Hertentamen CT2031. ConstructieMechanica April :00 17:00 uur

Hertentamen CT2031. ConstructieMechanica April :00 17:00 uur 33 Subfacuteit Civiee Techniek Vermed op baden van uw werk: Constructiemechanica STUDIENUMMER : NAAM : Hertentamen CT031 ConstructieMechanica 3 15 Apri 013 14:00 17:00 uur As de kandidaat niet vodoet aan

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (15126) op dinsdag 4 januari 211, 8.45 11.45 uur. De uitwerkingen van de opgaven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D2. Datum: dinsdag 29 april 28. Tijd: 14: 17:. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

2 de Bachelor IR 2 de Bachelor Fysica

2 de Bachelor IR 2 de Bachelor Fysica de Bchelor IR de Bchelor Fysic jnuri 4 Er worden 5 vrgen gesteld. Vul o ieder bld je nm in. Motiveer of bewijs iedere uitsrk. Los lle vrgen o, o een rt bld! Het exmen duurt u. Veel succes!. Bereken lle

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Bespreking van het examen Complexe Analyse (tweede zittijd)

Bespreking van het examen Complexe Analyse (tweede zittijd) Bespreking van het examen Complexe Analyse (tweede zittijd) Bekijk ook de bespreking van het examen van de eerste zittijd (op Toledo). Het valt hier op dat de scores op sommige vragen wel heel slecht zijn.

Nadere informatie

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Bij het vak Lineaire Algebra hebben we reeds kennis gemaakt met stelsels eerste orde lineaire differentiaalvergelijkingen We hebben

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M van 16:00 tot 18:00u

Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M van 16:00 tot 18:00u Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M 00.07 van 16:00 tot 18:00u Beste student, Deze oefeningentoets bevat twee oefeningen betreffende het tweede deel

Nadere informatie

== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u

== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u == Modeluitwerking tentmen Anlyse == Mndg 4 jnuri 8, 4.-7.u. Formuleer de Tussenwrdestelling. Als f :, b] R continu is en s R ligt tussen f en fb, dn bestt er een c, b] met fc = s. b Toon n, dt de vergelijking

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

Hoofdstuk 1: Inleiding

Hoofdstuk 1: Inleiding Hoofdstuk 1: Inleiding 1.1. Richtingsvelden. Zie Stewart, 9.2. 1.2. Oplossingen van enkele differentiaalvergelijkingen. Zelf doorlezen. 1.3. Classificatie van differentiaalvergelijkingen. Differentiaalvergelijkingen

Nadere informatie

Relevante examenvragen , eerste examenperiode

Relevante examenvragen , eerste examenperiode Relevante examenvragen 2007 2008, eerste examenperiode WAAR/VALS Zijn de volgende uitspraken waar of vals? Geef een korte argumentatie (bewijs) of een tegenvoorbeeld, eventueel aangevuld met een figuur.

Nadere informatie

Technische Universiteit Delft Faculteit der Civiele Techniek en Geowetenschappen. De effectieve kiplengte van houten liggers

Technische Universiteit Delft Faculteit der Civiele Techniek en Geowetenschappen. De effectieve kiplengte van houten liggers Technische Universiteit Deft Facuteit der Civiee Techniek en Geowetenschappen De effectieve kipengte van houten iggers Roeand van Straten November 1 Technische Universiteit Deft Facuteit der Civiee Techniek

Nadere informatie

Complexe functies 2019

Complexe functies 2019 Complexe functies 019 Extra opgaves Opgave A Laat zien dat R voorzien van de bewerkingen a + b := (a 1 +b 1,a +b ) a b := (a 1 b 1 a b,a 1 b +a b 1 ) isomorf is met C. Wat is i in deze representatie? Opgave

Nadere informatie

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries)

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries) Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017 Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer) / B

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie