Functies van één veranderlijke
|
|
|
- Norbert ter Linde
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Functies van één veranderlijke Docent : Anton Stoorvogel [email protected] /29 Elektrotechniek, Wiskunde en Informatica EWI
2 UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Proeftentamen, Functies van één veranderlijke (952600) De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk opgeschreven te worden. Bovendien dient U in alle gevallen uw antwoord te beargumenteren! 2/29 Elektrotechniek, Wiskunde en Informatica EWI
3 . Toon aan voor alle x 2. ; /. d dx tan.arcsin x/ D. x 2 / 3=2 3/29 Elektrotechniek, Wiskunde en Informatica EWI
4 We hebben volgens de kettingregel: d dx tan.arcsin x/ D cos 2.arcsin x/ D sin 2.arcsin x/ D x 2 p x 2 D. x 2 / 3=2 p x 2 p x 2 4/29 Elektrotechniek, Wiskunde en Informatica EWI
5 2. (a) Bepaal het minimum van de functie: f.x/ D x 2 ln x met x 2.0; /. (b) Bepaal met behulp van a) en de insluitstelling: lim x#0 x 3 ln x Het antwoord alleen is niet voldoende! 5/29 Elektrotechniek, Wiskunde en Informatica EWI
6 We berekenen eerst de afgeleide: f 0.x/ D 2x ln x C x We zien dat de afgeleide 0 is voor x D p e. Voor x 2.0; p e / is de functie dalend en voor x 2. p e ; / is de functie stijgend. Het minimum wordt dus aangenomen in x D p e en het minimum is dus gelijk aan: 2e : 6/29 Elektrotechniek, Wiskunde en Informatica EWI
7 Voor x 2.0; / hebben we: x 2e 6 x3 ln x 6 0 waarbij we voor de linkerongelijkheid onderdeel a) gebruikt hebben. We hebben: lim x#0 x 2e D 0 lim 0 D 0 x#0 De insluitstelling garandeert dan dat: lim x 3 ln x D 0 x#0 7/29 Elektrotechniek, Wiskunde en Informatica EWI
8 3. (a) Schrijf het complexe getal 2 2i in de polaire vorm: re i' (b) Schrijf in de vorm a C bi. 2i 3 C 4i 8/29 Elektrotechniek, Wiskunde en Informatica EWI
9 2 ϕ r 2 9/29 Elektrotechniek, Wiskunde en Informatica EWI
10 2 2i D re i' r D p 8 ' D 4 0/29 Elektrotechniek, Wiskunde en Informatica EWI
11 2i 3 C 4i D 2i 3 4i 3 C 4i 3 4i. 2i/.3 4i/ D 25 D 5 0i 25 D C 2i D i /29 Elektrotechniek, Wiskunde en Informatica EWI
12 4. Bepaal de volgende integraal Z=2 0 x 2 cos x dx: 2/29 Elektrotechniek, Wiskunde en Informatica EWI
13 We gaan dit aanpakken met partiële integratie en we vinden: Z=2 0 x h 2 cos x dx D D x h cos x D i =2 2 sin x 0 i =2 0 Z=2 0 sin x dx: 3/29 Elektrotechniek, Wiskunde en Informatica EWI
14 5. Bereken de volgende integraal Z x C p dx 4 2x x 2 4/29 Elektrotechniek, Wiskunde en Informatica EWI
15 We gebruiken eerst de substitutie y D 4 2x x 2 en dus: dy D. 2 2x/dx D 2.x C /dx We vinden: Z Z x C p dx D 4 2x x 2 2 p y dy D p ycc D p 4 2x x 2 CC 5/29 Elektrotechniek, Wiskunde en Informatica EWI
16 6. Bepaal voor de functie f.x/ D 2 sin x C cos x het Taylorpolynoom van de graad 2 rond x D 2. 6/29 Elektrotechniek, Wiskunde en Informatica EWI
17 We hebben: f./.x/ D f.2/.x/ D 2 cos x C sin x.2 sin x C cos x/ 2 2 sin x C cos x 2.2 cos x sin x/2 C.2 sin x C cos x/ 2.2 sin x C cos x/ 3 en dus: f. 2 / D 2 f./. 2 / D 4 f.2/. 2 / D 3 4 en dus wordt het Taylorpolynoom gegeven door: f. 2 /Cf./. 2 / Š.x.2/ 2 /Cf. 2 /.x 2Š 2 /2 D 2 C 4.x 2 /C 3 8.x 2 /2 : 7/29 Elektrotechniek, Wiskunde en Informatica EWI
18 7. Bereken Z 0. C x/ ln. C x/ x dx 8/29 Elektrotechniek, Wiskunde en Informatica EWI
19 Met de substitutie y D ln. C x/ vinden we: en dus Z. C x/ ln. C x/ dx D dy D C x dx Z y dy D ln y D lnœln. C x/ 9/29 Elektrotechniek, Wiskunde en Informatica EWI
20 We vinden: Z 0. C x/ ln. C x/ x dx D lim s#0 D lim s#0 ŒlnŒln. C x/ lnœln 2 D lnœln 2 C lim s#0 D lnœln 2 C ln ln x s lnœln. C s/ C ln s s ln ln. C s/ s lim s#0 ln. C s/ D lnœln 2 C ln D lnœln 2 waarbij we in de vierde gelijkheid gebruik hebben gemaakt van de continuïteit van de logaritme. 20/29 Elektrotechniek, Wiskunde en Informatica EWI
21 8. (a) Bepaal de algemene oplossing van de lineaire differentiaalvergelijking: Ux 2 Tx C 2x D 0 (b) Bepaal de algemene oplossing van de volgende differentiaalvergelijking: Ux 2 Tx C 2x D t 2 2/29 Elektrotechniek, Wiskunde en Informatica EWI
22 We proberen een oplossing van de vorm e rt. We vinden:.r 2 2r C 2/e rt D 0 De bijbehorende karakteristieke vergelijking is dus: r 2 2r C 2 D 0 We vinden r D C i of r D i. We hebben nu twee complexe nulpunten en de theorie vertelt ons nu dat twee onafhankelijke oplossingen gegeven worden door e t sin t en e t cos t en de algemene oplossing wordt dan gegeven door: e t sin t C ˇe t cos t met en ˇ willekeurige constanten. 22/29 Elektrotechniek, Wiskunde en Informatica EWI
23 We proberen een particuliere oplossing van de vorm Invullen levert op: We krijgen: at 2 C bt C c 2a 2.2at C b/ C 2.at 2 C bt C c/ D t 2 2a D 4a C 2b D 0 2a 2b C 2c D 0 We vinden dus a D 2, b D en c D 2. De particuliere oplossing die we vinden is dus gelijk aan: 2.t2 C 2t C / D 2.t C /2 23/29 Elektrotechniek, Wiskunde en Informatica EWI
24 Gecombineerd met het antwoord van a. ( de algemene oplossing van de homogene vergelijking) vinden we: e t sin t C ˇe t cos t C 2.t C /2 24/29 Elektrotechniek, Wiskunde en Informatica EWI
25 9. Bepaal de oplossing van de differentiaalvergelijking: Tx D 2e t. t/ p C x met x.0/ D 0 voor t > 0. 25/29 Elektrotechniek, Wiskunde en Informatica EWI
26 We hebben en dus: Z dx dt D 2e t. Z 2 p dx D Cx t/ p C x. t/e t dt We vinden met behulp van partiële integratie: Z Z. t/e t dt D.t /e t e t dt D te t C C en Z 2 p Cx dx D p C x C C 2 De oplossing wordt dus bepaald door: p C x D te t C C () en dus x D te t C C 2 : 26/29 Elektrotechniek, Wiskunde en Informatica EWI
27 Uit de laatste vergelijking met x.0/ D 0 vinden we C D of C D. Echter C D klopt niet als we het vergelijken met (). Dus we vinden als oplossing: x.t/ D te t C 2 D t 2 e 2t C 2te t 27/29 Elektrotechniek, Wiskunde en Informatica EWI
28 Ga na of voor de functie f W Œ0; /!.0; gedefinieerd door: f.x/ D. C x/ 3 de inverse functie bestaat. 28/29 Elektrotechniek, Wiskunde en Informatica EWI
29 We kijken naar de afgeleide van f en zien dat: f 0.x/ D 3. C x/ 4 < 0 Het is dus een dalende functie op het hele domein en dus zeker een injectieve functie. Bovendien geldt: f.0/ D ; lim f.x/ D 0 x! en dus daalt de functie van naar 0. Omdat de functie continu is worden, volgens de middelwaardestelling, alle waarden in het interval.0; aangenomen. Het randpunt 0 wordt natuurlijk niet aangenomen omdat f.x/ nooit gelijk is aan 0. Hieruit volgt dat de functie surjectief is. Omdat de functie surjectief en injectief is bestaat de inverse functie. 29/29 Elektrotechniek, Wiskunde en Informatica EWI
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (15126) op dinsdag 4 januari 211, 8.45 11.45 uur. De uitwerkingen van de opgaven
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op maandag 4 januari 2, 8.45.45 uur. De uitwerkingen van de opgaven dienen
Functies van één veranderlijke
Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/
Functies van één veranderlijke
Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx
Functies van één veranderlijke
Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein
Functies van één veranderlijke
Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel
TECHNISCHE UNIVERSITEIT EINDHOVEN
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven
Functies van één veranderlijke 191512600
Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /40 Elektrotechniek, Wiskunde en Informatica EWI Partieel Breuksplitsen a0 x m C a x m C C a m x C a m
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op
3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.
Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.
Signalen en Transformaties
Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: [email protected] 1/42 Elektrotechniek, Wiskunde en Informatica EWI Laplace transformatie éénzijdige Laplace-transformatie:
Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013
Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes
== Tentamen Analyse 1 == Maandag 12 januari 2009, u
== Tentamen Analyse == Maandag januari 009, 400-700u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille of O van Gaans) en je studierichting Elk antwoord dient gemotiveerd te
Signalen en Transformaties
Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: [email protected] 1/29 Elektrotechniek, Wiskunde en Informatica EWI Complexe getallen z D a C bi We definiëren de complex
Inleiding Wiskundige Systeemtheorie
Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: [email protected] 1/27 Elektrotechniek, Wiskunde en Informatica EWI Tx D Ax; x.t/ 2 R 2 x D 0 is een evenwichtspunt;
Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:
Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)
1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.
Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en
OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0.
OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE (COLLEGE NAJAAR 6).. Bepaal alle oplossingen van de vergelijking (z + i) 4 = 6 in het complee vlak. a. Schrijf het getal i in poolcoördinaten. b. Bereken de rechthoekige
Tussentoets Analyse 1
Tussentoets Analyse Maandag 0 oktober 008, 0.00 -.00u Schrijf op ieder vel je naam en studentnummer, de naam van de docent S. Hille, O. van Gaans en je studierichting. Geef niet alleen antwoorden, leg
Inhoud college 5 Basiswiskunde Taylorpolynomen
Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt
TENTAMEN ANALYSE 1. dinsdag 3 april 2007,
TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan
WI1708TH Analyse 2. College 5 24 november Challenge the future
WI1708TH Analyse 2 College 5 24 november 2014 1 Programma Vandaag 2 e orde lineaire differentiaal vergelijking (17.1) 2 1 e orde differentiaal vergelijking Definitie Een 1 e orde differentiaal vergelijking
Inleiding Wiskundige Systeemtheorie
Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: [email protected] 1/32 Elektrotechniek, Wiskunde en Informatica EWI Definitie Een ingang-uitgang systeem H heet een
== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u
== Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke
Functies van één veranderlijke
Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/40 Elektrotechniek, Wiskunde en Informatica EWI Functies van één veranderlijke Als je alleen deelneemt
Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen
Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles
1 WAAM - Differentiaalvergelijkingen
1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie
Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014
Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes
Tentamen Functies en Reeksen
Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy
Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.
Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag
Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012
Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3
Wiskunde met (bedrijfs)economische toepassingen
FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste
== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u
== en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de
Inverse functies en limieten
Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x
2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling
TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk
Inleiding Wiskundige Systeemtheorie 156056
Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: [email protected] 1/28 Elektrotechniek, Wiskunde en Informatica EWI Evenwichtspunt.x 0 ; y 0 ; u 0 / heet een evenwichtspunt
Wiskunde: Voortgezette Analyse
de Bach. IR Wet.: Architectuur Academiejaar 0-04 ste zittijd, januari 04 Wiskunde: Voortgezette Analyse. Gegeven is de reeks n x (x + ) n+ Toon aan dat de reeks puntsgewijs convergeert over R. Toon aan
Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,
Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd
Wiskundige Technieken
1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe
TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN
TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D020. Datum: Vrijdag 26 maart 2004. Tijd: 14.00 17.00 uur. Plaats: MA 1.41 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf
college 2: partiële integratie
39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:
Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur
Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef
Hoofdstuk 1: Inleiding
Hoofdstuk 1: Inleiding 1.1. Richtingsvelden. Zie Stewart, 9.2. 1.2. Oplossingen van enkele differentiaalvergelijkingen. Zelf doorlezen. 1.3. Classificatie van differentiaalvergelijkingen. Differentiaalvergelijkingen
OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0
Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,
Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme
Wiskunde voor kunstmatige intelligentie, 006 Les Speciale functies We ebben in de vorige les een aantal elementaire functies bekeken en iervoor gezien oe we deze functies kunnen afleiden. In wezen waren
Tentamenopgaven over hfdst. 1 t/m 4
Ttamopgav over hfdst. 1 t/m 4 1. donderdag 31 oktober 1996 Bepaal de oplossing van het beginwaardeprobleem y + 4y = 4 cos 2x, y(0) = 1, y (0) = 0. 2. donderdag 31 oktober 1996 Bepaal de algeme oplossing
K.0 Voorkennis. Herhaling rekenregels voor differentiëren:
K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )
Wiskundige Technieken
1ste Bachelor Ingenieurswetenschappen 1ste Bachelor Fysica en Sterrenkunde Academiejaar 014-015 1ste semester 1 oktober 014 Wiskundige Technieken 1. Beschouw een scalaire functie f : R R en een vectorveld
Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014
Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes
Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014
Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes
Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013
Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft
Inleiding Wiskundige Systeemtheorie
Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: [email protected] 1/28 Elektrotechniek, Wiskunde en Informatica EWI x.k C 1/ D Ax.k/ C Bu.k/; y.k/ D Cx.k/ C Du.k/ We
Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 6 november 2015; uur
Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 6 november 2015; 9.00-12.00 uur Naam: (Leids) studentnummer: Een rekenmachine en het formuleblad bij deze cursus mogen gebruikt worden. Laat duidelijk
Lineaire dv van orde 2 met constante coefficienten
Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a
Examenvragen Hogere Wiskunde I
1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies
Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door
Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal
Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,
Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.
Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of
Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie
Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x
Calculus, 4//4. Gegeven de reële functie ft) met als voorschrift t arcsin x ft) = dx x a) Geef het domein van de functie ft). Op dit domein, bespreek waar de functie stijgt, daalt en bepaal de lokale extrema.
4051CALC1Y Calculus 1
4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 [email protected] Slides op http://homepage.tudelft.nl/v9r7r/
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen
Aanvullingen van de Wiskunde
3de Bachelor EIT - de Bachelor Fysica Academiejaar 014-015 1ste semester 7 januari 015 Aanvullingen van de Wiskunde 1. Gegeven is een lineaire partiële differentiaalvergelijking van orde 1: a 1 (x 1,,
Differentiaalvergelijkingen Technische Universiteit Delft
Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek WbMT2048 Roelof Koekoek (TU Delft) Differentiaalvergelijkingen WbMT2048 1 / 1 Het vinden van een particuliere oplossing Voor een
Calculus I, 23/11/2015
Calculus I, /11/015 1. Beschouw de functie met a, b R 0. f = a + b + lne a Benoem het domein van de functie f. b Bepaal a en b zodat de rechte y = 1 een schuine asymptoot is voor f. c Voor a = en b = 1,
dt dy dt b. Teken het lijnelementenveld voor de roosterpunten met 0 t 3 en 0 y 2.
Aantekening VWO 6 Wis D Hfst 5 : Continue Dynamische Modellen Les Dynamische modellen opstellen Paragraaf overslaan. Les 3 Differentiaalvergelijking VB. Gegeven is de differentiaalvergelijking t + y +
Oefenexamen Wiskunde Semester
Oefenexamen Wiskunde Semester 1 2017-2018 De cursusdienst van de faculteit Toegepaste Economische Wetenschappen aan de Universiteit Antwerpen. Op het Weduc forum vind je een groot aanbod van samenvattingen,
CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen
0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b
V.4 Eigenschappen van continue functies
V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt
Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010
ste Bachelor Ingenieurswetenschappen Academiejaar 9- ste semester januari Analyse I. Formuleer en bewijs de formule van Leibniz voor de n-de afgeleide van het product van twee functies f en g.. Onderstel
n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1
Radboud Universiteit Nijmegen Tentamen Calculus 2 NWI-NP004B 6 april 205, 8.00 2.00 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten
K.1 De substitutiemethode [1]
K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met
Samenvatting Wiskunde B
Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen
Eerste orde partiële differentiaalvergelijkingen
Eerste orde partiële differentiaalvergelijkingen Vakgroep Differentiaalvergelijkingen 1995, 2001, 2002 1 Eerste orde golf-vergelijking De vergelijking au x + u t = 0, u = u(x, t), a ɛ IR (1.1) beschrijft
Signalen en Transformaties
Signalen en Transformaties 200009 Docent : Anton Stoorvogel E-mail: [email protected] /48 Elektrotechniek, Wiskunde en Informatica EWI Convolutie.f g/.t/ D Z f./g.t / d Goed gedefinieerd als f.t/
Naam: Studierichting: Naam assistent:
Naam: Tussentijdse Toets Wiskunde I ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, Master Chemie donderdag 4 november
begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie
begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden
Noordhoff Uitgevers bv
5 bladzijde 9 ab f g h i j functie nr 5 Domein [ 0, 0, Bereik [ 0, [ 0, 0, c D k B k, 0 0, d Spiegelen in de -as geeft het tegengestelde bereik, dus, 0]. e u ( ) en yu ( ) u f D q, 0 0, ; B q 0, a [, b
1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.
Tentamen-wiskunde?. De basiswiskunde. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + ) =. Oplossing : ln(x + 2) = + ln(x + ) x + 2 = ln + x + 3 = ln dus x =
