college 2: partiële integratie
|
|
|
- Martina van der Horst
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel: (f(x) g(x)) = f (x) g(x) + f(x) g (x). Uit de productregel volgt namelijk direct f(x) g (x) = (f(x) g(x)) f (x) g(x), en door links en rechts te integreren de regel voor partiële integratie: f(x) g (x) dx = f(x) g(x) f (x) g(x) dx.
2 40 partiële integratie college 2 De regel f(x) g (x) dx = f(x) g(x) f (x) g(x) dx kunnen we ook zo formuleren: f(x) dg(x) = f(x) g(x) g(x) df(x), of F (x) g(x) dx = F (x) G(x) G(x) f(x) dx, of zo: F (x) dg(x) = F (x) G(x) G(x) df (x).
3 41 partiële integratie college 2 f(x) g (x) dx = f(x) g(x) f (x) g(x) dx Het toepassen van deze regel komt meestal neer op het herkennen van een integrand als het product van een functie f (met een eenvoudige afgeleide f ) en de afgeleide g (van een functie g).
4 partiële integratie college 2 f(x) g (x) dx = f(x) g(x) f (x) g(x) dx Opgave Bereken x n e x dx, voor een natuurlijk getal n. 42
5 43 partiële integratie college 2 f(x) g (x) dx = f(x) g(x) f (x) g(x) dx Oplossing x n e x dx = x n (e x ) dx = x n e x e x (x n ) dx = x n e x n x n 1 e x dx. Dit heeft het probleem teruggebracht tot een eenvoudiger geval.
6 44 wanneer partiële integratie? college 2 Wanneer helpt partiële integratie voor het berekenen van h(x) dx? Probeer h(x) te herkennen als product h(x) = F (x) g(x) van functies met F (x) = f(x) en g(x) = G (x) zodanig dat: f(x) eenvoudiger is dan F (x), en G(x) van hetzelfde type is als g(x); want dan is h(x) = F (x) g(x) dx = F (x) G(x) G(x) f(x) dx met rechts een eenvoudiger integraal dan links.
7 45 partiële integratie (voorbeeld) college 2 Opgave Bereken x 2 e 3x dx. Oplossing x 2 e 3x dx = 1 3 x 2 de 3x = 1 3 x2 e 3x 1 3 = 1 3 x2 e 3x 2 3 e 3x dx 2 x e 3x dx Dit heeft het probleem teruggebracht tot een eenvoudiger geval.
8 46 partiële integratie (voorbeeld vervolg) college 2 Het eenvoudigere geval gaat net zo: x e 3x dx = 1 x de 3x 3 = 1 3 x e3x 1 3 e 3x dx = 1 3 x e3x 1 9 e3x.
9 47 partiële integratie (voorbeeld slot) college 2 Al met al: x 2 e 3x dx = 1 3 x2 e 3x 2 3 x e 3x dx en x e 3x dx = 1 3 x e3x 1 9 e3x, zodat x 2 e 3x dx = 1 3 x2 e 3x 2 9 x e3x e3x.
10 48 partiële integratie (nog een voorbeeld) college 2 Opgave Bereken x sin x dx. Oplossing x sin x dx = x d cos x = x cos x + 1 cos x dx = x cos x + sin x.
11 49 partiële integratie (typisch voorbeeld) college 2 Opgave Bereken e x sin x dx. Oplossing e x sin x dx = sin x de x = e x sin x = e x sin x e x d sin x e x cos x dx
12 50 partiële integratie (typisch voorbeeld) college 2 Dit heeft het probleem e x sin x dx teruggebracht tot een vergelijkbaar geval: e x cos x dx en e x cos x dx = cos x de x = e x cos x + e x sin x dx, maar met de rechtse integraal begonnen we! We krijgen e x sin x dx = e x sin x (e x cos x + e x sin x dx), oftewel 2 e x sin x dx = e x sin x e x cos x.
13 51 een nuttige toepassing college 2 Als f(x) = y een inverse g(y) = x heeft, dan kun je f bepalen als je g kunt bepalen, want f(x) dx = x f(x) G(f(x)), waar G de primitieve van g is en g de inverse van f.
14 52 een nuttige toepassing (vervolg) college 2 f(x) dx = x f(x) G(f(x)) Immers: f(x) dx = f(g(y)) dg(y) = y dg(y) = y g(y) g(y) dy = f(x) x G(f(x)).
15 een nuttige toepassing (voorbeeld) college 2 f(x) dx = x f(x) G(f(x)) Opgave Bereken cos 1 x dx Oplossing Neem f(x) = cos 1 x, dan is g(y) = f 1 (y) = cos y, en dus G(y) = sin y. 53
16 54 een nuttige toepassing (voorbeeld vervolg) college 2 f(x) dx = x f(x) G(f(x)) Bereken cos 1 x dx Met f = cos 1 x, en g = cos y, dus G = sin y: cos 1 x dx = x cos 1 x G(cos 1 (x)) omdat sin = 1 cos 2. = x cos 1 x sin(cos 1 (x)) = x cos 1 x 1 x 2,
17 55 een nuttige toepassing (voorbeeld 2) college 2 f(x) dx = x f(x) G(f(x)) Opgave Bereken 3 x + 2 dx Oplossing Neem f(x) = y = 3 x + 2, dan is y 3 = x + 2, en dus x = (y 3 2) 2 = g(y), oftewel g(y) = y 6 4y Dan is 3 x 1 x + 2 dx = x y ( 7 y7 y 4 + 4y), met y =
18 56 partiële integratie (moeilijker voorbeeld) college 2 Terug naar algemene voorbeelden van partiële integratie. Opgave Bereken x sin 1 x dx. Oplossing Probeer hier te gebruiken dat (sin 1 x) = 1 1 x 2, en dat de functie rechts eenvoudiger is dan sin 1 ; terwijl de functies in x = ( 1 2 x2 ), links en rechts van hetzelfde type zijn.
19 57 partiële integratie (moeilijker voorbeeld vervolg) college 2 Dus x sin 1 x dx = 1 2 sin 1 x dx 2 = 1 2 x2 sin 1 x 1 2 x 2 1 x 2 dx. In de integraal rechts proberen we de substitutie x = sin t. Dan is 1 x2 = cos t en dx = d sin t = cos t dt: Maar x 2 1 x 2 dx = sin 2 t cos t cos t dt = sin 2 t dt. sin 2 t dt = ( cos(2t)) dt = 1 2 t 1 4 sin(2t), zodat x 2 1 x 2 dx = 1 2 sin 1 x 1 4 sin(2 sin 1 x).
20 58 partiële integratie (moeilijker voorbeeld vervolg) college 2 Tenslotte is dus sin(2u) = 2 sin u cos u, en cos v = 1 sin 2 v, sin(2 sin 1 x) = 2 sin(sin 1 x) cos(sin 1 x) = 2x 1 x 2. De gevraagde integraal is x sin 1 x dx = 1 2 x2 sin 1 x 1 4 sin 1 x x 1 x 2.
21 59 hyperbolische functies college 2 Definitie hyperbolische functies cosh t = et + e t 2 sinh t = et e t. 2 Deze lijken in eigenschappen sterk op de goniometrische functies cos t = eit + e it 2 sin t = eit e it. 2 (omdat e it = cos t + i sin t en e it = cos t i sin t).
22 60 eigenschap hyperbolische functies college 2 Zoals cos 2 t + sin 2 t = 1 hebben we cosh 2 t sinh 2 t = 1, omdat (e t + e t ) 2 (e t e t ) 2 = 4e t e t = 4. Meetkundig: de paren (cos t, sin t) liggen op de cirkel x 2 + y 2 = 1 in het x, y-vlak, terwijl de paren (cosh t, sinh t) op de hyperbool x 2 y 2 = 1 liggen.
23 61 verdere eigenschappen hyperbolische functies college 2 Zoals (sin t) = cos t (cos t) = sin t geldt (sinh t) = cosh t (cosh t) = sinh t. En met tanh t = sinh t cosh t krijgen we (tanh t) = 1 cosh 2 t.
24 62 nog meer eigenschappen hyperbolische functies college 2 Ook volgen direct uit de eigenschappen van de exponentiële functie dat Daaruit volgt weer en dan sinh(u + v) = sinh u cosh v + sinh v cosh u, cosh(u + v) = cosh u cosh v + sinh u sinh v. sinh(2t) = 2 sinh t cosh t cosh(2t) = cosh 2 t + sinh 2 t, cosh 2 t = 1 (cosh(2t) + 1) 2 sinh 2 t = 1 (cosh(2t) 1). 2
25 63 toepassing hyperbolische functies college 2 Bij integralen waarin 1 + x 2 voorkomt kunnen we nu nuttig gebruik maken van de substitutie x = sinh t; dan wordt 1 + x 2 = cosh t en dx = d sinh t = cosh t. Opgave Bereken x 2 dx.
26 64 toepassing hyperbolische functies college 2 Bereken x 2 dx. Met x = sinh t: 1 dx = 1 + x 2 1 cosh t cosh t dt = t = sinh 1 (x). Noem sinh 1 (x) = y, dan x = sinh y, en uit x = ey e y 2 volgt dat 2e y x + (e y ) 2 1 = 0, dus e y = 2x ± 4x = x ± x
27 65 We moeten hier het + teken hebben omdat e y > 0. Dus y = sinh 1 x = log(x + x 2 + 1), en we vinden 1 dx = 1 + x 2 sinh 1 x = log(x + x 2 + 1) + C.
CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen
0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b
2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling
TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk
TENTAMEN ANALYSE 1. dinsdag 3 april 2007,
TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan
2 Kromming van een geparametriseerde kromme in het vlak
Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter
Integratietechnieken: substitutie en partiële integratie
Integratietechnieken: substitutie en partiële integratie Inleiding In dit pakket wordt zeer kort de definitie van onbepaalde integralen herhaald evenals het verband tussen bepaalde en onbepaalde integralen.
Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009
Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early Transcendental Functions Robert T. Smith,
Opgaven Functies en Reeksen. E.P. van den Ban
Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele
Functies van één veranderlijke
Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde
Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012
Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early T ranscendental F unctions, Robert T. Smith,
Appendix: Zwaartepunten
Appendi: Zwaartepunten Enkele opmerkingen vooraf: Maak altijd eerst een schets van het betreffende gebied (en dat hoeft heus niet zo precies te zijn als de grafieken die ik hier door de computer kan laten
1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix
e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari 9. Opgave: Bereken dt ( q) als p = (, ), q = (, ) en p u+v x = e t dt T : (u, v) (x, y) : u y = u sin(vt) dt Oplossing:
== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u
== en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de
Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012
Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3
Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur
Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef
Tentamen Wiskundige Technieken 1 Ma 6 nov 2017 Uitwerkingen
Tentamen Wiskundige Technieken Ma 6 nov 207 Uitwerkingen Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke
K.0 Voorkennis. Herhaling rekenregels voor differentiëren:
K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )
Functies van één veranderlijke
Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel
college 6: limieten en l Hôpital
126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In
Functies van één veranderlijke
Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/
K.1 De substitutiemethode [1]
K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven
Tentamen Functies en Reeksen
Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy
Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of
Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie
Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)!
Tentamen Analyse II. Najaar 6 (.1.7) Toelicting: Je mag Zoric deel I en II gebruiken, maar geen ander ulpmiddelen (zoals andere boeken, aantekeningen, rekenmacine etc.)! Als je bekende stellingen gebruikt
WI1708TH Analyse 3. College 5 23 februari Challenge the future
WI1708TH Analyse 3 College 5 23 februari 2015 1 Programma Vandaag Richtingsafgeleide (14.6) Gradiënt (14.6) Maximalisatie richtingsafgeleide (14.6) Raakvlak voor niveauoppervlakken (14.6) 2 Richtingsafgeleide
Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm
college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide
Paragraaf 7.1 : Eenheidscirkel en radiaal
Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)
Differentiaalvergelijkingen Technische Universiteit Delft
Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek WbMT248 Roelof Koekoek (TU Delft) Differentiaalvergelijkingen WbMT248 1 / 1 Partiële integratie Uit de productregel volgt: (f (x)g(x))
4051CALC1Y Calculus 1
4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 [email protected] Slides op http://homepage.tudelft.nl/v9r7r/
Mathematical Modelling
1 / 94 Mathematical Modelling Ruud van Damme Creation date: 15-09-09 2 / 94 Overzicht 1 Herhaling 2 Deels oud, deels nieuw integreren 3 Lijnintegralen 3 / 94 Waarschuwing vooraf! Dit college heeft een
Eindexamen wiskunde B 1-2 vwo I
Eindexamen wiskunde B - vwo - I Beoordelingsmodel Oppervlakte en inhoud bij f(x) = e x maximumscore e Lijn AB heeft richtingscoëfficiënt = (e ) Voor lijn AB geldt de formule y = (e ) x + De oppervlakte
dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π
Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)
Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.
Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag
(10 pnt) Bepaal alle punten waar deze functie een relatief extreem of een zadelpunt heeft. Opgave 3. Zij D het gebied gegeven door
Calculus 3. Tentamen Calculus 3, 8 April 11 Opgave 1. Zij f(x, y, z) = xy z 3xz en g(x, y, z) = x 3 +z sin(y) y sin(z). i) (5 pnt) Laat zien dat p = (, 1, 1) op de oppervlakken {f(x, y, z)} = en {g(x,
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven
Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x
Calculus, 4//4. Gegeven de reële functie ft) met als voorschrift t arcsin x ft) = dx x a) Geef het domein van de functie ft). Op dit domein, bespreek waar de functie stijgt, daalt en bepaal de lokale extrema.
3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.
Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij
Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek
Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Dit document bevat niet alleen voorkennis in de zin dat moet u al gehad hebben en kennen, maar ook in de
Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006
Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw
FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10
FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening
In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies.
03 college 5: meer technieken In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. Opmerking over de notatie. Net als in het
Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek
Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek Uitwerkingen worden beschikbaar gesteld op de dinsdagavond voorafgaande aan het volgende college
Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:
Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van
1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.
Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en
15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))
5.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( x) a f '( x) 0 n f ( x) ax f '( x) nax n f ( x) c g( x) f '( x) c g'( x) f ( x) g( x) h( x) f '( x) g'( x) h'( x) p( x) f ( x) g( x) p'( x)
Vectoranalyse voor TG
college 1 collegejaar college build slides Vandaag : : : : 14-15 1 25 september 214 28 1 2 3 4 otatie Green De wet van Faraday 1 VA vandaag 4.5.6 ection 16.7 telling Vergeleijking (4.62) Theorem 6 Het
stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden).
Samenvatting door Sterre 1437 woorden 5 mei 2018 7.8 3 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Vocabulair Algebraïsch stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie Utrecht Les 2: en differentiaalrekening Dr Harm van der Lek vdlek@vdleknl Natuurkunde hobbyist Programma 211 1 Goniometrische functies 2 Som formules 3 Cosinus regel
Opgaven voor Calculus - Oplossingen
Wiskunde voor kunstmatie intellientie Opaven voor Calculus - Opave Bepaal de afeleiden van de volende functies: (i) f() := sin( + 2 ), (ii) f() := sin() + sin( 2 ), (iii) f() := sin(cos()), ( ) cos() (iv)
Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30
Hertentamen WIN12 Wiskundige Technieken 2 Di 17 april 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke
11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20
.0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:
1 Oppervlakteberekeningen
Oppervlakteberekeningen. Oppervlakte ellips of een deel ervan.. Zonder gebruik te maken van parametervergelijkingen We berekenen de oppervlakte in het eerste kwadrant, achteraf vermenigvuldigen we het
WI1708TH Analyse 3. College 2 12 februari Challenge the future
WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van limiet dat lim y 0 y = 0. (b) Bewijs lim y 0 y 3 = 0 uit de definitie van limiet. (c)
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie HOVO Utrecht Les 2: Matrixen en differentiaalrekening Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 2.1.1 Goniometrie Matrixen Integraal rekening
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie HOVO Utrecht Les 3: Integraalrekening en lineaire vormen Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 3.1.1 Goniometrie Matrixen Integraal rekening
Inleiding Analyse. Opgaven. E.P. van den Ban. c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien
Inleiding Analyse Opgaven E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien 0 1 1 Limieten en continuïteit Opgave 1.1 (a) Bewijs direct uit de definitie van limiet dat
Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde
Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden
begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie
begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden
Aanvullingen van de Wiskunde
3de Bachelor EIT - de Bachelor Fysica Academiejaar 014-015 1ste semester 7 januari 015 Aanvullingen van de Wiskunde 1. Gegeven is een lineaire partiële differentiaalvergelijking van orde 1: a 1 (x 1,,
Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.
Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op maandag 4 januari 2, 8.45.45 uur. De uitwerkingen van de opgaven dienen
WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE
WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS deel 1 LOTHAR PAPULA 2e druk > ACADEMIC SERVICE inhoud 1 Algemene grondbegrippen 1 1.1 Enkele basisbegrippen in de verzamelingenleer 1 1.1.1 Definitieenbeschrijvingvaneenverzameling
Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.
De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.
Overzicht Fourier-theorie
B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van
De Laplace-transformatie
De Laplace-transformatie De Laplace-transformatie is een instrument dat functies omzet in andere functies. Deze omzetting, de transformatie, heeft nette wiskundige eigenschappen. Zowel in de kansrekening
Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme
Wiskunde voor kunstmatige intelligentie, 006 Les Speciale functies We ebben in de vorige les een aantal elementaire functies bekeken en iervoor gezien oe we deze functies kunnen afleiden. In wezen waren
voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen
Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt
Wiskundige Technieken
1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe
Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013
Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes
Differentiaalrekening. Elementaire techniek van het differentieren.
Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze
Transformaties van grafieken HAVO wiskunde B deel 1
Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen
begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie
begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie domein subdomein in CE moet in SE mag in SE A Vaardigheden A1: Informatievaardigheden A2:
Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1
Inhoud Aan de student V Studiewijzer Aan de docent VII IX Over de auteurs XI Hoofdstuk 0 Basiswiskunde 1 Leereenheid 0.1 Elementaire algebra 3 0.1.1 Verzameling van getallen en het symbool 4 0.1.2 Merkwaardige
Huiswerk Hints&Tips Analyse 2, College 26
Huiswerk Hints&Tips Analyse, College 6 [K..]. Tip : Toon aan dat er punten (x, y ) en (x, y ) en scalars m, M R bestaan zo dat m = f(x, y ) f(x, y) f(x, y ) = M. Laat dan zien dat m(b a)(d c) = m f M =
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een
Over de functies arcsin, arccos en arctan
Over de functies arcsin, arccos en arctan Booglengte figuur figuur De grafiek van een functie f tussen twee punten P (met a) en Q (met b) kan worden opgedeeld in stukjes die kunnen worden opgevat als lijnstukken,
Paragraaf 11.0 : Voorkennis
Hoofdstuk 11 Verbanden en functies (H5 Wis B) Pagina 1 van 15 Paragraaf 11.0 : Voorkennis Les 1 : Stelsels, formules en afgeleide Los op. 3x + 5y = 7 a. { 2x + y = 0 2x + 5y = 38 b. { x = y + 5 a. 3x +
Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 6 november 2015; uur
Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 6 november 2015; 9.00-12.00 uur Naam: (Leids) studentnummer: Een rekenmachine en het formuleblad bij deze cursus mogen gebruikt worden. Laat duidelijk
TRILLINGEN EN GOLVEN HANDOUT FOURIER
TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES
Vergelijkingen van cirkels en lijnen
Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen
Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014
Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes
Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012
Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Inleiding In de cursus Calculus 2 voor Bouwkunde (2DB90) wordt evenals in de cursus Calculus 1 gebruikt het boek: Calculus, Early Transcendental
Voorkennis wiskunde voor Biologie, Chemie, Geografie
Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt
De stelling van Rolle. De middelwaardestelling
De stelling vn Rolle Als f : [, b] R, continu is op [, b] en differentieerbr op (, b) en f() = f(b) dn is er een c (, b) zodt f (c) = 0. De middelwrdestelling Als f : [, b] R, continu is op [, b] en differentieerbr
12.0 Voorkennis. Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0.
12.0 Voorkennis Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. Dit is in de punten (1,0) en (-1,0) (1,0) heeft draaiingshoek 0 (-1,0) heeft
integreren is het omgekeerde van differentiëren
Integraalrekening Als we een functie f(x) differentiëren is het resultaat de eerste afgeleide f (x). Dezelfde functie f(x) kunnen we ook integreren met als resultaat de zogenaamde primitieve functie F(x).
10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:
10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld
Korte handleiding Maple bij de cursus Meetkunde voor B
Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn
