Huiswerk Hints&Tips Analyse 2, College 26
|
|
|
- Jasper Brander
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Huiswerk Hints&Tips Analyse, College 6 [K..]. Tip : Toon aan dat er punten (x, y ) en (x, y ) en scalars m, M R bestaan zo dat m = f(x, y ) f(x, y) f(x, y ) = M. Laat dan zien dat m(b a)(d c) = m f M = M(b a)(d c) en daarmee R R R dat m f M. Het te vinden punt (x, y ) ligt nu op het lijnstuk tussen (b a)(d c) R (x, y ) and (x, y ). Zie dat in door de functie g(t) = f(x + (x x )t, y + (y y )t) op [, ] te bestuderen. [K..6a]. Alternatief: Twee maal middelwaarde stelling (op grond van Fubini) let op dat je begint met de juist van de twee integralen. Tip: Er geldt voor alle continue partieel differentieerbare functies dat d c y f(x, y) dy = [f(x, y)]d y=c dus dat geldt ook voor functie (x, y) f x (x, y). R f xy = d c f xy (x, y) dy = d c y (f x(x, y)) dy = [f x (x, y)] d y=c = f x(x, d) f x (x, c) [K..7a]. 3. Integreer dit resultaat nu in de x-richting. Geen tip. Tip eigenlijk het antwoord met veel details: Laat ε > willekeurig klein. Gegeven: R = [a, b] [c, d]. an bestaan er partities P van [a, b] en P van [c, d] zo dat P = {a = x < x <... < x n = b} en P = {c = y < y <... < y m = d}, en daarmee een partitie P = P P van R (bestaande uit rechthoekjes R i,j := [x i, x i ] [y j, y j ]) zó dat U(P, f) L(P, f) < ε. Per definitie U(P, f) = i=n,j=m i=,j= M i,j x i y j, L(P, f) = i=n,j=m i=,j= m i,j x i y j met M i,j = sup f(x, y), m i,j = inf f(x, y) (x,y) [x i,x i] [y j,y j] (x,y) [x i,x i] [y j,y j] efinieer verzameling I := {(i, j): i {,..., n} j {,..., m}} en merk op dat elke (i, j) I verwijst naar het uniek rechthoekje R i,j met oppervlakte x i y j >. Merk op dat P zo is gekozen dat U(P, f) L(P, f) = waar door constructie i=n,j=m i=,j= (M i,j m i,j ) x i y j = (i,j) I M i,j m i,j and x i y j > i =,..., n, j =..., m. (M i,j m i,j ) x i y j < ε 6.
2 Stel nu dat we niet sommeren over alle rechthoekjes R i,j met (i, j) I maar een deel daarvan: over (i, j) I I. an geldt ook voor dat deel van de rechthoekjes dat U(P, f) L(P, f) = (M i,j m i,j ) x i y j + (M i,j m i,j ) x i y j < ε }{{}}{{} (i,j) I (i,j) I\I > en daarmee (we laten een positief deel weg) dat U(P, f) L(P, f) = (i,j) I (M i,j m i,j ) x i y j < ε. Stel dat rechthoekjes in I precies R overdekken dan zijn we klaar want dan nemen we de partitie die hoort bij de rechthoekjes uit I. Mocht dat niet lukken (er is geen I zodat het lukt) dan verfijnen we P (door P en/of P te verfijnen): Stel nu dat S = [a, b ] [c, d ] R een rechthoek is die binnen R valt. an kan P worden uitgebreid met punten a, b tot fijnere partitie P van [a, b] en dan kan P worden uitgebreid met punten c, d tot fijnere partitie P van [c, d] dit levert een fijnere partitie P = P P P zodat ook U(P, f) L(P, f) U(P, f) L(P, f) = (M i,j m i,j ) x i y j < ε. (i,j) P 4. Laat nu het juiste deel weg. Tip: Gebruik dat het het begrip Vol alleen gedefinieerd is voor rechthoeksgebieden. aarnaast neem aan dat voor twee elkaar niet overlappende rechthoeken R en R geldt dat Vol(R R ) = Vol(R ) + Vol(R ). () eze aanname is niet noodzakelijk en strikt genomen ook niet correct omdat Vol alleen voor rechthoeken is gedefinieerd (en R R hoeft geen rechthoek te zijn). We maken een partitie die alle rechthoeken in A k en B k A k overdekt en zó dat elke A k en B precies door een eindig aantal rechthoekjes wordt overdekt. In feite zorgen we voor een raster zó dat A k en B elk precies worden overdekt met raster-rechthoekjes R i,j = [x i, x i ] [y j, y j ]: efiniëer a i, b i, c i, d i door A k = [a k, b k ] [c k, d k ], en x, x,..., x n door a = x < x <... < x n = b en {x, x,..., x n } = {a,..., a N, b,..., b N }, en net zo y, y,..., y m door c = y < y <... < y m = d en {y, y,..., y m } = {c,..., c N, d,..., d N }. efinieer weer I = {(i, j): i {,..., n} j {,..., m}}. e verdeling a = x <..., < x n = b definieert partitie P en de verdeling c = y <..., < y m = d definieert partitie P. Samen definieren P = P P een partitie van rechthoekjes R i,j = [x i, x i ] [y j, y j ] zó dat elke A k en B precies de vereniging van een aantal van de rechthoekjes in P is. Stel B wordt overdekt door drie rechthoeken A, A en A 3. Teken deze situatie en teken de hierboven geconstrueerde partitie P = P P. Er gelden nu de volgende interessante eigenschappen: voor iedere A k is er een I k I zodat geldt A k = (i,j) Ik R i,j 6.
3 waaruit volgt dat V ol(a k ) = (i,j) Ik V ol(r i,j ) Omdat B k A k geldt dat er een I B I moet bestaan zó dat B = (i,j) IB R i,j (i,j) I R i,j k A k waar uit volgt dat V ol(b) k V ol(a k). Om in te zien dat alles echt klopt, bepaal voor je voorbeeld met B en A, A en A 3 de deelverzamelingen I, I, I 3 en I B. Toon tenslotte aan dat zonder aanname () ook alle interessante eigenschappen bewezen kunnen worden. 6.3
4 a. b [K..]. 5[K.3.b]. Huiswerk Hints&Tips Analyse, College 7 Tip: it volgt een bewijs gegeven op het college. Zonder verlies van algemeenheid bestuderen we de eenheidscirkel en tonen aan dat die Jordan-inhoud heeft. efinieer de n punten (x k, y k ) = (cos kπ kπ n, sin n ) voor k =,,..., n. Zie in dat de afstand tussen ieder tweetal naast elkaar liggende punten kleiner is dan π n. Voor alle k =,,..., n definieer nu vierkant R k = [a k, b k ] [c k, d k ] met diameter b k a k = d k c k = π n en midpunt (x k, y k ). an ligt het hele stukje cirkelboog tussen (x k, y k ) en (x k, y k ) in de twee vierkanten om deze punten. us de complete cirkelboog wordt overdekt door deze vierkanten. e totale oppervlakte is n ( ) π n = 4π n. Voor het algemene geval: Merk op dat de cirkel met middelpunt (m, m ) en straal r geparametriseerd wordt door (x, y) = (m + r cos φ, m + r sin φ) en dat deze functie continu differentieerbaar is en dus Lipschitz. Tip: Handel net zo als in (a): Het is voldoende te laten zien dat een lijnstuk Jordan-inhoud heeft. Zonder verlies van algemeenheid bestuderen we het lijnstuk van de oorsprong naar (a, b). efinieer de n punten (x k, y k ) = k+ n (a, b) voor k =,,..., n. e afstand tussen ieder tweetal naast elkaar liggende punten is dan n a + b. Voor alle k definieer nu vierkant R k met diameter n a + b en midpunt (x k, y k ). an ligt het hele stukje lijn tussen (x k, y k ) en (x k, y k ) in de twee vierkanten om deze punten. us het complete lijnstuk wordt overdekt door deze vierkanten. e totale oppervlakte is n ( n a + b ) = a +b n. Voor het algemene geval handel als in (a). Tip: Laat a A, en laat r > zodat B(a, r) A. an is het vierkant V om a met diameter r geheel bevat in B(a, r) dus in A, en de oppervlakte van dit vierkant is r >. Het begrip Jordaninhoud is niet gedefinieerd. Wel is gedefinieerd het begrip Jordan-inhoud, namelijk als: voor iedere ε > bestaat er een eindige overdekking met rechthoeksgebieden waarvan de som van de volumes < ε is. Een overdekking van A overdekt ook V, en dus is volgens Opgave Tip: Schrijf φ(x) = (φ (x), φ (x)) en merk op φ, φ continu zijn op I, dus er zijn A, B met φ (x) A, φ (x) B voor alle x I. Pas nu de middelwaardestelling toe voor alle x, y I op... Geen Tip x dy dx = = y dx dy = = 6 3. c. 7.
5 .5..5 π/ x π/ y sin x dy dx = =. x sin x x geen expliciete primitieve van sin x x. dx dy gaat niet werken want we kennen d...5. x y/ e y dy dx is zo niet direct uit te rekenen. e y dx dy = = 4 (e4 )..5 [K.3.]a. 3 4 y+ y / 3 x+6 3 x+6 x dx dy = x dy dx + x+6 x x dy dx = = b. 4 3 x 4 y (x + 3) dy dx = = x 3. y/ (x + 3) dx dy = = 3. c y dx dy = y π. x dy dx = = π.. Maar poolcoordinaten werken het beste: 7.
6 y y dx dy = π r dφ dr = = π. 7.3
De Transformatieformule voor Riemannintegralen
De Transformatieformule voor Riemannintegralen Het bewijs volgt in grote lijnen Wade, An Introduction to Analysis, Ch. 12.4. Als voorbereiding hebben we een lemma nodig dat we integralen goed kunnen benaderen
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3
Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)!
Tentamen Analyse II. Najaar 6 (.1.7) Toelicting: Je mag Zoric deel I en II gebruiken, maar geen ander ulpmiddelen (zoals andere boeken, aantekeningen, rekenmacine etc.)! Als je bekende stellingen gebruikt
Opgaven Functies en Reeksen. E.P. van den Ban
Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele
Vectoranalyse voor TG
college 6 collegejaar : 8-9 college : 6 build : 2 oktober 28 slides : 38 Vandaag Minecraft globe van remi993 2 erhaalde 3 4 intro VA Drievoudige integralen Section 5.5 Definitie Een rechthoekig blok is
Vectoranalyse voor TG
college 1 collegejaar college build slides Vandaag : : : : 14-15 1 25 september 214 28 1 2 3 4 otatie Green De wet van Faraday 1 VA vandaag 4.5.6 ection 16.7 telling Vergeleijking (4.62) Theorem 6 Het
34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN
34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een
(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van limiet dat lim y 0 y = 0. (b) Bewijs lim y 0 y 3 = 0 uit de definitie van limiet. (c)
Tentamen Functies en Reeksen
Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy
Inleiding Analyse. Opgaven. E.P. van den Ban. c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien
Inleiding Analyse Opgaven E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien 0 1 1 Limieten en continuïteit Opgave 1.1 (a) Bewijs direct uit de definitie van limiet dat
Overzicht Fourier-theorie
B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.3, maandag K. P. Hart Faculteit EWI TU Delft Delft, 2 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 34 Outline 1 Conforme afbeeldingen 2 K. P. Hart TW2040:
WI1708TH Analyse 3. College 5 23 februari Challenge the future
WI1708TH Analyse 3 College 5 23 februari 2015 1 Programma Vandaag Richtingsafgeleide (14.6) Gradiënt (14.6) Maximalisatie richtingsafgeleide (14.6) Raakvlak voor niveauoppervlakken (14.6) 2 Richtingsafgeleide
Inleiding Analyse 2009
Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn
Vectoranalyse voor TG
college 11 collegejaar college build slides Vandaag : : : : 17-18 11 23 oktober 2017 35 De sterrennacht Vincent van Gogh, 1889 1 2 3 4 5 Verband met de stelling van n 1 VA intro ection 16.7 Definitie Equation
2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling
TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk
V.4 Eigenschappen van continue functies
V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt
1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.
Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en
Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30
Hertentamen WIN12 Wiskundige Technieken 2 Di 17 april 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke
Examen Complexe Analyse (September 2008)
Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst
Gezamenlijke kansverdeling van twee stochasten
Gezamenlijke kansverdeling van twee stochasten Voorbeeld: V = de windsnelheid H = hoogte van het waterniveau in een rivier/zee De combinatie (V, H) is van belang voor een overstroming en niet zozeer V
college 6: limieten en l Hôpital
126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In
Vectoranalyse voor TG
college 12 collegejaar college build slides Vandaag : : : : 17-18 12 4 september 217 3 ail Training Vessel 263 tad Amsterdam 1 2 3 4 stelling van Gauss stelling van Green Conservatieve vectorvelden 1 VA
V.2 Limieten van functies
V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINHOVEN Faculteit Wiskunde en Informatica. Het gebied is een ringvormig gebied met als rand de twee cirkels met vergelijking x + y 9 respectievelijk x + y 5. Laat A lnx + y dxdy.
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.6, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 2 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 38 Outline 1 Rekenregels 2 K. P. Hart TW2040: Complexe
Tussentoets Analyse 2. Natuur- en sterrenkunde.
Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.
III.2 De ordening op R en ongelijkheden
III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.1, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 21 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 32 Outline 1 K. P. Hart TW2040: Complexe Functietheorie
Complexe functies 2019
Complexe functies 019 Extra opgaves Opgave A Laat zien dat R voorzien van de bewerkingen a + b := (a 1 +b 1,a +b ) a b := (a 1 b 1 a b,a 1 b +a b 1 ) isomorf is met C. Wat is i in deze representatie? Opgave
Vectoranalyse voor TG
college 6 van een vectorveld collegejaar college build slides Vandaag : : : : 14-15 6 22 september 214 51 1 2 3 4 5 Gradiënt van een vectorveld 1 VA vandaag Section 16.2 Hoofdstu 4 Definitie Een vectorveld
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Functietheorie (2Y480) op 23 januari 2002,
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (2Y8) op 23 januari 22, 9.-2. uur De uitwerkingen der opgaven dienen duidelijk geformuleerd en overzichtelijk
15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))
5.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( x) a f '( x) 0 n f ( x) ax f '( x) nax n f ( x) c g( x) f '( x) c g'( x) f ( x) g( x) h( x) f '( x) g'( x) h'( x) p( x) f ( x) g( x) p'( x)
Topologie in R n 10.1
Topologie in R n 10.1 Lengte x = (x 1,..., x n ) = x 2 1 + x2 2 + + x2 n Bol B(x 0, r) = {x : x x 0 < r} x 0 r p 1 p 3 p 1 p 2 S p 1 heet uitwendig punt p 2 heet inwendig punt p 3 heet randpunt p 1 p 3
3 De duale vectorruimte
3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire
3 Opgaven bij Hoofdstuk 3
3 Opgaven bij Hoofdstuk 3 Opgave 3. Voor k beschouwen we de functie f k : x sin(x/k). Toon aan dat f k 0 uniform op [ R, R] voor iedere R > 0. Opgave 3.2 Zij V een verzameling. Een functie f : V C heet
TENTAMEN ANALYSE 1. dinsdag 3 april 2007,
TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan
1 Vlaamse Wiskunde Olympiade : Eerste ronde.
1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord
WI1708TH Analyse 3. College 2 12 februari Challenge the future
WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen
Mathematical Modelling
1 / 94 Mathematical Modelling Ruud van Damme Creation date: 15-09-09 2 / 94 Overzicht 1 Herhaling 2 Deels oud, deels nieuw integreren 3 Lijnintegralen 3 / 94 Waarschuwing vooraf! Dit college heeft een
Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of
Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen
10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden
10.0 Voorkennis 5 1 6 6 cos( ) = -cos( ) = -½ 3 [cos is x-coördinaat] 5 1 3 3 sin( ) = -sin( ) = -½ 3 [sin is y-coördinaat] 1 Voorbeeld 1: Getekend is de lijn k: y = ½x 1. De richtingshoek α van de lijn
1 Vlaamse Wiskunde Olympiade : Tweede Ronde.
Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination
4051CALC1Y Calculus 1
4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 [email protected] Slides op http://homepage.tudelft.nl/v9r7r/
TECHNISCHE UNIVERSITEIT EINDHOVEN
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven
2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen:
0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: e 00
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, 14.00 17.00, Examenzaal Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek
Kegelsneden. Les 1 Gelijke afstand (Deze les sluit aan bij paragraaf 1 van Conflictlijnen van de Wageningse Methode.)
Kegelsneden Les 1 Gelijke afstand (Deze les sluit aan bij paragraaf 1 van Conflictlijnen van de Wageningse Methode.) De verdeling van de Noordzee Het nabuurprincipe: Elk stukje van de zeebodem hoort Bij
Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30)
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 016, 1:30 15:30 (16:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van aantekeningen
II.3 Equivalentierelaties en quotiënten
II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde
Bespreking Examen Analyse 1 (Augustus 2007)
Bespreking Examen Analyse 1 (Augustus 2007) Vooraf: Zoals het stilletjes aan een traditie is geworden, geef ik hier bedenkingen bij het examen van deze septemberzittijd. Ik zorg ervoor dat deze tekst op
Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking
Math D Gauss Wiskunde leerlijn TOM Deelnemende Modules: 14-144/FMHT/14161/14144-1A Oefententamen # Uitwerking Vraagstuk 1. tel de doorsnijding van de oppervlakken x + y + z 4 en z 1. Van bovenaf bekijkt
Eindexamen wiskunde B 1-2 vwo I
Eindexamen wiskunde B - vwo - I Beoordelingsmodel Oppervlakte en inhoud bij f(x) = e x maximumscore e Lijn AB heeft richtingscoëfficiënt = (e ) Voor lijn AB geldt de formule y = (e ) x + De oppervlakte
TW2040: Complexe Functietheorie
week 4.8, maandag Faculteit EWI TU Delft Delft, 6 juni, 2016 1 / 33 Outline 1 Maximum-modulusprincipe Lemma van Schwarz 2 2 / 33 Maximum-modulusprincipe Lemma van Schwarz Maximum-modulusprincipe Stelling
TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN
TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D020. Datum: Vrijdag 26 maart 2004. Tijd: 14.00 17.00 uur. Plaats: MA 1.41 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf
8.1 Rekenen met complexe getallen [1]
8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn
Paragraaf K.1 : Substitutiemethode
Hoofdstuk K Voortgezette Integraalrekening (V5 Wis B) Pagina van 8 Paragraaf K. : Substitutiemethode Stappenplan voor de substitutiemethode : () Neem y = formule (bij kettingregel noem je deze formule
16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i
16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =
I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.
I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk
Oefenzitting 2: Parametrisaties.
Oefenzitting : Parametrisaties. Modeloplossingen Oefening.5:. Beschouw vooreerst de cirkel C in het xz-vlak met straal r en middelpunt (x, y, z) = (R,, ) (zie Figuur ). De parametrisatie van C wordt dan
Tentamen Analyse 4 (wi2602) 17 juni 2011, uur. ) (1 gratis)) Deel 2: opgaven 2b, 4ab, 5, 6 (normering: 2 + (
TU Delft Mekelweg 4 Faculteit EWI, DIAM 68 CD Delft Tentamen Analyse 4 (wi6) 7 juni, 4-7 uur Het tentamen bestaat uit twee delen: Deel : opgaven, a, 3ab, 4c (normering: + + ( + ) + + ( gratis)) Deel :
5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm
5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm x y + xy + (x ν )y = met ν R (1) heet een Bessel (differentiaal)vergelijking. De waarde van ν noemt men ook wel de orde
Kansrekening en Statistiek
Kansrekening en Statistiek College 2 Donderdag 15 September 1 / 42 1 Kansrekening Vandaag: Vragen Eigenschappen van kansen Oneindige discrete uitkomstenruimtes Continue uitkomstenruimtes Continue stochasten
Topologie I - WPO. Prof. Dr. E. Colebunders
Topologie I - WPO Prof. Dr. E. Colebunders Academiejaar 2015-2016 Inhoudsopgave 1 Topologische ruimten 2 2 Metriseerbaarheid en aftelbaarheid 7 3 Convergentie en continuïteit 8 4 Separatie-eigenschappen
Leeswijzer bij het college Functies en Reeksen
Leeswijzer bij het college Functies en Reeksen Erik van den Ban Najaar 2012 Introductie eze leeswijzer bij het dictaat Functies en Reeksen (versie augustus 2011) heeft als doel een gewijzigde opbouw van
college 2: partiële integratie
39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:
Tentamen Analyse 4. Maandag 16 juni 2008, uur
Tentamen Analyse 4 Maandag 16 juni 2008, 14-17 uur Vermeld uw naam (met voornaam en voorletters) en uw studentnummer. Er zijn geen hulpmiddelen toegestaan. Dit tentamen bestaat uit zes opgaven. Vergeet
. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom
8. Fouriertheorie Periodieke functies. Veel verschijnselen en processen hebben een periodiek karakter. Na een zekere tijd, de periode, komt hetzelfde patroon terug. Denk maar aan draaiende of heen en weer
Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006
Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006 Inhoudsopgave 1 Topologische ruimten 2 2 Metriseerbaarheid en aftelbaarheid 7 3 Convergentie en continuïteit 8 4 Separatie-eigenschappen
Aanvulling bij de cursus Calculus 1. Complexe getallen
Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk
Examenvragen Hogere Wiskunde I
1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies
Enkele bedenkingen bij het examen Complexe Analyse
Enkele bedenkingen bij het examen Complexe Analyse De examenvragen vind je op het einde van dit documentje. Eerst een paar algemene opmerkingen. Vele antwoorden zijn slordig opgeschreven wat het lezen
Oefenopgaven Grondslagen van de Wiskunde A
Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat
Uitwerkingen tentamen Wiskunde B 16 januari 2015
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b
Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.
Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag
Tentamen Inleiding Kansrekening 9 juni 2016, 10:00 13:00 Docent: Prof. dr. F. den Hollander
Tentamen Inleiding Kansrekening 9 juni 6, : 3: Docent: Prof. dr. F. den Hollander Bij dit tentamen is het gebruik van boek en aantekeningen niet toegestaan. Er zijn 8 vragen, elk met onderdelen. Elk onderdeel
Bestaat er dan toch een wortel uit 1?
Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn
Ter Leering ende Vermaeck
Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel
6 Complexe getallen. 6.1 Definitie WIS6 1
WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We
4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i
COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche
QuizAnalyseHoofdstuk3 - wv -Brackx
QuizAnalyseHoofdstuk3 - wv -Brackx Als: dan is: Als f discontinu is in x 0 en dan zijn de linker- en rechterlimieten van f(x) in x 0 aan elkaar gelijk maar verschillend van L. Als voor alle x in ]a,b [
1 Introductie. 2 Oppervlakteformules
Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk
Vectoranalyse voor TG
college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid
Uitwerkingen van opgaven in Zebra nr 10
Uitwerkingen van opgaven in Zebra nr 0 In Zebra nummer 0 Fractals, meetkundige figuren in eindeloze herhaling, tweede en derde druk door Igor Hoveijn en Jan Scholtmeijer uitgegeven door Epsilon Uitgaven
