De Transformatieformule voor Riemannintegralen
|
|
|
- Frederik van der Berg
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 De Transformatieformule voor Riemannintegralen Het bewijs volgt in grote lijnen Wade, An Introduction to Analysis, Ch Als voorbereiding hebben we een lemma nodig dat we integralen goed kunnen benaderen door Riemannsommen waaruit rechthoeken zijn weggelaten die slechts gedeeltelijk in het definitiegebied van de integrand liggen. Zij D R d een Jordanverzameling, f : D R Riemann-integreerbaar, een rechthoek met D. We definieren zoals gebruikelijk { f(x) x D, F (x) : 0 x \ D. Lemma 1 Onder de boven beschreven veronderstellingen is er voor elke ε > 0 een partitie R {R 1,... R N } zodanig dat f dx < ε, m i : inf f(x). x R i D R i int D Bewijs: Zij ε > 0 willekeurig. Zij M : sup x D f(x). Omdat D een Jordanverzameling is is er een overdekking Z voor D met rechthoeken Z 1,..., Z M zodanig dat Vol(Z i ) < ε 2M. Z i Z Verder kunnen we zonder verlies van algemeenheid aannemen dat Z i. (Ga na!). Vanwege de Riemann-integreerbaarheid van f is er een partitie Q : {Q 1,..., Q L } (met bijbehorende infima m i ) zodanig dat f dx m i Vol(Q i ) D < ε 2. Q i Q Zij R {R 1,... R N } een verfijning van Q zodanig dat dat voor alle i 1,..., N, j 1,... M geldt R i Z j of int(r i Z j ). (Ga na hoe R geconstrueerd wordt!) Dan is f dx D < ε 2. R i R Verder is R i R R i int D + R i D, 1
2 want m i 0 als R i int( \ D). Dus f dx D R i int D f dx m i Vol(R i ) D + R i R R i D < ε 2 + M Vol(R i ) ε 2 + M Vol(Z i ) < ε. R i D Z i Z We bewijzen nu de transformatieformule (TF) eerst onder de aanname dat ze waar is voor f 1 en gebieden die afgebeeld worden op rechthoeken. Lemma 2 Zij W R d open, Φ : W R d injectief en differentieerbaar, zij ook Φ 1 differentieerbaar. Veronderstel: Voor elk rechthoek R Φ(W ) geldt Vol(R) det DΦ. (RH) Zij R d een Jordanverzameling met Ē W, f integreerbaar op, en f Φ integreerbaar op. Dan f (f Φ) det DΦ. (TF) Bewijs: Zonder verlies van algemeenheid nemen we aan dat f 0. (Splits anders f f + f met f ± : max{±f, 0} 0. Ga na dat als f integreerbaar is dat f ± ook zijn.) Zij ε > 0 gegeven. Zij ˆR R d een rechthoek met ˆR en {R 1,..., R N } een partitie voor ˆR die voldoende fijn is zodat (i) f R i (ii) als R i dan R i Φ(W ). M i Vol(R i ) ε, Φ M i : sup x R i f(x), Φ 1 (R ) i W Φ 1 R i Φ(W) 2
3 Definieer Dan Ω 1 en dus f (RH) f 0 Ω 1 : Φ 1 (R i ). R i M i det DΦ(x) dx ε R i R i Φ 1 (R i) Φ 1 (R i) f(φ(x)) det DΦ(x) dx ε (f Φ) det DΦ ε Ω 1 (f Φ) det DΦ ε. (1) Verder is er vanwege Lemma 1 een partitie {Q 1,..., Q M } van ˆR zodanig dat f m i Vol(Q i ) + ε, m i : inf f(x). x Q i Definieer Q i int Ω 2 : Q i int Dan Ω 2 en analoog aan het bewijs van (1) f (RH) f 0 Q i int Q i int m i Φ 1 (Q i) Φ 1 (Q i) Φ 1 (Q i ). det DΦ(x) dx + ε f(φ(x)) det DΦ(x) dx + ε (f Φ) det DΦ + ε Ω 2 (f Φ) det DΦ + ε. (2) De bewering volgt nu uit (1) en (2). In plaats van (RH) bewijzen we in een tweede stap een locale versie (RHL) hiervan. Lemma 3 Zij V R d open, Φ : V R d differentieerbaar, a V, det DΦ(a) 0. Dan is er een open rechthoek W V zodanig dat a W en Φ W is injectief, en de inverse (Φ W ) 1 is differentieerbaar. 3
4 Voor elk rechthoek R Φ(W ) is een Jordanverzameling, en Vol(R) det DΦ (RHL) Φ a W R Φ( W) 1 Φ( R ) V Φ( V) Φ 1 Φ( a) Bewijs: Het eerste deel van de bewering volgt uit de impliciete functiestelling. Verder volgt uit de differentieerbaarheid van de inverse dat (Φ W ) 1 Lipschitz continu is en dus een Jordanverzameling. (De details hiervan laten we achterwege.) Het bewijs voor (RHL) wordt nu gegeven via inductie over d. Zij d 1. Dan is V een open interval, det DΦ(t) Φ (t). Kies W V zodanig dat Φ (t) 0 voor alle t W. Φ(W ) is een interval. Kies R [c, d] Φ(W ). Dan is Vol(R) d c en volgens de substitutiestelling voor integralen in 1D Φ 1 (d) Φ 1 (d) d det DΦ ± Φ (t) dt Φ (t) dt du d c, Φ 1 (c) Φ 1 (c) waarbij het + - teken correspondeert met φ stijgend en het - teken met φ dalend. In beide gevallen is (RHL) bewezen voor d 1. Zij nu d > 1 en veronderstel dat (RHL) geldt in het geval van d 1 dimensies. We laten (RHL) in dimensie d eerst voor het speciale geval zien dat Φ één component onveranderd laat. Zonder verlies van algemeenheid kiezen we hiervoor de laatste component. We schrijven z (x, t) voor z V waarbij x R d 1 en t R en analoog a (a 0, b). We nemen dus aan Φ(x, t) (Φ 1 (x, t),..., Φ d 1 (x, t), t), (x, t) V. Kies een open rechthoek W 0 R d 1 rond a 0 en een open interval I rond b zodanig dat W 0 I V en det DΦ(x, t) 1 2 det DΦ(a) (x, t) W 0 I. Definieer voor t I de afbeelding ψ t : W O R d 1 door ψ t (x) (Φ 1 (x, t),..., Φ d 1 (x, t)). c 4
5 Dan is en dus DΦ(x, t) [ Dψt (x) det DΦ(x, t) det Dψ t (x). (Merk op dat DΦ(x, t) een matrix is met formaat d d terwijl Dψ t (x) een matrix is met formaat (d 1) (d 1).) In het bijzonder is dus voor alle t I det Dψ t (a 0 )) 1 2 det DΦ(a). Volgens de inductieaanname is er dus een open rechthoek W 1 W 0 zodanig dat voor alle t I en alle rechthoeken Q ψ t (W 1 ) geldt Vol(Q) det Dψ t. ψ 1 t (Q) (Ga na dat we W 1 onafhankelijk van t I kunnen kiezen. Dit volgt uit de continuiteit van de partiële afgeleiden van Φ.) Definieer W : W 1 I. Dan is Φ(W ) t I ψ t(w 1 ) {t}. Zij R een rechthoek binnen Φ(W ). Dan is R Q J waarbij Q een rechthoek in R d 1 is met Q ψ 1 (W 1 ) for all t I and J [c, d] I. Verder is t J ψ 1 t (Q). Dus ( ) Vol(R) (d c) Vol(Q) det Dψ t dt Fubini J ψ 1 t det Dψ t (x) dxdt ] det DΦ t (x) (RHLS) Daarmee is voor deze Φ en W voldaan aan de voorwaarde van Lemma 2. Uit dit lemma volgt dus g g Φ det DΦ (TFLS) voor Jordanverzamelingen met Ē W en integreerbare g. Voor het algemene geval, schrijf Φ σ τ met τ(x) (Φ 1 (x),..., Φ d 1 (x), x d ), σ(y) (y 1,..., y d 1 Φ d (τ 1 (y))), Merk op dat τ injectief is in een omgeving van a en σ in een omgeving van τ(a). Beide afbeeldingen laten tenminste een component onveranderd, dus kunnen (RHLS) en (TFLS) toegepast worden. Voor een rechthoek R in een voldoende kleine omgeving van Φ(a) is dan volgens de kettingregel en de rekenregels voor determinanten Vol(R) (RHLS) σ 1 (R) det Dσ (TFLS) det(dσdτ) 5 τ 1 σ 1 (R) det Dσ det Dτ det DΦ
6 Uit Lemmas 2 en 3 krijgen we nu rechtstreeks: Lemma 4 Zij V R d open, Φ : V R continu differentieerbaar, a V, det DΦ(a) 0. Dan is er een open rechthoek W V rond a zodanig dat voor elke Jordanverzameling met Ē W en elke Riemann integreerbare functie f : R f (f Φ) det DΦ (TFL) Uiteindelijk kunnen we nu de transformatiestelling voor Riemannintegralen bewijzen: Stelling 5 Zij W R d open, Φ : W R d injectief en differentieerbaar, zij ook Φ 1 differentieerbaar. Zij R d een Jordanverzameling met Ē W, f integreerbaar op, en f Φ integreerbaar op. Dan f (f Φ) det DΦ. (TF) (Sommige voorwaarden zijn feitelijk overbodig maar we gaan hier niet in op deze details.) Bewijs: Voor elke a Ē is er volgens Lemma 4 een open rechthoek W a zodanig dat de bewering van dit lemma geldt. Omdat Ē compact is kan Ē overdekt worden door een eindig aantal van deze rechthoeken: Ē p W aj. j1 Zij R een rechthoek met Ē R en zij {R 1,..., R n } een partitie van R met de eigenschap dat voor alle i 1,..., n er een j {1,..., p} is zodanig dat R i Ē W aj. (Ga na dat dat kan!) Definieer i R i, i 1,... n. Deze i zijn paarsgewijs disjunct en elke i ligt in een W aj. Dus, volgens Lemma 4, f n i1 Φ( i) f (TFL) n f Φ det DΦ i i1 f Φ det DΦ. 6
Huiswerk Hints&Tips Analyse 2, College 26
Huiswerk Hints&Tips Analyse, College 6 [K..]. Tip : Toon aan dat er punten (x, y ) en (x, y ) en scalars m, M R bestaan zo dat m = f(x, y ) f(x, y) f(x, y ) = M. Laat dan zien dat m(b a)(d c) = m f M =
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, 14.00 17.00, Examenzaal Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek
(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van limiet dat lim y 0 y = 0. (b) Bewijs lim y 0 y 3 = 0 uit de definitie van limiet. (c)
Inleiding Analyse 2009
Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn
Inleiding Analyse. Opgaven. E.P. van den Ban. c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien
Inleiding Analyse Opgaven E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien 0 1 1 Limieten en continuïteit Opgave 1.1 (a) Bewijs direct uit de definitie van limiet dat
Leeswijzer bij het college Functies en Reeksen
Leeswijzer bij het college Functies en Reeksen Erik van den Ban Najaar 2012 Introductie eze leeswijzer bij het dictaat Functies en Reeksen (versie augustus 2011) heeft als doel een gewijzigde opbouw van
V.4 Eigenschappen van continue functies
V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt
Convexe Analyse en Optimalisering
Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,
3 Opgaven bij Hoofdstuk 3
3 Opgaven bij Hoofdstuk 3 Opgave 3. Voor k beschouwen we de functie f k : x sin(x/k). Toon aan dat f k 0 uniform op [ R, R] voor iedere R > 0. Opgave 3.2 Zij V een verzameling. Een functie f : V C heet
Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren
Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren a = (a 1,..., a s ) en b = (b 1,..., b s ). Toepassing van deze Cauchy Schwarz-ongelijkheid levert
EERSTE DEELTENTAMEN ANALYSE C
EERSTE DEELTENTAMEN ANALYSE C 0 november 990 9.30.30 uur Zet uw naam op elk blad dat u inlevert en uw naam en adres op de enveloppe. De verschillende onderdelen van de vraagstukken zijn zoveel als mogelijk
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen
Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30)
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 016, 1:30 15:30 (16:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van aantekeningen
1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek
Jordan normaalvorm. Hoofdstuk 7
Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er
Ter Leering ende Vermaeck
Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel
Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30
Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde vrijdag 3 februari 2012, 8:30 12:30 Naam: Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.
Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)!
Tentamen Analyse II. Najaar 6 (.1.7) Toelicting: Je mag Zoric deel I en II gebruiken, maar geen ander ulpmiddelen (zoals andere boeken, aantekeningen, rekenmacine etc.)! Als je bekende stellingen gebruikt
Examen Complexe Analyse (September 2008)
Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst
Opgaven Functies en Reeksen. E.P. van den Ban
Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele
Tentamen Functies en Reeksen
Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy
Overzicht Fourier-theorie
B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van
Stelsels Vergelijkingen
Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit
Functies van één veranderlijke
Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde
1 Verzamelingen en afbeeldingen
Samenvatting Wiskundige Structuren, 2010 Aad Offerman, www.offerman.com 1 1 Verzamelingen en afbeeldingen Notaties: A = {1,2,3},, x A, y / A, A = B A B en B A, N = {0,1,2,...}, Z = {..., 3, 2, 1,0,1,2,...},
V.2 Limieten van functies
V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de
Alle opgaven tellen even zwaar, 10 punten per opgave.
WAT IS WISKUNDE (English version on the other side) Maandag 5 november 2012, 13.30 1.30 uur Gebruik voor iedere opgave een apart vel. Schrijf je naam en studentnummer op elk vel. Alle opgaven tellen even
Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen
Tweede huiswerkopdracht Lineaire algebra 1 en opmerkingen November 10, 2009 Opgave 1 Gegeven een vectorruimte V met deelruimtes U 1 en U 2. Als er geldt dim U 1 = 7, dimu 2 = 9, en dim(u 1 U 2 ) = 4, wat
TECHNISCHE UNIVERSITEIT EINDHOVEN
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven
Enkele bedenkingen bij het examen Complexe Analyse
Enkele bedenkingen bij het examen Complexe Analyse De examenvragen vind je op het einde van dit documentje. Eerst een paar algemene opmerkingen. Vele antwoorden zijn slordig opgeschreven wat het lezen
Examen G0U13 - Bewijzen en Redeneren,
Examen G0U13 - Bewijzen en Redeneren, 2010-2011 bachelor in de Wisunde, bachelor in de Fysica, bachelor in de Economische Wetenschappen en bachelor in de Wijsbegeerte Vrijdag 4 februari 2011, 8u30 Naam:
college 6: limieten en l Hôpital
126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N46) op maandag 23 Deel 1: Van 14 uur tot uiterlijk 153 uur Het gebruik van het
Syllabus Integratietheorie. A. A. Balkema
Syllabus Integratietheorie A. A. Balkema grondig herzien door T. H. Koornwinder, [email protected] Korteweg-de Vries Instituut voor Wiskunde, Universiteit van Amsterdam laatst gewijzigd 12 augustus
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra maandag 3--27, 3.3-6.3 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken. Schrijf op elk
Oplossingen Oefeningen Bewijzen en Redeneren
Oplossingen Oefeningen Bewijzen en Redeneren Goeroen Maaruf 20 augustus 202 Hoofdstuk 3: Relaties. Oefening 3..2 (a) Persoon p is grootouder van persoon q. (b) (p, q) O o O r P : [ (p, r) O (r, q) O ]
De stelling van Hahn en Mazurkiewicz
Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica De stelling van Hahn en Mazurkiewicz Naam: Studentnummer: Studie: Begeleider: Datum: Lennaert Stronks 4062175 Wiskunde
TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00
TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een
2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen?
Vraag Een vloeistoftank met onbeperkte capaciteit, bevat aanvankelijk V liter zuiver water. Tijdens de eerste faze stroomt water, dat zout bevat met een concentratie van k kilogram per liter, de tank binnen
Constructie der p-adische getallen
Constructie der p-adische getallen Pim van der Hoorn Marcel de Reus 4 februari 2008 Voorwoord Deze tekst is geschreven als opdracht bij de cursus Kaleidoscoop 2007 2008 aan de Universiteit Utrecht. De
opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.
opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal
1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.
Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en
3 De duale vectorruimte
3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire
Examenvragen Hogere Wiskunde I
1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies
Discontinua en Duivelsfuncties
Discontinua en Duivelsfuncties Over Höldercondities en differentieerbaarheid Instituut: Radboud Universiteit Nijmegen Datum: 3 juli 015 Schrijver: Bart Nikkelen Begeleider: A.C.M. van Rooij Tweede lezer:
Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014
Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven
Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of
Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie
METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.)
METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.) 1. Inleiding. In deze syllabus behandelen we een aantal fundamentele onderwerpen uit de
I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.
I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk
Wanneer zijn alle continue functies uniform continu?
Faculteit Wetenschappen Vakgroep Wiskunde Wanneer zijn alle continue functies uniform continu? Bachelor Project I Stijn Tóth Promotor: Prof. Eva Colebunders Academiejaar 2011-2012 Inhoudsopgave 1 Inleiding
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen
Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door
Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal
Oefenopgaven Grondslagen van de Wiskunde A
Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.6, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 2 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 38 Outline 1 Rekenregels 2 K. P. Hart TW2040: Complexe
4 Positieve en niet-negatieve lineaire algebra
4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,
Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen
Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet
Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking
Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking 10 december 2013, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is
Wiskundige Analyse 1
Wiskundige Anlyse 1 Belngrijkste stellingen 1 Getllen Driehoeksongelijkheid : b ± b + b Supremumprincipe : Elke nietlege verzmeling reële getllen die nr boven begrensd is, heeft een supremum Infimumprincipe
Analyse 1 Handout limieten en continuïteit
Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................
Hoofdstuk 9. Vectorruimten. 9.1 Scalairen
Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven
Discrete Wiskunde 2WC15, Lente Jan Draisma
Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 3 De Nullstellensatz 1. De zwakke Nullstellensatz Stelling 1.1. Zij K een algebraïsch gesloten lichaam en zij I een ideaal in K[x] = K[x 1,...,
Harm de Vries. Partitiestellingen. Bachelor Thesis, Thesis advisor: Dr. K.P. Hart. Mathematisch Instituut, Universiteit Leiden
Harm de Vries Partitiestellingen Bachelor Thesis, 2008 Thesis advisor: Dr. K.P. Hart Mathematisch Instituut, Universiteit Leiden Partitiestellingen Harm de Vries ([email protected]) Mathematisch Instituut
TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN
TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je
3 Rijen en reeksen van functies
3 Rijen en reeksen van functies 3.1 Uniforme convergentie van een rij functies Met het oog op latere toepassingen op machtreeksen en Fourierreeksen werken we in het vervolg steeds met complexwaardige functies.
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.6, maandag K. P. Hart Faculteit EWI TU Delft Delft, 30 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 33 Outline 1 2 Algemeenheden Gedrag op de rand Machtreeksen
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk
Wat kan er (niet) zonder ε-δ?
Oneindig klein. Wat kan er (niet) zonder ε-δ? Michel Roelens University Colleges Leuven Limburg Maria-Boodschaplyceum Brussel Hilde Eggermont Sint-Pieterscollege Leuven Redactie Uitwiskeling Afgeleide
Signalen en Transformaties
Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: [email protected] 1/29 Elektrotechniek, Wiskunde en Informatica EWI Complexe getallen z D a C bi We definiëren de complex
Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:
Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van
De Dekpuntstelling van Brouwer
De Dekpuntstelling van Brouwer Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Twente, 19 oktober 2009: 18:00 20:00 Outline 1 2 3 4 De formulering Dekpuntstelling van Brouwer Zij n een
Bespreking Examen Analyse 1 (Augustus 2007)
Bespreking Examen Analyse 1 (Augustus 2007) Vooraf: Zoals het stilletjes aan een traditie is geworden, geef ik hier bedenkingen bij het examen van deze septemberzittijd. Ik zorg ervoor dat deze tekst op
Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)
Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N
Riemannsommen en integralen
Riemannsommen en integralen MET DE TI-NSPIRE Vervangt een deel van 0. uit VWO B deel gghm EEBII 0-0 Inhoud Oppervlakte onder de grafiek... Ondersom... 4 Bovensom... 4 Middensom... 4 Riemannsom... 5 Riemannsom
Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015
Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen
Opgaven Hilbert-ruimten en kwantummechanica (2006)
Opgaven Hilbert-ruimten en kwantummechanica (2006) Altijd: Opgave 1 is om te oefenen (niet om in te leveren), Opgave 2 is de inleveropgave, Opgave 3 is de bonusopgave (inleveren niet verplicht maar wel
Maat en Integraal. Deborah Cabib, Alex Kuiper, Andries Lenstra, Gerrit Oomens, Suzanne Sniekers Syllabus Integratietheorie
Maat en Integraal Deborah Cabib, Alex Kuiper, Andries Lenstra, Gerrit Oomens, Suzanne Sniekers 2008-2009 Syllabus Integratietheorie Met dank aan Arnoud van Rooij, Jan Smit, Richard Dudley en Heinz Bauer
(ii) Zij e 0 een geheel getal. Bewijs: de code C is e-fouten-verbeterend d(x, y) 2e + 1 voor alle x, y C met x y.
Opgaven bij het college Topologie 1 Metrische ruimten Opgave 1.1. Geef een voorbeeld waaruit blijkt dat de doorsnede van oneindig veel open verzamelingen in een metrische ruimte niet open hoeft te zijn.
Bespreking van het examen Complexe Analyse (tweede zittijd)
Bespreking van het examen Complexe Analyse (tweede zittijd) Bekijk ook de bespreking van het examen van de eerste zittijd (op Toledo). Het valt hier op dat de scores op sommige vragen wel heel slecht zijn.
Wiskundige Structuren
wi1607 Wiskundige Structuren Cursus 2009/2010 Eva Coplakova en Bas Edixhoven i Inhoudsopgave I Verzamelingen en afbeeldingen..... 2 I.1 Notatie........3 I.2 Operaties op verzamelingen...7 I.3 Functies.......10
