Ter Leering ende Vermaeck
|
|
|
- Leona van der Wolf
- 6 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Ter Leering ende Vermaeck 15 december Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel reflexief en transitief. 3. Druk de exclusieve óf uit in de gebruikelijke logische operatoren. 4. Voor welke x R geldt: 2x = 14 x 7? 5. Voor welke x R geldt: x = 2 x = 3? 6. Ontken de volgende uitspraak: x R : y R : z R : x(x y)z = Is de uitspraak x R : y R : z R : x(x y)z = 0 waar? 8. Bewijs met volledige inductie naar n: n Z >1 : n 2 > n. 9. Geef in R een voorbeeld van een niet-rationale Cauchy-rij die naar 0 convergeert. 10. Bewijs: als {a i } i=1 een reële Cauchy-rij is, dat voor iedere λ R de rij {λa i } i=1 ook Cauchy is. 11. Verifieer dat de standaard inbedding van Q in R compatibel is met de optelling en vermenigvuldiging. 12. Bestaat er een niet-lege verzameling van positieve reële getallen zonder infimum in R? Zo ja, geef een voorbeeld. Zo nee, bewijs dat. 13. Maak een equivalentierelatie op Z met oneindig veel eindige equivalentieklassen. 14. Maak een equivalentierelatie op Z met oneindig veel oneindige equivalentieklassen. 1
2 15. Maak voor jezelf of vooral voor een ander aannemelijk (of bewijs!) dat reële Cauchy-rijen in R convergeren. Doe dit door naar de decimale ontwikkelingen van de rij-elementen te kijken. 16. Iemand stelt voor een variant op Cauchyrijtje te definiëren als volgt: ǫ 0 N : i,j > N : a i a j ǫ. Wat voor rijtjes voldoen hieraan? Zijn deze Cauchy? 17. Iemand stelt voor de definitie van convergentie wat aan te passen en een nieuwe eigenschap van rijtjes te omschrijven met: ǫ > 0 N : i > N : a a i > ǫ. Wat voor rijtjes voldoen hieraan? Kunnen die convergent zijn? 18. Een graaf is gericht als alle verbindingen een richting hebben. Als er een tak is tussen knoop A en knoop B en de tak is naar B gericht, dan is A het beginpunt en B het eindpunt van de tak. Zij een gerichte keten in een gerichte graaf een rijtje takken zodanig dat er geen takken dubbel in zitten en het eindpunt van de eerste het beginpunt van de tweede tak is, het eindpunt van de tweede tak het beginpunt van de derde is enz.. Aan welke voorwaarden moet een samenhangende gerichte graaf voldoen om een gerichte eulerse keten te bevatten? 19. In de stelling van Euler (die met n m+r = 2) staat niet als voorwaarde dat de graaf enkelvoudig moet zijn. Is dat eigenlijk wel terecht? 20. Als we nu eens grafen op een torus gaan tekenen (de buitenkant van een fietsband) en we denken na over de stelling van Euler, gebeurt daar iets interessants? 21. Teken een vlakke representatie van een vlakke graaf zonder een knoop met een graad kleiner of gelijk aan Vereenvoudig naar de vorm a+bi, waar a,b R: 2 3i 5+i 1+4i 3+3i + 2 i 5 5i 23. Waarom wordt in de stelling van Cantor (R is niet aftelbaar) eigenlijk afgesproken dat de notatie met repeterende 9 wordt vermeden? 24. Geef alle complexe oplossingen van: (a) z 2 = 27 (b) z 3 = 3+i (c) (z +2i) 4 = 1+i 2
3 25. Het is bekend dat Q aftelbaar is en R overaftelbaar. Maar hoe zit het met de equivalentieklasse van een Cauchy-rij? Hebben die allemaal dezelfde kardinaliteit? Zo ja, welke? Zo nee, welke zijn dan aftelbaar en welke overaftelbaar? 26. (a) Is associatief? (b) Geldt: (A B) = ( A) ( B)? Zo nee, waar is (A B) dan wel gelijk aan? 27. Zij X R met X = [0, ). Heeft de verzameling X een infimum? Een supremum? Een maximum? Een minimum? 2 Lineaire Algebra 1. Geef een voorbeeld van een afbeelding tussen twee vectorruimtes die niét lineair is. 2. Gegeven zijn de lijn l door de oorsprong die een hoek α met de x-as maakt en de lineaire afbeelding f: R 2 R 2 die een willekeurige vector op zijn lijnspiegeling in de lijn l afbeeldt. Vind de matrix A zodanig dat f(x) = Ax voor alle x R Neem willekeurige, inverteerbare matrices A en B. Dan is de inverse van de samenstelling van die matrices, (AB) 1, niet altijd gelijk aan A 1 B 1. (a) Waarom niet? (b) Hoe kan je de inverse van AB wel als een vermenigvuldiging van de inversen van A en B schrijven? (c) Voor welke matrices A en B geldt (AB) 1 = A 1 B 1 wel? 4. Inverteerbare matrices: (a) Geef een voorbeeld van een (vierkante) matrix die niet inverteerbaar is. (b) Kun je zonder rijoperaties toe te passen al zien of een (vierkante) matrix inverteerbaar is of niet? Zo ja, hoe? 5. In het dictaat van lineaire algebra 1 staat een lemma: Stel V is een vectorruimte en deze vectorruimte bevat twee deelverzamelingen S en T. Dan geldt de gelijkheid L(S) + L(T) = L(S T). Met andere woorden, de som van twee deelruimtes wordt voortgebracht door de vereniging van een verzameling van voortbrengers voor een van de ruimtes en een verzameling van voortbrengers van de ander. Vraag: 3
4 Wat gebeurt er als een van de twee deelverzamelingen de lege verzameling is? Geldt het lemma dan nog steeds? En als beide deelverzamelingen de lege verzameling zijn? 6. Zijn de volgende uitspraken waar voor alle v 1,v 2,v 3 R n? (a) L(v 1,v 2,v 3 ) = L(v 1 v 2,v 2 v 3,v 3 ) (b) L(v 1,v 2,v 3 ) = L(v 1 v 2,v 2 v 3,v 3 v 1 ) (c) L(v 1,v 2,v 3 ) = L(v 1 v 2,v 2 v 3 2v 1,v 3 +v 1 ) (d) L(v 1,v 2,v 3 ) = L(v 1 v 2,v 2 v 3,2v 3 v 1 ) 7. Is het kwadraat van een een niet-nul matrix ook altijd een niet-nul matrix? 8. Wat is de determinant van de matrix die hoort bij de afbeelding die ieder element x van de R 2 stuurt naar 2x? 3 Analyse 1. Geef een voorbeeld van een functie die niét continu is. 2. In de tussenwaardestelling staat dat de functie continu moet zijn. Is deze voorwaarde nodig? Zo ja, geef een tegenvoorbeeld! 3. Een opgave bij analyse luidt: De stelling van Rolle: Bekijk een f : [a,b] R, continu met f(a) = f(b). Als f differentieerbaar is op (a,b), dan bestaat er een c (a,b) zodat f (c) = 0. (a) Bedenk een voorbeeld waarbij f(a) f(b), maar er wel zo n c bestaat. (b) Is de voorwaarde f(a) = f(b) dan overbodig? Geef een tegenvoorbeeld. 4. Is er een functie f : [0,1] R die discontinu is in ieder punt? Geef een bewijs of tegenvoorbeeld. 5. Is er een continue functie f : [0,1] R die niet differentieerbaaris in ieder punt? Geef een bewijs of tegenvoorbeeld. 6. Volgens de hoofstelling van de integraalrekening moet f : [a,b] R continu zijn. Moet F : [a,b] R ook continu zijn? 7. Beschouw 1 met p > 0. Voor welke p geldt dat deze integraal conver- xp gent is? 1 0 4
5 8. Geef een voorbeeld van een limiet die bepaald kan worden m.b.v. de l Hôpital door 3x te differentieren. 9. Geef een voorbeeld van een functie f: [a,b] R die niet begrensd is. 4 Wiskundige Structuren 1. Is de verzameling der priemgetallen aftelbaar of overaftelbaar? 2. De verzameling V heeft 20 elementen. We maken een deelverzameling A van V en doen 3 van de 20 elementen in A. We maken een deelverzameling B van V en doen 4 van de 20 elementen in B. (De deelverzamelingen A en B worden gelijktijdig gemaakt.) Hoe groot is de kans dat A en B disjunct zijn? 3. Hebben de verzamelingen {a Z : 2a < 1} en {q Q : q 2 < 2} suprema? In Z? In Q? In R? 4. Kan een functie meer dan één inverse hebben? 5. Bij de axioma s voor Z staat het axioma dat Z niet eindig is. Waarom is dit axioma niet aanwezig bij de axioma s voor N? 6. Wat voor elementen zitten in de intervallen [4,4],[6,6),(3,3) in R? 7. Wat zijn de verdichtingspunten van de verzameling R\[0, 1]? 8. Laat D R en f,g: D R uniform continu zijn. We hebben bewezen dat als de functies f en g uniform continu zijn, dat dan f +g ook uniform continu is. Geldt dan ook dat f g uniform continu is? Enjoy!! 5
Lineaire algebra I (wiskundigen)
Lineaire algebra I (wiskundigen) Voorbeelden van toetsopgaven, 011 en (1) (a) Bepaal de afstand van het punt Q = (1,, ) R 3 tot het vlak gegeven door x + y z = 1. (b) Bepaal de hoek tussen de vectoren
1 Verzamelingen en afbeeldingen
Samenvatting Wiskundige Structuren, 2010 Aad Offerman, www.offerman.com 1 1 Verzamelingen en afbeeldingen Notaties: A = {1,2,3},, x A, y / A, A = B A B en B A, N = {0,1,2,...}, Z = {..., 3, 2, 1,0,1,2,...},
Inleiding Analyse 2009
Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn
Tentamen Grondslagen van de Wiskunde A, met uitwerkingen
Tentamen Grondslagen van de Wiskunde A, met uitwerkingen 8 december 2015, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal
Oefenopgaven Grondslagen van de Wiskunde A
Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding
Vectorruimten en deelruimten
Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie
Lineaire algebra I (wiskundigen)
Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie
opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.
opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal
Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07
Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.
Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30
Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde vrijdag 3 februari 2012, 8:30 12:30 Naam: Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.
Dictaat Caleidoscoop
Dictaat Caleidoscoop Dr.H.Finkelnberg 26 juni 2009 Inhoudsopgave 1 Logica 3 1.1 Logica........................ 5 1.1.1 Combinaties van drietallen........ 7 1.1.2 Wat bedoelt men met A B C?.... 8 1.1.3
Getallen, 2e druk, extra opgaven
Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in
III.3 Supremum en infimum
III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk
Tentamen Lineaire Algebra 1 (Wiskundigen)
Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren
Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015
Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen
Hoofdstuk 9. Vectorruimten. 9.1 Scalairen
Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen
Hoofdstuk 1. Inleiding. Lichamen
Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan
Oefening 2.2. Welke van de volgende beweringen zijn waar?
Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.
Supplement Verzamelingenleer. A.J.M. van Engelen en K. P. Hart
Supplement Verzamelingenleer A.J.M. van Engelen en K. P. Hart 1 Hoofdstuk 1 Het Keuzeaxioma Het fundament van de hedendaagse verzamelingenleer werd in de vorige eeuw gelegd door Georg Cantor. Cantor gebruikte
Examenvragen Hogere Wiskunde I
1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies
Opgaven Functies en Reeksen. E.P. van den Ban
Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele
Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking
Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking 10 december 2013, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is
Oplossingen Oefeningen Bewijzen en Redeneren
Oplossingen Oefeningen Bewijzen en Redeneren Goeroen Maaruf 20 augustus 202 Hoofdstuk 3: Relaties. Oefening 3..2 (a) Persoon p is grootouder van persoon q. (b) (p, q) O o O r P : [ (p, r) O (r, q) O ]
Enkele valkuilen om te vermijden
Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige
PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011
PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011 Familienaam:....................................................................... Voornaam:.........................................................................
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3
II.3 Equivalentierelaties en quotiënten
II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde
4 Positieve en niet-negatieve lineaire algebra
4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,
Complexe functies 2019
Complexe functies 019 Extra opgaves Opgave A Laat zien dat R voorzien van de bewerkingen a + b := (a 1 +b 1,a +b ) a b := (a 1 b 1 a b,a 1 b +a b 1 ) isomorf is met C. Wat is i in deze representatie? Opgave
We beginnen met de eigenschappen van de gehele getallen.
II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;
V.4 Eigenschappen van continue functies
V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt
Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30)
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 016, 1:30 15:30 (16:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van aantekeningen
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 5 J.Keijsper (TUE)
Niet-standaard analyse (Engelse titel: Non-standard analysis)
Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Niet-standaard analyse (Engelse titel: Non-standard analysis) Verslag ten behoeve
1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek
Convexe Analyse en Optimalisering
Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, 14.00 17.00, Examenzaal Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek
V.2 Limieten van functies
V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de
PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016
PROEFEXAMEN LINEAIRE ALGEBRA dinsdag 22 november 2016 1. Zi (R, V, +) een eindigdimensionale vectorruimte en veronderstel dat U en W deelruimten van V zin. Toon aan dat 2. Waar of fout? Argumenteer e antwoord.
III.2 De ordening op R en ongelijkheden
III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.
Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen
Tweede huiswerkopdracht Lineaire algebra 1 en opmerkingen November 10, 2009 Opgave 1 Gegeven een vectorruimte V met deelruimtes U 1 en U 2. Als er geldt dim U 1 = 7, dimu 2 = 9, en dim(u 1 U 2 ) = 4, wat
Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie
Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan [email protected] /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte
Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door
Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal
Kwantummechanica Donderdag, 13 oktober 2016 OPGAVEN SET HOOFDSTUK 4. Bestudeer Appendix A, bladzijden van het dictaat.
1 Kwantummechanica Donderdag, 1 oktober 016 OPGAVEN SET HOOFDSTUK 4 VECTOREN OVER DE REËLE RUIMTE DUS DE ELEMENTEN ZIJN REËLE GETALLEN Bestudeer Appendix A, bladzijden 110-114 van het dictaat. Opgave 1:
(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis
Bespreking Examen Analyse 1 (Augustus 2007)
Bespreking Examen Analyse 1 (Augustus 2007) Vooraf: Zoals het stilletjes aan een traditie is geworden, geef ik hier bedenkingen bij het examen van deze septemberzittijd. Ik zorg ervoor dat deze tekst op
Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)
Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,
I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.
I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk
Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen
Hoofdstuk 3 Equivalentierelaties SCHAUM 2.8: Equivalence Relations Twee belangrijke voorbeelden van equivalentierelaties in de informatica: resten (modulo rekenen) en cardinaliteit (aftelbaarheid). 3.1
Examen Complexe Analyse (September 2008)
Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van limiet dat lim y 0 y = 0. (b) Bewijs lim y 0 y 3 = 0 uit de definitie van limiet. (c)
Inleiding Analyse. Opgaven. E.P. van den Ban. c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien
Inleiding Analyse Opgaven E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien 0 1 1 Limieten en continuïteit Opgave 1.1 (a) Bewijs direct uit de definitie van limiet dat
Wiskundige Structuren
wi1607 Wiskundige Structuren Cursus 2009/2010 Eva Coplakova en Bas Edixhoven i Inhoudsopgave I Verzamelingen en afbeeldingen..... 2 I.1 Notatie........3 I.2 Operaties op verzamelingen...7 I.3 Functies.......10
Lineaire Algebra C 2WF09
Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: [email protected] H. Wilbrink HG 9.49, Tel. 2783, E-mail: [email protected] http://www.win.tue.nl/wsk/onderwijs/2wf09
Getallensystemen, verzamelingen en relaties
Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,
Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen
Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet
Lineaire Algebra Een Samenvatting
Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle
Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)
Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N
Discrete Wiskunde 2WC15, Lente Jan Draisma
Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 3 De Nullstellensatz 1. De zwakke Nullstellensatz Stelling 1.1. Zij K een algebraïsch gesloten lichaam en zij I een ideaal in K[x] = K[x 1,...,
De dimensie van een deelruimte
De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College
WI1808TH1/CiTG - Lineaire algebra deel 1
WI1808TH1/CiTG - Lineaire algebra deel 1 College 10 13 oktober 2016 1 Samenvatting Hoofdstuk 4.1 Een constante λ is een eigenwaarde van een n n matrix A als er een niet-nul vector x bestaat, zodat Ax =
Overzicht Fourier-theorie
B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van
1 Symmetrieën van figuren
1 Symmetrieën van figuren 1.1 Het mysterie van de hoge eik Als je door een met water gevulde reageerbuis heen de woorden DIE HOHE EICHE FÄLLT LANGSAM UM leest, waarbij de eerste drie woorden rood en de
EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I
EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I Theorie Opgave 1. In deze opgave wordt gevraagd om een aantal argumenten of overgangen uit de cursusnota s in detail te verklaren. In delen (a) (b) peilen we naar
Topologie I - WPO. Prof. Dr. E. Colebunders
Topologie I - WPO Prof. Dr. E. Colebunders Academiejaar 2015-2016 Inhoudsopgave 1 Topologische ruimten 2 2 Metriseerbaarheid en aftelbaarheid 7 3 Convergentie en continuïteit 8 4 Separatie-eigenschappen
Keuze-Axioma en filosofische vragen over de Wiskunde
Keuze-Axioma en filosofische vragen over de Wiskunde Jaap van Oosten Department of Mathematics, Utrecht University Caleidsocoop 1, 3 april 2012 In de wiskunde bewijzen we stellingen (uitspraken). In het
Aanvullingen bij Hoofdstuk 8
Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los
Bewijzen en Redeneren voor Informatici
Bewijzen en Redeneren voor Informatici Reinoud Berkein 17 januari 2018 Samenvatting Een korte samenvatting van definities uit de cursus. Hoofdstuk 1 Doorsnede: De verzamerling die alle elementen bevat
Antwoorden op de theoretische vragen in de examen voorbereiding
Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie
Matrices en Stelsel Lineaire Vergelijkingen
Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie HOVO Utrecht Les 3: Integraalrekening en lineaire vormen Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 3.1.1 Goniometrie Matrixen Integraal rekening
Basiskennis lineaire algebra
Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal
M1 Wiskundig taalgebruik en notaties
M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =
Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff
Oneindig in Wiskunde & Informatica Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft Tom Verhoeff Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica http://www.win.tue.nl/~wstomv/
Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)!
Tentamen Analyse II. Najaar 6 (.1.7) Toelicting: Je mag Zoric deel I en II gebruiken, maar geen ander ulpmiddelen (zoals andere boeken, aantekeningen, rekenmacine etc.)! Als je bekende stellingen gebruikt
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie Utrecht Les : Goniometrie en vectoren Dr. Harm van der Lek [email protected] Natuurkunde hobbyist verzicht colleges. College. Goniometrie 2. Vectoren 2. College 2. Matrixen
Fundamenten. Lerarenprogramma Mastermath, versie 2015/12/02. Theo van den Bogaart Bas Edixhoven
Fundamenten Lerarenprogramma Mastermath, versie 2015/12/02 Theo van den Bogaart Bas Edixhoven i Inhoudsopgave I Verzamelingen en afbeeldingen............................................... 3 I.1 Notatie.........................................................................
11.0 Voorkennis V
11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix
3 De duale vectorruimte
3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire
QuizAnalyseHoofdstuk3 - wv -Brackx
QuizAnalyseHoofdstuk3 - wv -Brackx Als: dan is: Als f discontinu is in x 0 en dan zijn de linker- en rechterlimieten van f(x) in x 0 aan elkaar gelijk maar verschillend van L. Als voor alle x in ]a,b [
Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006
Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006 Inhoudsopgave 1 Topologische ruimten 2 2 Metriseerbaarheid en aftelbaarheid 7 3 Convergentie en continuïteit 8 4 Separatie-eigenschappen
De Dekpuntstelling van Brouwer
De Dekpuntstelling van Brouwer Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Twente, 19 oktober 2009: 18:00 20:00 Outline 1 2 3 4 De formulering Dekpuntstelling van Brouwer Zij n een
Discrete Wiskunde 2WC15, Lente Jan Draisma
Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma Voorwoord Dit zijn aantekeningen voor het vak Discrete Wiskunde (2WC15), gegeven in het lentesemester van 2010. Dit vak bestaat uit twee delen: algoritmische
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.1, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 21 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 32 Outline 1 K. P. Hart TW2040: Complexe Functietheorie
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints
Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002
Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002 1. We vatten {0, 1} op als het lichaam F 2. Een schuifregisterrij is een rij {s n } n=0 in F 2 gegeven door r startwaarden s
Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00
Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus
METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.)
METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.) 1. Inleiding. In deze syllabus behandelen we een aantal fundamentele onderwerpen uit de
