Complexe functies 2019
|
|
|
- Ruben de Kooker
- 6 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Complexe functies 019 Extra opgaves Opgave A Laat zien dat R voorzien van de bewerkingen a + b := (a 1 +b 1,a +b ) a b := (a 1 b 1 a b,a 1 b +a b 1 ) isomorf is met C. Wat is i in deze representatie? Opgave B Laat zien dat {0} ]0, [ R/ πz voorzien van de bewerkingen (r 1,θ 1 ) + (r,θ ) := (R,Θ) met R = r1 +r 1r (cosθ 1 cosθ +sinθ 1 sinθ )+r en tanθ = r 1sinθ 1 +r sinθ r 1 cosθ 1 +r cosθ (r 1,θ 1 ) (r,θ ) := (r 1 r,θ 1 +θ ) samen met 0 + z := z en 0 z := 0 voor alle z {0} ]0, [ R/ πz isomorf is met C. Wat is i in deze representatie? Opgave C Laat zien dat de verzameling { ( x y y x ) x,y R} van reële matrices voorzien van de gebruikelijke bewerkingen optellen en matrixvermenigvuldiging isomorf is met C. Wat is i in deze representatie? Opgave D Definieer op de ruimte R[x] van veeltermen met reële coëfficienten de equivalentierelatie f g : er bestaat h R[x] met f g = (x +1)h en ga na dat de bewerkingen optellen en vermenigvuldigen van veeltermen op het quotient R[x]/ (x +1) := R[x]/ goed gedefinieerd zijn. Laat zien dat R[x]/ (x +1) voorzien van deze bewerkingen isomorf is met C. Wat is i in deze representatie? Hint (voor wie Ringen en Galoistheorie heeft gevolgd): Wat gebeurt hier eigenlijk? 1
2 Opgave E Laat zien dat Z = Z/ Z een lichaam is waarin ieder element een kwadraat is. Heeft de veeltermvergelijking x x + 1 = 0 een oplossing binnen Z? Opgave F Zij f(z) = z. Leg uit hoe f de complexe schijf C op zichzelf afbeeldt. Opgave G Zij f(z) = 1 z = z. Leg uit hoe f de gepunkteerde complexe schijf C \{0} op zichzelf afbeeldt. Opgave H Doel van deze opgave is om de volgende stelling te bewijzen. Stelling 1 Zij D C open en f : D C continu complex differentieerbaarmet Df(a) 0 voor een a D. Dan bestaan er open deelverzamelingen U,V C met a U en f(a) V zodanig, dat f(u) = V, de inverse f 1 : V U bestaat en is continu complex differentieerbaar. Deze stelling staat bekend als de inverse functie stelling en geldt ook voor continu reëel differentieerbare f : W R n, a W R n open, mits (iets sterker) detdf(a) 0 ook voor n = en de conclusie is dat f 1 continu reëel differentieerbaar is. (i) Ga na dat zonder verlies van algemeenheid a = 0. (ii) Toon aan dat zonder verlies van algemeenheid Df(0) = id. (iii) Definieer g(x) := f(x) x voor alle x D en laat zien dat er δ > 0 bestaat met Dg(x) 1 voor alle x B(0;δ). (iv) Gebruik dit voor en concludeer dat g(x) g(y) 1 x y voor alle x,y B(0;δ) f(x) f(y) 1 x y voor alle x,y B(0;δ).
3 (v) Verifieer dat f injectief is op B(0;δ) met continue inverse f 1 : f(b(0;δ)) B(0;δ). (vi) Ga na dat er γ > 0 bestaat met detdf(x) 0 voor alle x B(0;γ). (vii) Definieer ε := min{δ,γ} en laat zien dat het beeld f({ x = ε}) van de rand van B(0;ε) tot f(0) een positieve afstand d := dist(f(0),f({ x = ε})) = min{ f(0) f(x) x = ε} > 0 heeft. Hint: { x = ε} is compact. (viii) Definieer V := B(f(0); 1 d) en voor y V willekeurig maar vast definieer ( ) h(x) := f(x) y = (f(x) y) f(x) y en ga na dat er een z B(0;ε) bestaat met Dh(z) = 0. (ix) Toon aan dat f(z) = y en bewijs hiermee dat V f(b(0;ε)). Hint: bereken Dh(z)v, v C in termen van Df(z)v, f(z) en y. (x) Concludeer dat de beperking f : U V van f tot U := f 1 (V) ook surjectief is, dus bijectief. (xi) Toon aan dat f 1 : V U continu reëel differentieerbaar is. (xii) Bewijs dat f 1 : V U continu complex differentieerbaar is. Opgave I Zij H het bovenhalfvlak {Imz > 0} en D = { z < 1}. Ga na dat de Möbius-transformatie z z i z +i een analytisch isomorfisme van H met D is. Laat zien dat er geen analytisch isomorfisme van H met C bestaat. (Sorry, dit laatste gaat met de Stelling van Liouville.) Opgave J Zij G C een gebied met 0 G en f : G C analytisch. Veronderstel f( 1 n ) < 1 n voor alle n N en toon aan dat dan f = 0. 3
4 Opgave K Definieer f(z) := ln z op R \{0} =],0[ ]0,+ [ zoals gebruikelijk als verketting van z z met de inverse van de exponentiaalfunctie op ]0, + [. Bepaal een zo groot mogelijke analytische uitbreiding van f. Opgave L Zij D = D(0;1) C de eenheidsschijf. (i) Voor een continue functie f : D C op de cirkel met straal 1 definieer F : D C d.m.v. F(z) := 1 f(ζ)dζ πi ζ z en ga na dat F op D in een convergente machtreeks rond de oorsprong kan worden ontwikkeld. Hint: gebruik het bewijs van Stelling III.7.3. (ii) Laat zien dat f F een lineaire afbeelding tussen de complexe vectorruimten van continue functies f : D C en holomorfe functies F : D C definieert, de zogenaamde Cauchy-transformatie. (iii) Toon aan dat de Cauchy-transformatie niet injectief is. Hint: beschouw f(ζ) = 1 ζ. D Opgave M Een meromorfe functie op U C open is een holomorfe functie op U \S, S U discreet, waarvoor de niet ophefbare singulariteiten in de z 0 S allemaal polen zijn. Een reeks f n vanmeromorfefuncties f n opu is compact convergent in U alser voorelke compacte n=1 verzameling K U een m = m(k) N bestaat met de volgende eigenschappen. (i) Voor n m heeft f n geen polen in K. (ii) De reeks f n K convergeert uniform op K. n=m Laat zien dat er dan precies één meromorfe functie g op U bestaat waarvoor het volgende geldt. Voor V U open en m N zodanig, dat f n voor alle n m geen polen in V heeft is de reeks f n V van holomorfe funties compact convergent in V met als limiet n=m een holomorfe functie h op V waarvoor g V = f 1 V f m 1 V + h. 4
5 In het bijzonder is f holomorf op het complement in U van alle poolverzamelingen van de f n. Schrijf dan ook g = f n. Opgave N n=1 Zijf : CP 1 CP 1 eenanalytischautomorfisme. Toonaandatf eenmöbius-transformatie is. Opgave O Zij h holomorf op D = { z 1} met h(z) < 1 voor alle z = 1. Toon aan dat h op D een uniek dekpunt z 0 heeft. Wat kun je zeggen over h (z 0 )? Hint: een dekpunt van h is een nulpunt van z h(z) z. Opgave P Zij λ R met λ > 1. (i) Ga na dat f(x) = λ x e x op R precies nulpunten heeft. (ii) Laat zien dat f(z) = λ z e z verder geen complexe nulpunten z = x+iy met reëel gedeelte x 0 heeft. (iii) Teken de niveaukrommen Ref = 0 en Imf = 0 voor een aantal keuzes van λ, bv. met de computer. (iv) Wat kun je zeggen over de complexe nulpunten z = x+iy van f met reëel gedeelte x < 0? 5
Examen Complexe Analyse (September 2008)
Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3
Tentamen Analyse 4. Maandag 16 juni 2008, uur
Tentamen Analyse 4 Maandag 16 juni 2008, 14-17 uur Vermeld uw naam (met voornaam en voorletters) en uw studentnummer. Er zijn geen hulpmiddelen toegestaan. Dit tentamen bestaat uit zes opgaven. Vergeet
TW2040: Complexe Functietheorie
week 4.8, maandag Faculteit EWI TU Delft Delft, 6 juni, 2016 1 / 33 Outline 1 Maximum-modulusprincipe Lemma van Schwarz 2 2 / 33 Maximum-modulusprincipe Lemma van Schwarz Maximum-modulusprincipe Stelling
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.6, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 2 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 38 Outline 1 Rekenregels 2 K. P. Hart TW2040: Complexe
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.6, maandag K. P. Hart Faculteit EWI TU Delft Delft, 30 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 33 Outline 1 2 Algemeenheden Gedrag op de rand Machtreeksen
V.4 Eigenschappen van continue functies
V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt
Inleiding Analyse 2009
Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn
I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.
I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk
Ter Leering ende Vermaeck
Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel
Opgaven Functies en Reeksen. E.P. van den Ban
Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.9, maandag K. P. Hart Faculteit EWI TU Delft Delft, 13 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 41 Outline III.6 The Residue Theorem 1 III.6 The
1 Symmetrieën van figuren
1 Symmetrieën van figuren 1.1 Het mysterie van de hoge eik Als je door een met water gevulde reageerbuis heen de woorden DIE HOHE EICHE FÄLLT LANGSAM UM leest, waarbij de eerste drie woorden rood en de
3 Opgaven bij Hoofdstuk 3
3 Opgaven bij Hoofdstuk 3 Opgave 3. Voor k beschouwen we de functie f k : x sin(x/k). Toon aan dat f k 0 uniform op [ R, R] voor iedere R > 0. Opgave 3.2 Zij V een verzameling. Een functie f : V C heet
Tentamen Analyse 4 (wi2602) 17 juni 2011, uur. ) (1 gratis)) Deel 2: opgaven 2b, 4ab, 5, 6 (normering: 2 + (
TU Delft Mekelweg 4 Faculteit EWI, DIAM 68 CD Delft Tentamen Analyse 4 (wi6) 7 juni, 4-7 uur Het tentamen bestaat uit twee delen: Deel : opgaven, a, 3ab, 4c (normering: + + ( + ) + + ( gratis)) Deel :
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.9, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 16 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 46 Outline III.7 Applications of the Residue Theorem
Topologie I - WPO. Prof. Dr. E. Colebunders
Topologie I - WPO Prof. Dr. E. Colebunders Academiejaar 2015-2016 Inhoudsopgave 1 Topologische ruimten 2 2 Metriseerbaarheid en aftelbaarheid 7 3 Convergentie en continuïteit 8 4 Separatie-eigenschappen
(ii) Zij e 0 een geheel getal. Bewijs: de code C is e-fouten-verbeterend d(x, y) 2e + 1 voor alle x, y C met x y.
Opgaven bij het college Topologie 1 Metrische ruimten Opgave 1.1. Geef een voorbeeld waaruit blijkt dat de doorsnede van oneindig veel open verzamelingen in een metrische ruimte niet open hoeft te zijn.
Oefenopgaven Grondslagen van de Wiskunde A
Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat
Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen
Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f
3 De duale vectorruimte
3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.1, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 21 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 32 Outline 1 K. P. Hart TW2040: Complexe Functietheorie
Examenvragen Hogere Wiskunde I
1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies
V.2 Limieten van functies
V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de
168 HOOFDSTUK 5. REEKSONTWIKKELINGEN
168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a
Hoofdstuk 1. Inleiding. Lichamen
Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.10, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 23 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 46 Outline 1 2 3 K. P. Hart TW2040: Complexe Functietheorie
Les 1 Kwadraat afsplitsen en Verzamelingen
Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z
Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30)
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 016, 1:30 15:30 (16:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van aantekeningen
Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006
Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006 Inhoudsopgave 1 Topologische ruimten 2 2 Metriseerbaarheid en aftelbaarheid 7 3 Convergentie en continuïteit 8 4 Separatie-eigenschappen
Bespreking van het examen Complexe Analyse (tweede zittijd)
Bespreking van het examen Complexe Analyse (tweede zittijd) Bekijk ook de bespreking van het examen van de eerste zittijd (op Toledo). Het valt hier op dat de scores op sommige vragen wel heel slecht zijn.
Lineaire afbeeldingen
Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Functietheorie (2Y480) op ,
1 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking van het tentamen Functietheorie (2Y480) op 25-11-1998, 9.00-12.00 uur Opgave 1 1. Formuleer de Cauchy-Riemann-vergelijkingen.
Opgave 1.1. Geef een voorbeeld waaruit blijkt dat de doorsnede van oneindig veel open verzamelingen in een metrische ruimte niet open hoeft te zijn.
Opgaven bij het college Topologie 1 Metrische ruimten Opgave 1.1. Geef een voorbeeld waaruit blijkt dat de doorsnede van oneindig veel open verzamelingen in een metrische ruimte niet open hoeft te zijn.
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van limiet dat lim y 0 y = 0. (b) Bewijs lim y 0 y 3 = 0 uit de definitie van limiet. (c)
Enkele bedenkingen bij het examen Complexe Analyse
Enkele bedenkingen bij het examen Complexe Analyse De examenvragen vind je op het einde van dit documentje. Eerst een paar algemene opmerkingen. Vele antwoorden zijn slordig opgeschreven wat het lezen
Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking
Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking 10 december 2013, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is
Aanvullingen bij Hoofdstuk 6
Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W
Overzicht Fourier-theorie
B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van
Tentamen Functies en Reeksen
Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy
Inleiding Analyse. Opgaven. E.P. van den Ban. c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien
Inleiding Analyse Opgaven E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien 0 1 1 Limieten en continuïteit Opgave 1.1 (a) Bewijs direct uit de definitie van limiet dat
De stelling van Hahn en Mazurkiewicz
Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica De stelling van Hahn en Mazurkiewicz Naam: Studentnummer: Studie: Begeleider: Datum: Lennaert Stronks 4062175 Wiskunde
Bespreking Examen Analyse 1 (Augustus 2007)
Bespreking Examen Analyse 1 (Augustus 2007) Vooraf: Zoals het stilletjes aan een traditie is geworden, geef ik hier bedenkingen bij het examen van deze septemberzittijd. Ik zorg ervoor dat deze tekst op
opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.
opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal
III.2 De ordening op R en ongelijkheden
III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.
Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07
Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.
Lineaire Algebra C 2WF09
Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: [email protected] H. Wilbrink HG 9.49, Tel. 2783, E-mail: [email protected] http://www.win.tue.nl/wsk/onderwijs/2wf09
Getallen, 2e druk, extra opgaven
Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in
Approximatietheorie. De Stelling van Carleman. Mies Versloot. 14 juli Bachelorproject Begeleiding: prof. dr. Jan Wiegerinck
Approximatietheorie De Stelling van Carleman Mies Versloot 14 juli 2017 Bachelorproject Begeleiding: prof. dr. Jan Wiegerinck Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen,
Tentamen Grondslagen van de Wiskunde A, met uitwerkingen
Tentamen Grondslagen van de Wiskunde A, met uitwerkingen 8 december 2015, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal
3 Rijen en reeksen van functies
3 Rijen en reeksen van functies 3.1 Uniforme convergentie van een rij functies Met het oog op latere toepassingen op machtreeksen en Fourierreeksen werken we in het vervolg steeds met complexwaardige functies.
Functievergelijkingen
Functievergelijkingen Trainingsweek juni 2008 Basistechnieken Je mag alle getallen in het domein invullen in je functievergelijking. Wat er precies handig is, hangt af van het domein en van de functievergelijking.
Niet-standaard analyse (Engelse titel: Non-standard analysis)
Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Niet-standaard analyse (Engelse titel: Non-standard analysis) Verslag ten behoeve
Examen G0U13 - Bewijzen en Redeneren,
Examen G0U13 - Bewijzen en Redeneren, 2010-2011 bachelor in de Wisunde, bachelor in de Fysica, bachelor in de Economische Wetenschappen en bachelor in de Wijsbegeerte Vrijdag 4 februari 2011, 8u30 Naam:
Convexe Analyse en Optimalisering
Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,
Huiswerk Hints&Tips Analyse 2, College 26
Huiswerk Hints&Tips Analyse, College 6 [K..]. Tip : Toon aan dat er punten (x, y ) en (x, y ) en scalars m, M R bestaan zo dat m = f(x, y ) f(x, y) f(x, y ) = M. Laat dan zien dat m(b a)(d c) = m f M =
Examen Wiskundige Basistechniek 15 oktober 2011
Examen Wiskundige Basistechniek 15 oktober 2011 vraag 1: Gegeven is het complex getal ω = exp(i π 5 ). vraag 1.1: Als we in het complexe vlak het punt P met cartesiaanse coördinaten (x, y) vereenzelvigen
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra donderdag 29 januari 205, 9.00-2.00 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken.
1 Verzamelingen en afbeeldingen
Samenvatting Wiskundige Structuren, 2010 Aad Offerman, www.offerman.com 1 1 Verzamelingen en afbeeldingen Notaties: A = {1,2,3},, x A, y / A, A = B A B en B A, N = {0,1,2,...}, Z = {..., 3, 2, 1,0,1,2,...},
34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN
34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een
Complexe getallen: oefeningen
Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de
EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie
EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.3, maandag K. P. Hart Faculteit EWI TU Delft Delft, 2 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 34 Outline 1 Conforme afbeeldingen 2 K. P. Hart TW2040:
wi4041 Functieruimten dr. K.P. Hart
wi4041 Functieruimten dr. K.P. Hart Cursus 2003/2004 Inhoud I. TOPOLOGISCHE RUIMTEN 1 1. Topologische Eigenschappen......................................................... 1 2. Topologische Ruimten................................................................
Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen
Tweede huiswerkopdracht Lineaire algebra 1 en opmerkingen November 10, 2009 Opgave 1 Gegeven een vectorruimte V met deelruimtes U 1 en U 2. Als er geldt dim U 1 = 7, dimu 2 = 9, en dim(u 1 U 2 ) = 4, wat
Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015
Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen
Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur
Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef
Hoofdstuk 9. Vectorruimten. 9.1 Scalairen
Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen
3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.
Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.
Complexe functies. 2.1 Benadering door veeltermen
Wiskunde voor kunstmatige intelligentie, Les Complexe functies Nadat we de complexe getallen hebben leren kennen, is het een voor de hand liggende vraag of hiervoor net als voor de reële getallen ook functies
Lineaire algebra I (wiskundigen)
Lineaire algebra I (wiskundigen) Voorbeelden van toetsopgaven, 011 en (1) (a) Bepaal de afstand van het punt Q = (1,, ) R 3 tot het vlak gegeven door x + y z = 1. (b) Bepaal de hoek tussen de vectoren
1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.
Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en
II.3 Equivalentierelaties en quotiënten
II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde
EERSTE DEELTENTAMEN ANALYSE C
EERSTE DEELTENTAMEN ANALYSE C 0 november 990 9.30.30 uur Zet uw naam op elk blad dat u inlevert en uw naam en adres op de enveloppe. De verschillende onderdelen van de vraagstukken zijn zoveel als mogelijk
Tentamen Lineaire Algebra 1 (Wiskundigen)
Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren
college 6: limieten en l Hôpital
126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In
Het uitwendig product van twee vectoren
Het uitwendig product van twee vectoren Als u, v R 3, u = u 1, u 2, u 3 en v = v 1, v 2, v 3 dan is het uitwendig product van u en v gelijk aan een vector in R 3 en wel u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3,
Vectorruimten met inproduct
Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij
Oplossingen Oefeningen Bewijzen en Redeneren
Oplossingen Oefeningen Bewijzen en Redeneren Goeroen Maaruf 20 augustus 202 Hoofdstuk 3: Relaties. Oefening 3..2 (a) Persoon p is grootouder van persoon q. (b) (p, q) O o O r P : [ (p, r) O (r, q) O ]
Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30
Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde vrijdag 3 februari 2012, 8:30 12:30 Naam: Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.
Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)!
Tentamen Analyse II. Najaar 6 (.1.7) Toelicting: Je mag Zoric deel I en II gebruiken, maar geen ander ulpmiddelen (zoals andere boeken, aantekeningen, rekenmacine etc.)! Als je bekende stellingen gebruikt
Kwantummechanica Donderdag, 13 oktober 2016 OPGAVEN SET HOOFDSTUK 4. Bestudeer Appendix A, bladzijden van het dictaat.
1 Kwantummechanica Donderdag, 1 oktober 016 OPGAVEN SET HOOFDSTUK 4 VECTOREN OVER DE REËLE RUIMTE DUS DE ELEMENTEN ZIJN REËLE GETALLEN Bestudeer Appendix A, bladzijden 110-114 van het dictaat. Opgave 1:
OPLOSSINGEN PROEFEXAMEN LINEAIRE ALGEBRA donderdag 18 november 2010
OPLOSSINGEN PROEFEXAMEN LINEAIRE ALGEBRA donderdag 18 november 2010 1. Zij V een vectorruimte en A = {v 1,..., v m } een deelverzameling van m vectoren uit V die voortbrengend is voor V, m.a.w. V = A.
Algebra. Oefeningen op hoofdstuk Groepentheorie Cayleytabellen van groepen van orde Cyclische groepen
Oefeningen op hoofdstuk 5 Algebra 5.2 Groepentheorie 5.2.1 Cayleytabellen van groepen van orde 8 Oefening 5.1. Stel de Cayleytabel op voor de groep van de symmetrieën van een vierkant. Bewijs dat deze
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan
