Functievergelijkingen
|
|
|
- Jozef Smeets
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Functievergelijkingen Trainingsweek juni 2008 Basistechnieken Je mag alle getallen in het domein invullen in je functievergelijking. Wat er precies handig is, hangt af van het domein en van de functievergelijking. Probeer gelijke termen te creëren of ingewikkelde termen te laten wegvallen. Als je een vermoeden hebt voor je functiewaarden op N of Z, probeer het dan met inductie te bewijzen. Een functie f : A B is injectief als voor alle a, b A geldt: als f(a) = f(b), dan is a = b. Of omgekeerd: als a b, dan is f(a) f(b). Twee verschillende elementen uit het domein hebben dan dus nooit dezelfde functiewaarde. Een functie f : A B is surjectief als voor alle b B er een a A is zodat f(a) = b. Alle waarden in het codomein worden dan bereikt. Een functie is bijectief als hij injectief en surjectief is. Elk element in het domein wordt dan aan precies één element in het codomein gekoppeld, en andersom. Je kunt proberen de eigenschappen injectief, surjectief en bijectief rechtstreeks te bewijzen. Als je in je functievergelijking een term f(f(x)) hebt of kunt creëren, dan kun je ook proberen te bewijzen dat f(f(x)) een van de genoemde eigenschappen heeft. Daaruit volgt dat f dezelfde eigenschap heeft. Als je functie injectief is, mag je links en rechts f jes tegen elkaar wegstrepen. Als je functie surjectief is, mag je in je hele vergelijking f(x) door t vervangen, waarbij t alle waarden in het codomein aan mag nemen. In het bijzonder mag je x zo kiezen dat f(x) = 0. Vergeet NOOIT om aan het eind van je uitwerking de gevonden functies te controleren! Opgave 1 Vind alle functies f : R R met f(f(x))+f(y) = x+y +9 1
2 Opgave 2 Vind alle functies f : Z Z die voldoen aan 2mf(2n) + 2n = nf(2m + 1) voor alle m, n Z, f(2) = 2. Opgave 3 Vind alle functies f : Z Z die voldoen aan voor alle m, n Z. f(m + n) + f(m n) = f(2m) + 4 Opgave 4 Zij f : R R een functie die voldoet aan Bewijs dat f bijectief is. f(xf(y) + f(x)) = 2f(x) + xy Opgave 5 Vind alle functies f : R R die voldoen aan f(yf(x)) = xy f(y) Opgave 6 Vind alle functies f : Q Q die voldoen aan voor alle x, y Q. f(x + f(y)) = y + f(x) Wat te doen met f(f(x))? Als je een uitdrukking gevonden hebt voor f(f(x)), dan kun je daar mogelijk uit concluderen dat f surjectief, injectief of zelfs bijectief is. Daarnaast kan het ook handig zijn om met behulp van deze uitdrukking f(f(f(x))) op twee manieren te berekenen: door de eerste twee f jes samen te nemen en door de laatste twee f jes samen te nemen. Stel bijvoorbeeld dat f(f(x)) = 2x. Dan geldt f(f(f(x))) = f(2x), maar ook f(f(f(x))) = 2f(x). Dus f(2x) = 2f(x). In het algemeen geldt: als f(f(x)) = g(x), dan is g(f(x)) = f(f(f(x))) = f(g(x)). 2
3 Opgave 7 Bewijs dat er geen functie f : R R bestaat die voldoet aan f(f(x) + y) = f(x) + 3x + yf(y) Opgave 8 Bewijs dat er geen functie f : Z 0 Z 0 bestaat die voldoet aan voor alle n Z 0. f(f(n)) = n Fixpunten Een fixpunt of dekpunt van een functie f : A A is een element a A waarvoor geldt f(a) = a. Het kan helpen om de fixpunten van een functie te bepalen. Als je bijvoorbeeld weet dat f(x + x 2 f(x) 3) = x + x 2 f(x) 3 voor alle x R, dan zijn alle getallen van de vorm x + x 2 f(x) 3 een fixpunt van f. Vaak heeft een functie maar weinig fixpunten en in dat geval kan x + x 2 f(x) 3 maar weinig verschillende waarden aannemen. Dat geeft je informatie over de functie f. Er zijn ook functies met veel fixpunten (bijvoorbeeld de functie f(x) = x voor alle x R) dus je mag niet zomaar aannemen dat jouw functie weinig fixpunten heeft. Maar je kunt het soms wel bewijzen. Daarbij kan het handig zijn om fixpunten in te vullen in je vergelijking. Voorbeeld. Vind alle functies f : R R die voldoen aan f(f(x) + y) = (y + 1)f(x) voor alle x, y R. Oplossing. Vul in y = 0: dat geeft f(f(x)) = f(x). We zien dat f(x) een fixpunt van f is voor alle x R. We willen nu bewijzen dat f weinig fixpunten heeft. Stel dat x en z beide fixpunten van f zijn en vul in y = z x. Dan geldt f(x) = x en f(x+y) = f(z) = z = x+y, dus uit de functievergelijking krijgen we x + y = f(x + y) = f(f(x) + y) = (y + 1)f(x) = (y + 1)x = xy + x. Hieruit volgt y = xy dus y = 0 of x = 1. Dus z x = 0 of x = 1. Als er een fixpunt ongelijk aan 1 is, dan kunnen we x 1 kiezen en volgt dus z = x. Dus in dat geval is er precies één fixpunt. Als er geen fixpunt ongelijk aan 1 is, dan kan alleen x = 1 een fixpunt zijn. Er is minstens één fixpunt, want f(x) is een fixpunt voor alle x, dus in alle gevallen is er precies één fixpunt c en geldt f(x) = c voor alle x R. Invullen in de vergelijking laat zien dat dit alleen voldoet voor c = 0. Dus de enige oplossing is f(x) = 0 voor alle x R. 3
4 Opgave 9 Vind alle functies f : R >0 R >0 die voldoen aan voor alle x, y R >0. x 2 (f(x) + f(y)) = (x + y)f(f(x)y) Opgave 10 Zij S = ( 1, ) de verzameling reële getallen groter dan 1. Bepaal alle functies f : S S die voldoen aan (1) f(x + f(y) + xf(y)) = y + f(x) + yf(x) voor alle x, y S, (2) f(x) x is strikt stijgend op ( 1, 0) en (0, ). Van Q naar R Soms kun je uit de functievergelijking de functiewaarden op de gehele getallen halen met behulp van inductie. Meestal is het dan ook niet zo moeilijk om dat uit te breiden naar de rationale getallen. Maar wat als je functie R als domein heeft? Als je functie op Q aan een mooi voorschrift voldoet, dan verwacht je dat hij dat op R ook doet. Maar dat moet je wel bewijzen en daar heb je meestal een of andere extra voorwaarde voor nodig die aangeeft dat de functie niet al te gekke dingen kan doen. Bijvoorbeeld: f is strikt stijgend; of f(x) > 0 als x > 0. Verder mag je gebruik maken van de volgende stelling. Stelling. Als voor reële getallen x en y geldt dat x < y, dan is er een rationaal getal q zodat x < q < y. Hoe dicht twee reële getallen dus ook bij elkaar liggen, er past altijd nog een getalletje uit Q tussen. We zeggen ook wel: Q ligt dicht in R. Voorbeeld. Vind alle functies f : R R die voldoen aan f(x + y) = f(x) + f(y) voor alle x, y R, f(x) is strikt stijgend. Oplossing. Dit is een standaardfunctievergelijking: we hebben f(x) = cx voor alle x Q voor een zekere c R. In dit geval moet gelden dat c > 0 omdat de functie strikt stijgend is. Stel nu dat er een x R is met f(x) < cx. Dan bestaat er een q Q met f(x) c < q < x. 4
5 Er geldt nu f(q) = cq > f(x) en q < x. Tegenspraak met het feit dat f strikt stijgend is. Analoog krijg je een tegenspraak bij f(x) > cx. We concluderen dat f(x) = cx voor alle x R. Deze functie voldoet. Opgave 11 Vind alle functies f : R R die voldoen aan f(x + y) = f(x) + f(y) voor alle x, y R, f(x) > 0 voor alle x > 0. Opgave 12 Vind alle functies f : R R die voldoen aan f(x 2 + f(y)) = y + f(x) 2. (1) Opgave 13 Vind alle functies f : R R die voldoen aan f(f(x) 2 + y) = x 2 + f(y) Overige opgaven Opgave 14 Vind alle functies f : R R die voldoen aan f(x) + f(y) + 1 f(x + y) f(x) + f(y) voor alle x, y R, f(x) f(0) voor x [0, 1), f( 1) = f(1) = 1. Opgave 15 Vind alle functies f : Q R die voldoen aan f(1) + 1 > 0, f(x + y) xf(y) yf(x) = f(x)f(y) x y + xy voor alle x, y Q, f(x) = 2f(x + 1) + x + 2 voor alle x Q. 5
FUNCTIEVERGELIJKINGEN
FUNCTIEVERGELIJKINGEN FOKKO VAN DE BULT 1. Inleiding Het oplossen van functievergelijkingen is een onderwerp dat nog niet heel lang op IMO s voorkomt. Een deel van de reden dat ze nu toch wel regelmatig
Uitwerkingen toets 9 juni 2012
Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is
Functies deel 1. Vijfde college
3 Functies deel 1 Vijfde college 1 Ch.3 Functions and Algorithms Hoofdstuk 3 uit Schaum gaat over functies en algoritmen. Het gedeelte over algoritmen ( 3.8 en 3.9) komt uitgebreid aan de orde bij toekomstige
Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen
Tweede huiswerkopdracht Lineaire algebra 1 en opmerkingen November 10, 2009 Opgave 1 Gegeven een vectorruimte V met deelruimtes U 1 en U 2. Als er geldt dim U 1 = 7, dimu 2 = 9, en dim(u 1 U 2 ) = 4, wat
Uitwerkingen toets 12 juni 2010
Uitwerkingen toets 12 juni 2010 Opgave 1. Bekijk rijen a 1, a 2, a 3,... van positieve gehele getallen. Bepaal de kleinst mogelijke waarde van a 2010 als gegeven is: (i) a n < a n+1 voor alle n 1, (ii)
I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.
I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk
Vergelijkingen van cirkels en lijnen
Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen
V.4 Eigenschappen van continue functies
V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt
opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.
opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal
Uitwerkingen Tentamen Wat is Wiskunde (WISB101) Donderdag 10 november 2016, 9:00-12:00
Uitweringen Tentamen Wat is Wisunde (WISB101) Donderdag 10 november 2016, 9:00-12:00 Docenten: Barbara van den Berg & Carel Faber & Arjen Baarsma & Ralph Klaasse & Vitor Blåsjö & Guido Terra-Bleeer Opgave
V.2 Limieten van functies
V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de
1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12
Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal
Inleiding Analyse 2009
Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn
Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07
Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.
Selectietoets vrijdag 21 maart 2014
Selectietoets vrijdag 21 maart 2014 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Vind alle niet-negatieve gehele getallen n waarvoor er gehele getallen a en b bestaan met n 2 = a + b en
III.2 De ordening op R en ongelijkheden
III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.
Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30
Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde vrijdag 3 februari 2012, 8:30 12:30 Naam: Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.
Oefenopgaven Grondslagen van de Wiskunde A
Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat
Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking
Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking 10 december 2013, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is
Oplossing van opgave 6 en van de kerstbonusopgave.
Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.
IMO-selectietoets I donderdag 2 juni 2016
IMO-selectietoets I donderdag juni 016 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Zij ABC een scherphoekige driehoek. Zij H het voetpunt van de hoogtelijn vanuit C op AB. Veronderstel
Examenvragen Hogere Wiskunde I
1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies
Enkele valkuilen om te vermijden
Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige
Machten, exponenten en logaritmen
Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde
Examen G0U13 - Bewijzen en Redeneren,
Examen G0U13 - Bewijzen en Redeneren, 2010-2011 bachelor in de Wisunde, bachelor in de Fysica, bachelor in de Economische Wetenschappen en bachelor in de Wijsbegeerte Vrijdag 4 februari 2011, 8u30 Naam:
Alle opgaven tellen even zwaar, 10 punten per opgave.
WAT IS WISKUNDE (English version on the other side) Maandag 5 november 2012, 13.30 1.30 uur Gebruik voor iedere opgave een apart vel. Schrijf je naam en studentnummer op elk vel. Alle opgaven tellen even
Oplossingen Oefeningen Bewijzen en Redeneren
Oplossingen Oefeningen Bewijzen en Redeneren Goeroen Maaruf 20 augustus 202 Hoofdstuk 3: Relaties. Oefening 3..2 (a) Persoon p is grootouder van persoon q. (b) (p, q) O o O r P : [ (p, r) O (r, q) O ]
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan
Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2
Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van
Tentamen Grondslagen van de Wiskunde A, met uitwerkingen
Tentamen Grondslagen van de Wiskunde A, met uitwerkingen 8 december 2015, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal
Hints en uitwerkingen huiswerk 2013 Analyse 1 H17
Hints en uitwerkingen huiswerk 013 Analyse 1 H17 Rocco van Vreumingen augustus 014 1 Inhoudsopgave 1 Hints 1 3 Hints 4 3 Hints 3 4 4 Hints 4 5 5 Hints 5 5 6 Hints 6 6 7 Hints 7 6 8 Hints 8 6 9 Hints 9
Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014
Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes
Complexe functies 2019
Complexe functies 019 Extra opgaves Opgave A Laat zien dat R voorzien van de bewerkingen a + b := (a 1 +b 1,a +b ) a b := (a 1 b 1 a b,a 1 b +a b 1 ) isomorf is met C. Wat is i in deze representatie? Opgave
Getaltheorie I. c = c 1 = 1 c (1)
Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk
Hoofdstuk 11: Eerstegraadsfuncties in R
- 229 - Hoofdstuk 11: Eerstegraadsfuncties in R Definitie: Een eerstegraadsfunctie in R is een functie met een voorschrift van de gedaante y = ax + b (met a R 0 en b R ) Voorbeeld 1: y = 2x Functiewaardetabel
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3
Hints en uitwerkingen huiswerk 2013 Analyse 1 H18
Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Rocco van Vreumingen 29 augustus 2014 1 Inhoudsopgave 1 Hints 1 3 2 Hints 2 4 3 Hints 3 5 4 Hints 4 5 5 Hints 5 6 6 Hints 6 6 7 Hints 7 6 8 Antwoorden
1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling
Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil
Inverse functies en limieten
Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x
Functies van meer variabelen voor dummy s
Functies van meer variabelen voor dummy s Dit is een 'praktische gids voor dummy s'. Hieronder kun je een aantal voorbeelden met uitleg vinden, oefeningen en uitwerkingen. De voorbeelden komen deels uit
EERSTE DEELTENTAMEN ANALYSE C
EERSTE DEELTENTAMEN ANALYSE C 0 november 990 9.30.30 uur Zet uw naam op elk blad dat u inlevert en uw naam en adres op de enveloppe. De verschillende onderdelen van de vraagstukken zijn zoveel als mogelijk
Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie
Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft
III.3 Supremum en infimum
III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk
Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1
Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen
1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A.
. Oefen opgaven Opgave... Van de lineaire afbeelding A : R 3 R 3 is gegeven dat A = Bepaal de matrix van A. 4, 4 A =, A = 3 4. In de volgende opgave wordt het begrip injectiviteit en surjectiviteit van
Wiskundige Structuren
wi1607 Wiskundige Structuren Cursus 2009/2010 Eva Coplakova en Bas Edixhoven i Inhoudsopgave I Verzamelingen en afbeeldingen..... 2 I.1 Notatie........3 I.2 Operaties op verzamelingen...7 I.3 Functies.......10
In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:
Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven
Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015
Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen
Niet-standaard analyse (Engelse titel: Non-standard analysis)
Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Niet-standaard analyse (Engelse titel: Non-standard analysis) Verslag ten behoeve
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
Wiskunde. Verzamelingen, functies en relaties. College 2. Donderdag 3 November
Wiskunde Verzamelingen, functies en relaties College 2 Donderdag 3 November 1 / 17 Equivalentierelaties Def. Een relatie R heet reflexief als x xrx. R heet transitief als x y z (xry yrz xrz). R heet symmetrisch
RINGEN EN LICHAMEN. Aanvullende opgaven met uitwerkingen
RINGEN EN LICHAMEN Aanvullende opgaven met uitwerkingen Hierna volgen een aantal aanvullende opgaven die gaan over kernbegrippen uit de eerste hoofdstukken van Ringen en Lichamen. Probeer deze opgaven
Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat:
Hoofdstuk 1 Eerste begrippen 1.1 Wat is een groep? Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat: 1. a, b G : a b G 2. a, b, c G : a (b c) = (a b) c = a
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 215 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan. Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt
II.3 Equivalentierelaties en quotiënten
II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde
Discrete Wiskunde 2WC15, Lente Jan Draisma
Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 3 De Nullstellensatz 1. De zwakke Nullstellensatz Stelling 1.1. Zij K een algebraïsch gesloten lichaam en zij I een ideaal in K[x] = K[x 1,...,
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra maandag 3--27, 3.3-6.3 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken. Schrijf op elk
Oefening 2.2. Welke van de volgende beweringen zijn waar?
Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven
Definitie 1.1. Een partitie van een natuurlijk getal n is een niet stijgende rij positieve natuurlijke getallen met som n
Hoofdstuk 1 Inleidende begrippen 1.1 Definities Definitie 1.1. Een partitie van een natuurlijk getal n is een niet stijgende rij positieve natuurlijke getallen met som n Voor het tellen van het aantal
Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008
Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :
We beginnen met de eigenschappen van de gehele getallen.
II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;
Wanneer zijn veelvouden van proniks proniks?
1 Uitwerking puzzel 92-1 Wanneer zijn veelvouden van proniks proniks? Harm Bakker noemde het: pro-niks voor-niks De puzzel was voor een groot deel afkomstig van Frits Göbel. Een pronik is een getal dat
1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal
Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, 14.00 17.00, Examenzaal Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek
VERZAMELINGEN EN AFBEELDINGEN
I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen
1 Kettingbreuken van rationale getallen
Kettingbreuken van rationale getallen Laten we eens starten met een breuk bijvoorbeeld 37/3 Laten we hier ons kettingbreuk algoritme op los, We concluderen hieruit dat 37 3 3 + 3 + + 37 3 + + + hetgeen
Tellen. K. P. Hart. Delft, Faculty EEMCS TU Delft. K. P. Hart Tellen
Tellen Tá scéiĺın agam K. P. Hart Faculty EEMCS TU Delft Delft, 16-9-2015 Dingen om te tellen afbeeldingen injecties surjecties bijecties deelverzamelingen van diverse pluimage Wat notatie Afkorting: n
Getaltheorie groep 3: Primitieve wortels
Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling
VWO finales. versie 1. 28 oktober 2012
VWO finales versie 1 28 oktober 2012 1 1 inleiding De finale van de VWO en de meeste internationale olympiades bestaan uit het bewijzen van vragen. Dit is iets wat men niet meer leert op school en waarbij
Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:
Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van
1 Verzamelingen en afbeeldingen
Samenvatting Wiskundige Structuren, 2010 Aad Offerman, www.offerman.com 1 1 Verzamelingen en afbeeldingen Notaties: A = {1,2,3},, x A, y / A, A = B A B en B A, N = {0,1,2,...}, Z = {..., 3, 2, 1,0,1,2,...},
OPLOSSINGEN VAN DE OEFENINGEN
OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal
3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.
Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.
Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule
Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in
Ongelijkheden groep 1
Ongelijkheden groep 1 Cauchy-Schwarz Trainingsdag (Transtrend, 6 maart 009 Cauchy-Schwarz Voor reële getallen x 1,, x n en y 1,, y n geldt: x i y i met gelijkheid dan en slechts dan als er een reëel getal
Calculus TI1 106M. I.A.M. Goddijn, Faculteit EWI 1 september 2014
Calculus TI1 106M, 1 september 2014 Inleiding Studiemateriaal Onderwerpen Calculus 1 september 2014 1 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : [email protected] homepage :
Uitwerkingen toets 9 juni 2010
Uitwerkingen toets 9 juni 2010 Opgave 1. Zij ABC een scherphoekige driehoek met de eigenschap BAC = 45. Zij D het voetpunt van de loodlijn vanuit C op AB. Zij P een inwendig punt van het lijnstuk CD. Bewijs
De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.
98 Algebra 3.3 Variabelen 3.3.1 Inleiding F= 9 5 15+32= 27+32=59 15 C= 59 F In de inleidende tekst aan het begin van dit hoofdstuk staat een afkorting waarmee de temperatuur in graden Celsius in graden
(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a
Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde
Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)
Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2
Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren
Overzicht TI1300: Redeneren en Logica College 10: Verzamelingenleer Tomas Klos Algoritmiek Groep Colleges 1 2: Bewijstechnieken Colleges 3 9: Propositielogica Vandaag en morgen: Verzamelingenleer Colleges
Getallensystemen, verzamelingen en relaties
Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van limiet dat lim y 0 y = 0. (b) Bewijs lim y 0 y 3 = 0 uit de definitie van limiet. (c)
Uitwerkingen tentamen Algebra 3 8 juni 2017, 14:00 17:00
Uitwerkingen tentamen Algebra 3 8 juni 207, 4:00 7:00 Je mocht zoals gezegd niet zonder uitleg naar opgaven verwijzen. Sommige berekeningen zijn hier weggelaten. Die moest je op je tentamen wel laten zien.
Dossier 1 SYMBOLENTAAL
Dossier 1 SYMBOLENTAAL basis voor wiskundige communicatie Dr. Luc Gheysens Wiskundigen hebben een eigen symbolentaal waarmee ze onderling communiceren, redeneringen en bewijzen neerschrijven, mathematische
Inleiding Analyse. Opgaven. E.P. van den Ban. c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien
Inleiding Analyse Opgaven E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien 0 1 1 Limieten en continuïteit Opgave 1.1 (a) Bewijs direct uit de definitie van limiet dat
Functies van één veranderlijke
Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/40 Elektrotechniek, Wiskunde en Informatica EWI Functies van één veranderlijke Als je alleen deelneemt
