3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

Maat: px
Weergave met pagina beginnen:

Download "3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n."

Transcriptie

1 Radboud Universiteit Tentamen Calculus A NWI-WP januari 208, Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden. Zorg dat uw redeneringen en schrijfstijl helder en beknopt zijn. Noteer op elk vel uw naam en studentnummer. In geval uw huiswerkcijfer H 6.0 komt u in aanmerking voor de bonusregeling.. (a) Zij w = i. Bepaal w 2, de modulus w en argument arg(w). (b) Bepaal de nulpunten van z 7 = 28w met w als in (a). 2. Beschouw de functie f(x) = x 2 exp( x 3 ) = x 2 e x3 op het domein D = [, ). (a) Bepaal de afgeleide f en tweede afgeleide f. (b) Geef een schets van de grafiek van f (inclusief mogelijke asymptoten, maxima/minima). Bepaal het bereik van f. (c) Is de oneigenlijke integraal f(x) dx convergent of divergent? (d) Laat zien dat f beperkt tot het domein [0, 3 3 8] inverteerbaar is. Bepaal de waarde y 0 = f( 3 6 8) en bereken de afgeleide van de inverse functie f in y Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=0 4. Beschouw de machtreeks y(x) = n 2 n + 9n 3 n + 4 n 3 3 n + 4n 2 + 0, n= ( ) n (n + )x 2n. n=0 (a) Bepaal de convergentiestraal van de machtreeks. ( ) n n ( ) n. n + (b) Bepaal het convergentiegedrag van de reeks in de randpunten van het convergentieinterval. (c) Laat zien dat de machtreeks y(x) voldoet aan ( + x 2 ) dy = 4xy(x) met y(0) =. dx (d) Los deze differentiaalvergelijking op om de functie die deze machtreeksontwikkeling heeft te bepalen.!!zoz Op de achterkant staan ook nog opgaven ZOZ!!

2 Tentamen Calculus A NWI-WP (a) Bepaal de oplossing van dy dx = y2 sin(sin(x)) cos(x) met y(0) = 2. (b) Bepaal de algemene oplossing van dy dx + 2xy = x3. 6. De juiste formulering van de middelwaardestelling is: (a) als f : [a, b] R continu, dan neemt f elke waarde aan tussen f(a) en f(b); (b) als f : (a, b) R differentieerbaar, dan dan geldt dat er c (a, b) bestaat met f (c) = f(b) f(a) ; b a (c) als f : [a, b] R continu en f differentieerbaar op (a, b), dan geldt dat er c (a, b) bestaat met f (c) = f(b) f(a) ; b a (d) als f : (a, b) R differentieerbaar, dan neemt f elke waarde aan tussen f(a) en f(b). 7. Bepaal de algemene oplossing van y + 4y 4y = 24xe 2x. 8. Beschouw de differentiaalvergelijking dy dx + f(x)y = g(x)yn met n N en n 0, n en f en g gegeven functies, en y de onbekende functie. Merk op dat y(x) = 0 voor alle x een oplossing is, en de oplossing y(x) = 0 voor alle x is de triviale oplossing. (a) Laat zien dat door de substitutie h(x) = ( y(x) ) n voor een niet-triviale oplossing y deze differentiaalvergelijking overgaat in een lineaire eerste orde differentiaalvergelijking voor h. (b) Bepaal de algemene oplossing van dy dx y x = eax y 2 voor x > 0. Hier is a een reële constante ongelijk aan 0. (c) Voor welke waarden van a (met a 0) geldt dat voor elke oplossing van de differentiaalvergelijking uit (b) de lim x y(x) bestaat? Normering Opgave Gratis Totaal Punten Als het onafgeronde tentamencijfer T 5.0, waarbij T het totaal aantal behaalde punten gedeeld door 0 is, en uw huiswerkcijfer H 6.0, dan is het eindcijfer E gelijk aan het max(t, 0.8T + 0.2H). Als u niet aan deze voorwaarden voldoet, dan E = T. Het eindcijfer is de gebruikelijke afronding van E naar hele en halve cijfers (met uitzondering van 5.5). Bij deze vraag kunt u gokken. Een fout antwoord geeft aftrek, géén antwoord geeft geen aftrek. Alleen het antwoord van deze opgave telt.

3 Tentamen Calculus A NWI-WP025 3 Opgave. (a) We berekenen w 2 = ( 2 Bovendien is w = Uitwerkingen en hints 2i)( i) = i( ) = i + =, en omdat Rw = Iw volgt dat arg(w) = π (als Rw > 0) en arg(w) = 3 4 π (als Rw < 0). Omdat Rw = 2 2 > 0 volgt dat arg(w) = 4 π. Nu kunnen we ook w 2 = w 2 e 2i arg(w) = 2 e i 2 π = e i 2 π = i (als alternatief). (b) Schrijf eerst w = i = e i 4 π. Merk op dat 28 = 2 7, dus we moeten oplossen z 7 = 2 7 e i 4 π. Stel z = re iφ en dus z = r 7 e i7φ dan krijgen we de vergelijking { r 7 = 2 7 en we vinden 7 oplossingen 7φ = 4 π + k2π(k Z) = { r = 2 φ = π + k 2 π(k Z) 28 7 z k = 2 exp(i( 28 π + k 2 π)), k {0,, 2, 3, 4, 5, 6} 7 Opgave 2. (a) Een keer differentiëren geeft mbv de produkt- en kettingregel f (x) = 2xe x3 + x 2 ( 3x 2 )e x3 = (2x 3x 4 )e x3 = x(2 3x 3 )e x3 en nogmaals differentiëren geeft f (x) = (2 2x 3 )e x3 + (2x 3x 4 )( 3x 2 )e x3 = (2 8x 3 + 9x 6 )e x3 (b) Aangezien het D = [, ), en f continu is op het gehele domein, zijn er geen verticale asymptoten. Merk op dat lim x x 2 e x3 = 0, en dus is er een horizontale asymptoot y = 0. Voor de maxima en minima hoeven we alleen te kijken naar kritieke punten en het randpunt x =. Nu geldt f (x) = 0 dan en slechts dan als x = 0 of 2 3x 3 = 0 (ofwel x = 3 2/3 = 3 3 8). Merk op dat beide punten in het domein liggen. Omdat f(x) 0 voor alle x D en f(0) = 0 volgt dat f(0) = 0 een globaal minimum is voor x = 0. Merk op dat f (x) > 0 voor x [, 0) en voor x > en dat f (x) 0 voor x (0, 3 3 8). Dus f heeft een lokaal maximum f( 3 3 8) = 3 82 e 2/3 = 9

4 Tentamen Calculus A NWI-WP025 4 Figure : Plot van f voor opgave e 2/3 voor x = Merk op dat deze waarde kleiner is dan f( ) = e, en dus is het maximum in x = lokaal en niet globaal. Merk verder op dat, vanwege het gedrag van f, f voor x = een randmaximum heeft, en vanwege bovenstaande is het randmaximum globaal. Uit bovenstaande volgt dat het bereik van f gelijk is aan [0, f( )] = [0, e]. (c) Merk op dat R en dus bestaat de f(x) dx = R x 2 e x3 dx = 3 e x3 R = 3 e R3 + 3 e R lim x 2 e x3 dx = lim R R 3 e R3 + 3 e = 3 e en is de oneigenlijke R f(x) dx convergent (en de waarde van de convergente integraal is e). 3 (d) We weten dat f beperkt tot het open interval (0, 3 3 8) strikt positieve afgeleide heeft, en dus is f op [0, 3 3 8] strikt stijgend. In het bijzonder is f beperkt tot [0, 3 3 8] injectief en heeft daar een inverse f. Merk op dat y 0 = f( 3 6 8) = 3 82 = [ ] Om nu de afgeleide van de inverse functie f in y 0 te berekenen, differentiëren we x = f (f(x)) = = df dx (y 0) = 6 df dx (f(x)) f (x) = exp(8/6 3 ) 3 8(2 8/63 ) = (en dat zou verder vereenvoudigd kunnen worden). 6 df dx (y 0) = exp(/24) 3 8(2 /24) f ( 3 6 8)

5 Tentamen Calculus A NWI-WP025 5 van Opgave 3. Voor de eerste reeks gebruiken we het vergelijkingskenmerk, en we vergelijken door middel lim n n2 n+9n 3 n+4 n 3 3 n+4n 2 +0 n2 n n 3 3 n = en merk op dat n 2 n n= n 3 3 = n n=, en dit is een divergente reeks (want p = 5 < ). n 5/6 6 Aangezien de reeks alleen positieve termen bevat vinden we dat de reeks n=0 divergent is. Voor de laatste reeks gebruiken we het wortelkenmerk ( n n lim n ( )n n + ) n ( ) n = lim = lim n n + n ( + ) = n n 2 n+9n 3 n+4 n 3 3 n+4n 2 +0 dus geeft het wortelkenmerk geen uitspraak. We weten dat lim n ( + x n )n = e x en dus zien we dat ( ) n ( ) lim n n n n ( )n = lim = lim n + n n + n ( + = n )n e 0 en omdat de termen niet naar nul convergeren, is de reeks divergent. Opgave 4. (a) We gebruiken het quotiëntenkenmerk; ( ) n+ (n + 2)x 2(n+) lim n ( ) n (n + )x 2n = lim n x 2 n + 2 n + = x 2 + 2/n + /n = x 2 dus als x 2 < dan is de reeks absoluut convergent en als x 2 > dan is de reeks divergent. Dus x 2 < ofwel x < voor absolute convergentie, en dus is de convergentiestraal R =. (b) Voor x = ± vinden we dezelfde uitdrukking ( ) n (n + ) n= en deze reeks is divergent wat lim n ( ) n (n + ) 0. Dus divergent in beide randpunten ±.

6 Tentamen Calculus A NWI-WP025 6 (c) Het is duidelijk dat y(0) =, want 0 is het centrum van de machtreeks. Voor de differentiaalvergelijking schrijven we ( + x 2 ) dy dx = ( + x2 ) ( ) n 2n(n + )x 2n = = n= ( ) n 2n(n + )x 2n + n= ( ) n 2n(n + )x 2n + n= = 4x + = 4x + ( ) n 2n(n + )x 2n+ n= ( ) m 2(m )mx 2m m=2 ( ) n 2n(n + )x 2n + n=2 = 4x + ( ) n 2(n )nx 2n n=2 ) ( ) (2n(n n + ) 2(n )n n=2 ( ) n 4nx 2n = 4x + n=2 = 4x( + x 2n ( ) n+ 4(n + )x 2n+ n= ( ) n (n + )x 2n ) = 4x y(x) n= Er zijn meerdere manieren om te laten zien dat y een oplossing is van deze differentiaalvergelijking. (d) De differentiaalvergelijking ( + x 2 ) dy = 4x y is separabel; dx dy y = 4x + x dx = ln y = 2 ln( + 2 x2 ) + C = ln( + x 2 ) 2 + C = y(x) = C ( + x 2 ) 2 en met y(0) =, vinden we C =, ofwel y(x) = ( + x 2 ) 2. Opgave 5. (a) Dit is een separabele differentiaalvergelijking, en we kunnen de integraal naar x met de substitutieregel (met u = sin(x), du = cos(x) dx) bepalen; dy dx = y2 sin(sin(x)) cos(x) = y dy = sin(sin(x)) cos(x) dx = 2 y = sin(u) du = cos(u) + C = cos(sin(x)) + C = y(x) = C + cos(sin(x))

7 Tentamen Calculus A NWI-WP025 7 Dan is y(0) = C+ = 2 ofwel C =. We vinden de oplossing y(x) = + cos(sin(x)) (b) We proberen een integrerende factor te vinden, dus we zoeken de functie I zodanig dat I dy dx + 2xyI = d ( ) Iy = I dy dx dx + di di di y = = 2xI = dx dx I = 2xdx = ln I = x 2 = I = e x2 Als we de differentiaalvergelijking dy + dx 2ex y = e x vermenigvuldigen met I(x) = e x2 krijgen we dy x2 e dx + 2xex2 e x y = d ( ) e x2 y = x 3 e x2 dx = e x2 y(x) = x 3 e x2 dx = ue u du 2 = 2( ue u e u du ) = 2 eu (u ) + C = 2 ex2 (x 2 ) + C dan door de substitutie u = x 2, du = 2xdx. Dus we vinden de algemene oplossing y(x) = 2 (x2 ) + Ce x2 (Alternatief: eerst de bijbehorende homogene lineaire differentiaalvergelijking oplossen, en dan met variatie van constantes de oplossing vinden.) Opgave 6. Antwoord C, zie Mean Value Theorem, Theorem, p.37, 2.8 van Essex and Adams. Opgave 7. Om de differentiaalvergelijking y + 4y 4y = 50xe 2x op te lossen, bekijken we eerst de bijbehorende homogene differentiaalvergelijking y + 4y 4y = 0. Deze heeft als karakteristieke vergelijking r 2 + 4r 4 = (r + 2) 2 8 = 0 = r = 2 ± 8 = 2 ± 2 2 en de algemene oplossing van de homogene differentiaalvergelijking y + 4y 4y = 0 is y(x) = C e ( 2+2 2)x + C 2 e ( 2 2 2)x, C, C 2 R Omdat de aandrijfterm 24xe 2x in de inhomogene differentiaalvergelijking géén oplossing is van de homogene differentiaalvergelijking proberen we als particuliere oplossing y p (x) = (Ax + B)e 2x y p(x) = 2(Ax + B)e 2x + Ae 2x = (2Ax + A + 2B)e 2x y p(x) = 2(2Ax + A + 2B)e 2x + 2Ae 2x = (4Ax + 4A + 4B)e 2x

8 Tentamen Calculus A NWI-WP025 8 Invullen geeft 24xe 2x = y p + 4y p 4y p = (4Ax + 4A + 4B)e 2x + 4(2Ax + A + 2B)e 2x 4(Ax + B)e 2x = ( 8Ax + 8A + 8B ) e 2x dus 8A = 24 en 8A + 8B = 0, zodat A = 3, B = 3. Dan is de algemene oplossing gegeven door y(x) = 3(x )e 2x + C e ( 2+2 2)x + C 2 e ( 2 2 2)x, C, C 2 R Opgave 8. (a) Pas de kettingregel toe, en vul in dat y een oplossing is van de differentiaalvergelijking; dh dx (x) = ( n)( y(x) ) n dy dx (x) = ( n)( y(x) ) ( n g(x) ( y(x) ) ) n f(x)y(x) = ( n)g(x) ( n)f(x) ( y(x) ) n = ( n)g(x) ( n)h(x) dus h voldoet aan de differentiaalvergelijking dh (x) + ( n)h(x) = ( n)g(x) dx en dat is een eerste orde lineaire differentiaalvergelijking voor h. (b) Om dy dx y x = eax y 2 op te lossen, nemen we n = 2. We stellen h(x) = y(x) (voor een niet-triviale oplossing y). Dan voldoet h aan dh dx + x h = eax en daarvoor zoeken we een integrerende factor I; dan di = I dx x di dx I = = I(x) = x x Dus we vinden xh(x) = en dus d ( ) xh(x) = x dh dx dx (x) + h(x) = xeax = xe a x dx = x a eax a eax dx = x a eax a 2 eax + C = a eax (x a ) + C = h(x) = a eax ( ax ) + C x y(x) = h(x) = a eax ( ax ) + C x = = a 2 x e ax (ax ) + a 2 C

9 Tentamen Calculus A NWI-WP025 9 (c) Uit (b) weten we de oplossing. Merk op dat als a > 0, dan is de breuk die oplossing a y(x) = 2 x geeft de exponentiële functie dominant. Dus onafhankelijk van de e ax (ax )+a 2 C waarde voor C geldt lim x y(x) = 0. Als a < 0, dan gaat de exponentiële functie snel naar 0, dus dan groeit de teller sneller dan de noemer. Als C > 0 dan geldt lim x y(x) = +, en als C < 0 dan geldt lim x y(x) =, en als C = 0 dan geldt ook lim x y(x) =. Kortom, dan bestaat de limiet niet. Dus als a > 0 dan bestaat voor elke C de limiet en lim x y(x) = 0 voor elke oplossing y van de differentiaalvergelijking uit (b).

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1 Radboud Universiteit Nijmegen Tentamen Calculus 2 NWI-NP004B 6 april 205, 8.00 2.00 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten

Nadere informatie

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2 Radboud Universiteit Nijmegen Tentamen Calculus NWI-NPB 8 januari 3, 8.3.3 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013, Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

n 2 + 3n + 6 4n 3 3 n + 8n n + 3n + 16 n=1 Indien convergent, bepaal dan ook de waarde van de reeks.

n 2 + 3n + 6 4n 3 3 n + 8n n + 3n + 16 n=1 Indien convergent, bepaal dan ook de waarde van de reeks. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP004B januari 05,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

Tentamen Functies en Reeksen

Tentamen Functies en Reeksen Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy

Nadere informatie

Tussentoets Analyse 1

Tussentoets Analyse 1 Tussentoets Analyse Maandag 0 oktober 008, 0.00 -.00u Schrijf op ieder vel je naam en studentnummer, de naam van de docent S. Hille, O. van Gaans en je studierichting. Geef niet alleen antwoorden, leg

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

e x x 2 cos 2 (sin t) cos(t) dt

e x x 2 cos 2 (sin t) cos(t) dt Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP3B 5 november, 8.3.3 Het gebruik van een rekenmachine, telefoon en boeken) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013 Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op maandag 4 januari 2, 8.45.45 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

n=0 en ( f(y n ) ) ) n=0 equivalente rijen zijn.

n=0 en ( f(y n ) ) ) n=0 equivalente rijen zijn. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 8 juli 2011, 14.00 17.00 Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek Analysis I. Geef

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein

Nadere informatie

Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30)

Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30) Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 016, 1:30 15:30 (16:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van aantekeningen

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 2 oktober 200, 3.45 6.45 uur. De uitwerkingen van de opgaven

Nadere informatie

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8,

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8, UITWERKINGEN TENTAMEN DIFFERENTIËREN EN INTEGREREN 20 OKTOBER 2008. a) f(x) < is equivalt aan < f(x)

Nadere informatie

Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 6 november 2015; uur

Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 6 november 2015; uur Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 6 november 2015; 9.00-12.00 uur Naam: (Leids) studentnummer: Een rekenmachine en het formuleblad bij deze cursus mogen gebruikt worden. Laat duidelijk

Nadere informatie

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer)

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op dinsdag 26 augustus 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 7 november 2014; uur

Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 7 november 2014; uur Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 7 november 2014; 9.00-12.00 uur Naam: (Leids) studentnummer: Een rekenmachine en het formuleblad bij deze cursus mogen gebruikt worden. Laat duidelijk

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 24 oktober 22, 3.45 6.45 uur De uitwerkingen van de opgaven

Nadere informatie

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde

Nadere informatie

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0.

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0. OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE (COLLEGE NAJAAR 6).. Bepaal alle oplossingen van de vergelijking (z + i) 4 = 6 in het complee vlak. a. Schrijf het getal i in poolcoördinaten. b. Bereken de rechthoekige

Nadere informatie

Tentamen Analyse 4. Maandag 16 juni 2008, uur

Tentamen Analyse 4. Maandag 16 juni 2008, uur Tentamen Analyse 4 Maandag 16 juni 2008, 14-17 uur Vermeld uw naam (met voornaam en voorletters) en uw studentnummer. Er zijn geen hulpmiddelen toegestaan. Dit tentamen bestaat uit zes opgaven. Vergeet

Nadere informatie

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008 ste Bachelor Ingenieurswetenschappen Academiejaar 007-008 ste semester 0 januari 008 Analyse I. Bewijs de stelling van Bolzano-Weierstrass: elke oneindige begrensde deelverzameling van R heeft minstens

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x Calculus, 4//4. Gegeven de reële functie ft) met als voorschrift t arcsin x ft) = dx x a) Geef het domein van de functie ft). Op dit domein, bespreek waar de functie stijgt, daalt en bepaal de lokale extrema.

Nadere informatie

Examenvragen Wiskundige Analyse I, 1ste examenperiode

Examenvragen Wiskundige Analyse I, 1ste examenperiode Examenvragen Wiskundige Analyse I, ste examenperiode 24-25 Vraag (op 6pt) Vraag.. Waar of vals (.5pt) De Wronskiaanse determinant van twee LOF oplossingen y en y 2 van de differentiaalvergelijking cosh(x)y

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel

Nadere informatie

Differentiaalrekening. Elementaire techniek van het differentieren.

Differentiaalrekening. Elementaire techniek van het differentieren. Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze

Nadere informatie

Paragraaf 2.1 : Snelheden (en helling)

Paragraaf 2.1 : Snelheden (en helling) Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (2Y480) op 22 november 1999,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (2Y480) op 22 november 1999, TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (Y480) op november 999, 4.00-7.00 uur Formuleer de uitwerkingen der opgaven duidelijk en schrijf ze overzichtelijk

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Algemeen deel. Bij het vermenigvuldigen met van de ongelijkheid moet u rekening houden met twee gevallen, te weten > 0 en < 0 en u moet

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (15126) op dinsdag 4 januari 211, 8.45 11.45 uur. De uitwerkingen van de opgaven

Nadere informatie

Infi A oefententamen ψ

Infi A oefententamen ψ Infi A oefententamen ψ Aanwijzingen Motiveer alle antwoorden. Werk rustig, netjes en duidelijk. Zorg dat je uitwerking maar één interpretatie toelaat. Alle informatie op dit opgavenblad mag bij alle (deel)opgaven

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010 ste Bachelor Ingenieurswetenschappen Academiejaar 9- ste semester januari Analyse I. Formuleer en bewijs de formule van Leibniz voor de n-de afgeleide van het product van twee functies f en g.. Onderstel

Nadere informatie

Analyse 1 November 2011 Januari 2011 November 2010

Analyse 1 November 2011 Januari 2011 November 2010 WI1330CT/CT1135-1/CTB1001-1 Januari 2013 November 2012 Januari 2012 Analyse 1 November 2011 Januari 2011 November 2010 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" TU DELFT, 2010

Nadere informatie

(x x 1 ) + y 1. x x 1 x k x x x k 1

(x x 1 ) + y 1. x x 1 x k x x x k 1 Les Taylor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

2E HUISWERKOPDRACHT CONTINUE WISKUNDE

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2E HUISWERKOPDRACHT CONTINUE WISKUNDE Inleverdatum maandag 8 oktober 2017 voor het college Niet losse velletjes aan elkaar vast. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis

Nadere informatie

Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 11 november 2016; uur

Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 11 november 2016; uur Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 11 november 2016; 9.00-12.00 uur Naam: (Leids) studentnummer: Een niet-grafische rekenmachine en het formuleblad bij deze cursus mogen gebruikt worden.

Nadere informatie

Paragraaf 2.1 : Snelheden (en helling)

Paragraaf 2.1 : Snelheden (en helling) Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Sneleden (en elling) Les 1 Benadering van de elling tussen twee punten Definities Differentiequotiënt = { Gemiddelde elling } Differentiequotiënt

Nadere informatie

Algemene informatie. Inhoudelijke informatie

Algemene informatie. Inhoudelijke informatie Informatie over Colloquium doctum Wiskunde niveau 2 voor Bedrijfskunde, Economie, Fiscale Economie en Mr.-Drs. Programma Economie en Recht ERASMUS UNIVERSITEIT ROTTERDAM Algemene informatie Tijdsduur:

Nadere informatie

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen 0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x)) 5.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( x) a f '( x) 0 n f ( x) ax f '( x) nax n f ( x) c g( x) f '( x) c g'( x) f ( x) g( x) h( x) f '( x) g'( x) h'( x) p( x) f ( x) g( x) p'( x)

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

Minima en maxima van functies

Minima en maxima van functies Les 3 Minima en maxima van functies Een reden waarom we de afgeleide van een functie bekijken is dat we iets over het stijgen of dalen van de functie willen weten. Als we met een differentieerbare functie

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen?

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen? Vraag Een vloeistoftank met onbeperkte capaciteit, bevat aanvankelijk V liter zuiver water. Tijdens de eerste faze stroomt water, dat zout bevat met een concentratie van k kilogram per liter, de tank binnen

Nadere informatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft

Nadere informatie

Calculus I, 23/11/2015

Calculus I, 23/11/2015 Calculus I, /11/015 1. Beschouw de functie met a, b R 0. f = a + b + lne a Benoem het domein van de functie f. b Bepaal a en b zodat de rechte y = 1 een schuine asymptoot is voor f. c Voor a = en b = 1,

Nadere informatie

Tentamen WISN101 Wiskundige Technieken 1 Ma 2 nov :30 16:30

Tentamen WISN101 Wiskundige Technieken 1 Ma 2 nov :30 16:30 Tentamen WISN Wiskundige Technieken Ma nov 5 3:3 6:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes. 3pt Grote

Nadere informatie

Complexe functies. 2.1 Benadering door veeltermen

Complexe functies. 2.1 Benadering door veeltermen Wiskunde voor kunstmatige intelligentie, Les Complexe functies Nadat we de complexe getallen hebben leren kennen, is het een voor de hand liggende vraag of hiervoor net als voor de reële getallen ook functies

Nadere informatie

Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M van 16:00 tot 18:00u

Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M van 16:00 tot 18:00u Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M 00.07 van 16:00 tot 18:00u Beste student, Deze oefeningentoets bevat twee oefeningen betreffende het tweede deel

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

Verbanden en functies

Verbanden en functies Verbanden en functies 0. voorkennis Stelsels vergelijkingen Je kunt een stelsel van twee lineaire vergelijkingen met twee variabelen oplossen. De oplossing van het stelsel is het snijpunt van twee lijnen.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Functietheorie (2Y480) op ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Functietheorie (2Y480) op , 1 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking van het tentamen Functietheorie (2Y480) op 25-11-1998, 9.00-12.00 uur Opgave 1 1. Formuleer de Cauchy-Riemann-vergelijkingen.

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I ste Bachelor Wiskunde Academiejaar 6-7 ste semester november 6 Tussentijdse evaluatie Analyse I. Toon aan dat een niet-stijgende begrensde rij convergent is.. Onderstel dat f : [a, b] R continu is over

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D020. Datum: Vrijdag 26 maart 2004. Tijd: 14.00 17.00 uur. Plaats: MA 1.41 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt

Nadere informatie

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30 Tentamen WISN11 Wiskundige Technieken 1 Ma 7 nov 16 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a

Nadere informatie

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Inleiding In de cursus Calculus 2 voor Bouwkunde (2DB90) wordt evenals in de cursus Calculus 1 gebruikt het boek: Calculus, Early Transcendental

Nadere informatie

Uitwerkingen tentamen Wiskunde B 16 januari 2015

Uitwerkingen tentamen Wiskunde B 16 januari 2015 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b

Nadere informatie