Functies van één veranderlijke

Maat: px
Weergave met pagina beginnen:

Download "Functies van één veranderlijke"

Transcriptie

1 Functies van één veranderlijke Docent : Anton Stoorvogel [email protected] 1/40 Elektrotechniek, Wiskunde en Informatica EWI

2 Functies van één veranderlijke Als je alleen deelneemt aan dit vak en niet aan de andere onderdelen van deze module, dan bij mij afmelden voor de andere vakken. Onderwijs Hoorcollege Zelfstudie / Computer ondersteund onderwijs Werkcollege Practicum 2/40 Elektrotechniek, Wiskunde en Informatica EWI

3 Functies van één veranderlijke Tentamen 4 deeltoetsen 1 herkansing geen formuleblad geen rekenmachine 3/40 Elektrotechniek, Wiskunde en Informatica EWI

4 Kwalitatieve modellen Kwantitatieve modellen 4/40 Elektrotechniek, Wiskunde en Informatica EWI

5 Heart simulations 5/40 Elektrotechniek, Wiskunde en Informatica EWI

6 Human vertebrae, studying osteoporosis 6/40 Elektrotechniek, Wiskunde en Informatica EWI

7 100 ECG signal (100 Hz) /40 Elektrotechniek, Wiskunde en Informatica EWI

8 50 ECG signal (100 Hz) /40 Elektrotechniek, Wiskunde en Informatica EWI

9 Getallenverzamelingen N D f1; 2; 3; : : :g natuurlijke getallen Z D f: : : ; 2; 1; 0; 1; 2; : : :g gehele getallen Q D f t n j t 2 Z; n 2 N g R C rationale getallen reële getallen complexe getallen 9/40 Elektrotechniek, Wiskunde en Informatica EWI

10 Verzamelingen f2; 4; 6; 8g D f2; 6; 4; 8g maar.2; 4; 6; 8/.2; 6; 4; 8/ 10/40 Elektrotechniek, Wiskunde en Informatica EWI

11 Doorsnede en vereniging f2; 4; 6; 8g \ f1; 3; 6; 9g D f6g f2; 4; 6; 8g [ f1; 3; 6; 9g D f1; 2; 3; 4; 6; 8; 9g 11/40 Elektrotechniek, Wiskunde en Informatica EWI

12 Deelverzameling en element We hebben: f2; 4; 6g f1; 2; 3; 4; 5; 6g en Let op: f1; 2; 3; 4; 5; 6g f2; 4; 6g f3g f3; 6; 9g en 3 2 f3; 6; 9g 12/40 Elektrotechniek, Wiskunde en Informatica EWI

13 x 2 Œ0; 4, x > 0 en x 6 4 x 2.0; 4, x > 0 en x 6 4 x 2.0; 4/, x > 0 en x < 4 13/40 Elektrotechniek, Wiskunde en Informatica EWI

14 Ongelijkheden a < b ) a C c < b C c a < b en c > 0 ) ac < bc a < b ) a > b a < b en a > 0 ) a 2 < b 2 14/40 Elektrotechniek, Wiskunde en Informatica EWI

15 xy < zy 6) x < z x 2 < y 2 6) x < y 15/40 Elektrotechniek, Wiskunde en Informatica EWI

16 Los op: p 3x 8 < x 2 16/40 Elektrotechniek, Wiskunde en Informatica EWI

17 Los op: p 3x 8 < x 2 We krijgen als x > 8 3 : 3x 8 <.x 2/ 2 en x 2 7x C 12 > 0.x 4/.x 3/ > 0.x > 4 en x > 3/ of.x < 3 en x < 4/ x > 4 of x < 3 Dus: x > 4 of x ; 3 17/40 Elektrotechniek, Wiskunde en Informatica EWI

18 Los op: x.x C 3/ > x.2x 1/ 18/40 Elektrotechniek, Wiskunde en Informatica EWI

19 x.x C 3/ > x.2x 1/ Als x > 0: x C 3 > 2x 1 x < 4 Als x < 0: x C 3 < 2x 1 x > 4 Dus: x 2.0; 4/ 19/40 Elektrotechniek, Wiskunde en Informatica EWI

20 Los op: x 2 x 1 > 3 20/40 Elektrotechniek, Wiskunde en Informatica EWI

21 Als x > 1: x 2 x 1 > 3 x 2 > 3x 3 2x < 1 Als x < 1: x 2 < 3x 3 2x > 1 Conclusie: x ; 1/ 21/40 Elektrotechniek, Wiskunde en Informatica EWI

22 Los op: j2x 1j > 3 22/40 Elektrotechniek, Wiskunde en Informatica EWI

23 j2x 1j > 3 Als 2x > 1: 2x 1 > 3 x > 2 Als 2x < 1: 2x C 1 > 3 2x < 2 Conclusie: x > 2 of x < 1 23/40 Elektrotechniek, Wiskunde en Informatica EWI

24 We analyseren in dit vak functies f.x/ D y; x 2 A A wordt het domein van de functie genoemd. Het bereik van de functie wordt gedefinieerd door: B D fy 2 R j9x 2 A zodanig dat f.x/ D y g 24/40 Elektrotechniek, Wiskunde en Informatica EWI

25 Voorbeelden f.x/ D p x 2 5x C 6 8 < 1 x x 6 1 f.x/ D : x 2 x > 1 25/40 Elektrotechniek, Wiskunde en Informatica EWI

26 Even functie: f.x/ D f. x/ f.x/ D cos.x/ Oneven functie: f.x/ D f. x/ f.x/ D sin.x/ 26/40 Elektrotechniek, Wiskunde en Informatica EWI

27 Stijgende functie: f.x 1 / > f.x 2 / als x 1 > x 2. f.x/ D 3x C 1 Dalende functie: f.x 1 / < f.x 2 / als x 1 > x 2. f.x/ D 1 x ; x > 0 27/40 Elektrotechniek, Wiskunde en Informatica EWI

28 Samengestelde functie f; g functies, a een constante.f Cg/.x/ D f.x/cg.x/;.af /.x/ D af.x/; f g.x/ D f.x/ g.x/ Voorbeeld tan.x/ D sin.x/ cos.x/ 28/40 Elektrotechniek, Wiskunde en Informatica EWI

29 Samengestelde functie.f ı g/.x/ D f.g.x// Voorbeeld f.x/ D x C 2 ; g.x/ D 2x C 1 2x C 1 29/40 Elektrotechniek, Wiskunde en Informatica EWI

30 We hebben: met y D g.x/ D 2x C 1. Dus:.f ı g/.x/ f.y/ D y C 2 2y C 1.f ı g/.x/ D.2x C 1/ C 2 2.2x C 1/ C 1.f ı g/.x/ D 2x C 3 4x C 3 30/40 Elektrotechniek, Wiskunde en Informatica EWI

31 Exponentiële functie f.x/ D a x x > 0 geheeltallig: a x D a a a x > 0 rationaal: a x D a p=q D qp a p x < 0 rationaal: a x D 1 a x Hoe doen we dit voor x irrationaal? Speciaal geval: a D e. 31/40 Elektrotechniek, Wiskunde en Informatica EWI

32 Machten D D 25 3 D 2 2 3p 5 D 5 1= D 3 2C3 D /40 Elektrotechniek, Wiskunde en Informatica EWI

33 Logaritme f.x/ D log x; g.x/ D ln x Voor x > 0 hebben we: 10 log x D x e ln x D x log.10 x / D x log.xy/ D log x C log y log.x a / D a log x ln.e x / D x ln.xy/ D ln x C ln y ln.x a / D a ln x 33/40 Elektrotechniek, Wiskunde en Informatica EWI

34 Rekenvaardigheden Effecten van: Grafische rekenmachine Formuleblad Weinig oefenen 34/40 Elektrotechniek, Wiskunde en Informatica EWI

35 Functies van één veranderlijke ( ) Zelfstudie 3 september 35/40 Elektrotechniek, Wiskunde en Informatica EWI

36 Bereken zonder gebruik te maken van een rekenmachine maar met behulp van pen en papier: /40 Elektrotechniek, Wiskunde en Informatica EWI

37 Schrijf, zonder rekenmachine, als een enkele breuk en vereenvoudig zoveel mogelijk: C C C C C C /40 Elektrotechniek, Wiskunde en Informatica EWI

38 C /40 Elektrotechniek, Wiskunde en Informatica EWI

39 =2 1=4 1=3 1=7 3=11 3=7 2=5 5=2 3 1=4 5=2 1=4 39/40 Elektrotechniek, Wiskunde en Informatica EWI

40 28. 6=2 3=4 40/40 Elektrotechniek, Wiskunde en Informatica EWI

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein

Nadere informatie

Functies van één veranderlijke 191512600

Functies van één veranderlijke 191512600 Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /40 Elektrotechniek, Wiskunde en Informatica EWI Partieel Breuksplitsen a0 x m C a x m C C a m x C a m

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx

Nadere informatie

Voorbeeldtoets. Het gebruik van een rekenmachine of een formulekaart is niet toegestaan.

Voorbeeldtoets. Het gebruik van een rekenmachine of een formulekaart is niet toegestaan. Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4, Delft Voorbeeldtoets Lees zorgvuldig onderstaande punten door Deze toets is bedoeld om een idee te krijgen van

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Tussentoets Analyse 1

Tussentoets Analyse 1 Tussentoets Analyse Maandag 0 oktober 008, 0.00 -.00u Schrijf op ieder vel je naam en studentnummer, de naam van de docent S. Hille, O. van Gaans en je studierichting. Geef niet alleen antwoorden, leg

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/

Nadere informatie

Vergelijkingen oplossen met categorieën

Vergelijkingen oplossen met categorieën Vergelijkingen oplossen met categorieën De bewerkingen die tot de oplossing van een vergelijking leiden zijn niet willekeurig, maar vallen in zes categorieën. Het stappenplan voor het oplossen maakt gebruik

Nadere informatie

Bouwstenen van signalen

Bouwstenen van signalen Bouwstenen van signalen Docent : Anton Stoorvogel E-mail: [email protected] Zonder wiskunde geen snelle communicatie 1/27 Elektrotechniek, Wiskunde en Informatica EWI We sturen steeds meer informatie

Nadere informatie

Inhoud college 6 Basiswiskunde

Inhoud college 6 Basiswiskunde Inhoud college 6 Basiswiskunde 4.0 Taylorpolynomen (slot) Zie college 5: Vanaf 4.0 Voorbeeld 4 3. Inverse functies 3.2 Exponentiële en logaritmische functies 3.3 De natuurlijke logaritme en de exponentiële

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 [email protected] Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef

Nadere informatie

Paragraaf 5.1 : Machten en wortels

Paragraaf 5.1 : Machten en wortels Hoofdstuk 5 Machten, exponenten en logaritmen (H Wis B) Pagina 1 van 1 Paragraaf 5.1 : Machten en wortels Machtsregels SPECIAAL GEVAL MACHTREGEL 1 : MACHTREGEL 2 : MACHTREGEL : a p a q = a p+q a p aq =

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

Inverse functies en limieten

Inverse functies en limieten Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x

Nadere informatie

Dictaat Rekenvaardigheden. Loek van Reij

Dictaat Rekenvaardigheden. Loek van Reij Dictaat Rekenvaardigheden Loek van Reij 0 maart 006 i ii Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de daaraan verbonden profielkeuze

Nadere informatie

12.0 Voorkennis. Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op.

12.0 Voorkennis. Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op. 12.0 Voorkennis Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op. Stap 1: Bepaal de richtingscoëfficiënt van l:y = ax + b : y yb ya 123 9 a 3 x x x 8 5 3 Hieruit

Nadere informatie

Paragraaf 12.1 : Exponentiële groei

Paragraaf 12.1 : Exponentiële groei Hoofdstuk 12 Exponenten en logaritmen (V5 Wis A) Pagina 1 van 12 Paragraaf 12.1 : Exponentiële groei Les 1 Exponentiële functies Definitie Exponentiële functies Algemene formule : N = b g t waarbij b =

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17 Hints en uitwerkingen huiswerk 013 Analyse 1 H17 Rocco van Vreumingen augustus 014 1 Inhoudsopgave 1 Hints 1 3 Hints 4 3 Hints 3 4 4 Hints 4 5 5 Hints 5 5 6 Hints 6 6 7 Hints 7 6 8 Hints 8 6 9 Hints 9

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

Derive in ons wiskundeonderwijs Christine Decraemer

Derive in ons wiskundeonderwijs Christine Decraemer Dag van de Wiskunde 003 de en 3 de graad Module 6: Eerste sessie Derive in ons wiskundeonderwijs Christine Decraemer Je kunt Derive het best vergelijken met een uitgebreid rekentoestel. Niet enkel numerieke,

Nadere informatie

Integratietechnieken: substitutie en partiële integratie

Integratietechnieken: substitutie en partiële integratie Integratietechnieken: substitutie en partiële integratie Inleiding In dit pakket wordt zeer kort de definitie van onbepaalde integralen herhaald evenals het verband tussen bepaalde en onbepaalde integralen.

Nadere informatie

Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde

Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde In onderstaande zelftest zijn de vragen gebundeld die als voorbeeldvragen zijn opgenomen in de bijhorende overzichten van de verwachte voorkennis wiskunde. Naast de vragen over strikt noodzakelijke voorkennis,

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Calculus TI1 106M. I.A.M. Goddijn, Faculteit EWI 1 september 2014

Calculus TI1 106M. I.A.M. Goddijn, Faculteit EWI 1 september 2014 Calculus TI1 106M, 1 september 2014 Inleiding Studiemateriaal Onderwerpen Calculus 1 september 2014 1 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : [email protected] homepage :

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op maandag 4 januari 2, 8.45.45 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Uitwerkingen tentamen Wiskunde B 16 januari 2015

Uitwerkingen tentamen Wiskunde B 16 januari 2015 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b

Nadere informatie

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 Inleverdatum 30 maart 207, uiterlijk :5 uur Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je mag de theorie gebruiken die op het college

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

Logaritmische functie

Logaritmische functie Logaritmische functie WISNET-HBO update aug 2013 1 Inleiding De bedoeling van deze les is het repeteren met pen en papier van logaritmen. Voorkennis van de rekenregels van machten is voor deze les beslist

Nadere informatie

3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.

3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. 3.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je

Nadere informatie

exponentiële en logaritmische functies

exponentiële en logaritmische functies CAMPUS BRUSSEL Opfriscursus Wiskunde exponentiële en logaritmische functies Exponentiële en logaritmische functies Machten van getallen 000 euro wordt belegd aan een samengestelde interest van % per jaar

Nadere informatie

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x)) 5.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( x) a f '( x) 0 n f ( x) ax f '( x) nax n f ( x) c g( x) f '( x) c g'( x) f ( x) g( x) h( x) f '( x) g'( x) h'( x) p( x) f ( x) g( x) p'( x)

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer)

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen 0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b

Nadere informatie

Wiskunde voor bachelor en master Deel 1 Basiskennis en basisvaardigheden. c 2015, Syntax Media, Utrecht Uitwerkingen hoofdstuk 11

Wiskunde voor bachelor en master Deel 1 Basiskennis en basisvaardigheden. c 2015, Syntax Media, Utrecht  Uitwerkingen hoofdstuk 11 Wiskunde voor bachelor en master Deel Basiskennis en basisvaardigheden c 05, Syntax Media, Utrecht www.syntaxmedia.nl Uitwerkingen hoofdstuk.. a. In de onderstaande figuur zijn de grafieken van y = ( )x,

Nadere informatie

Oefentoets uitwerkingen

Oefentoets uitwerkingen Vak: Wiskunde Onderwerp: Hogere machtsverb., gebr. func=es, exp. func=es en logaritmen Leerjaar: 3 (206/207) Periode: 3 Oefentoets uitwerkingen Opmerkingen vooraf: Geef je antwoord al=jd mét berekening

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. 14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013, Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Business Mathematics VUBK-VOORBEELD

Business Mathematics VUBK-VOORBEELD Business Mathematics VUBK-VOORBEELD Maak kans op 1 jaar lang gratis collegegeld! Haal jouw studiepunten binnen met de studieondersteuning van SlimAcademy! Voor de ideale voorbereiding op jouw tentamens

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

== Tentamen Analyse 1 == Maandag 12 januari 2009, u

== Tentamen Analyse 1 == Maandag 12 januari 2009, u == Tentamen Analyse == Maandag januari 009, 400-700u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille of O van Gaans) en je studierichting Elk antwoord dient gemotiveerd te

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

rekenregels voor machten en logaritmen wortels waar of niet waar

rekenregels voor machten en logaritmen wortels waar of niet waar Hoofdstuk 5 - machten, eponenten en logaritmen rekenregels voor machten en logaritmen wortels waar of niet waar 0. voorkennis HERLEIDEN VAN MACHTEN - rekenregels voor machten Bij het vermenigvuldigen van

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies.

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. 03 college 5: meer technieken In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. Opmerking over de notatie. Net als in het

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: [email protected] 1/27 Elektrotechniek, Wiskunde en Informatica EWI Tx D Ax; x.t/ 2 R 2 x D 0 is een evenwichtspunt;

Nadere informatie

Analyse 1 November 2011 Januari 2011 November 2010

Analyse 1 November 2011 Januari 2011 November 2010 WI1330CT/CT1135-1/CTB1001-1 Januari 2013 November 2012 Januari 2012 Analyse 1 November 2011 Januari 2011 November 2010 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" TU DELFT, 2010

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: [email protected] 1/28 Elektrotechniek, Wiskunde en Informatica EWI x.k C 1/ D Ax.k/ C Bu.k/; y.k/ D Cx.k/ C Du.k/ We

Nadere informatie

stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden).

stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden). Samenvatting door Sterre 1437 woorden 5 mei 2018 7.8 3 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Vocabulair Algebraïsch stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Signalen en Transformaties

Signalen en Transformaties Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: [email protected] 1/42 Elektrotechniek, Wiskunde en Informatica EWI Laplace transformatie éénzijdige Laplace-transformatie:

Nadere informatie

Vergelijkingen van cirkels en lijnen

Vergelijkingen van cirkels en lijnen Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen

Nadere informatie

Wiskunde 20 maart 2014 versie 1-1 -

Wiskunde 20 maart 2014 versie 1-1 - Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6

Nadere informatie

Dit vak bestaat uit een werk- en instructiecollege, verplicht en vrijwillig huiswerk, één tussentoets op blackboard en één tentamen aan het eind.

Dit vak bestaat uit een werk- en instructiecollege, verplicht en vrijwillig huiswerk, één tussentoets op blackboard en één tentamen aan het eind. Wiskunde 1A - groep 3 (Gabor Wiese) 16/09/2003 Wat informatie: Dit vak bestaat uit een werk- en instructiecollege, verplict en vrijwillig uiswerk, één tussentoets op blackboard en één tentamen aan et eind.

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback IJkingstoets wiskunde-informatica-fysica september 8 - reeks - p. IJkingstoets Wiskunde-Informatica-Fysica september 8: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde IJkingstoets burgerlijk ingenieur-architect september 8: feedback deel wiskunde Positionering ten opzichte van andere deelnemers In totaal namen 5 studenten deel aan de ijkingstoets burgerlijk ingenieur-architect

Nadere informatie

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde IJkingstoets burgerlijk ingenieur-architect september 8: feedback deel wiskunde Positionering ten opzichte van andere deelnemers In totaal namen 5 studenten deel aan de ijkingstoets burgerlijk ingenieur-architect

Nadere informatie

Handleiding gebruik van Wortel TU/e

Handleiding gebruik van Wortel TU/e Handleiding gebruik van Wortel TU/e Wortel TU/e ( http://wortel.tue.nl ) is een website waar je (zelfstudie ) materiaal Wiskunde kunt vinden. Om gebruik te maken van de website, moet je een moderne browser

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Limieten. Theorie: De begrippen limiet en continuïteit. Laat f een functie zijn, gedefinieerd op een interval of een vereniging van intervallen.

Limieten. Theorie: De begrippen limiet en continuïteit. Laat f een functie zijn, gedefinieerd op een interval of een vereniging van intervallen. Limieten Theorie: De begrippen limiet en continuïteit Laat f een functie zijn, gedefinieerd op een interval of een vereniging van intervallen. Definitie: Het begrip limiet We zeggen dat de limiet van f(x)

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

Programma. - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen. hfst 9 rekenen2.

Programma. - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen. hfst 9 rekenen2. Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen 1 priemfactoren Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na

Nadere informatie

Samenvatting wiskunde B

Samenvatting wiskunde B Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!

Nadere informatie

integreren is het omgekeerde van differentiëren

integreren is het omgekeerde van differentiëren Integraalrekening Als we een functie f(x) differentiëren is het resultaat de eerste afgeleide f (x). Dezelfde functie f(x) kunnen we ook integreren met als resultaat de zogenaamde primitieve functie F(x).

Nadere informatie

Hoofdstuk 1 - Inleiding hogere machtsverbanden

Hoofdstuk 1 - Inleiding hogere machtsverbanden Wiskunde Leerjaar 3 - periode 3 Hogere machtsverbanden, gebroken functies, exponentiële functies en logaritmen Hoofdstuk - Inleiding hogere machtsverbanden A. Tweedegraads vergelijking. Ga naar www.desmos.com

Nadere informatie

Signalen en Transformaties

Signalen en Transformaties Signalen en Transformaties 200009 Docent : Anton Stoorvogel E-mail: [email protected] /48 Elektrotechniek, Wiskunde en Informatica EWI Convolutie.f g/.t/ D Z f./g.t / d Goed gedefinieerd als f.t/

Nadere informatie

Het is niet toegestaan om een formulekaart of rekenmachine te gebruiken. f(x) = 9x(x 1) en g(x) = 9x 5. Figuur 1: De grafieken van de functies f en g.

Het is niet toegestaan om een formulekaart of rekenmachine te gebruiken. f(x) = 9x(x 1) en g(x) = 9x 5. Figuur 1: De grafieken van de functies f en g. UNIVERSITEIT VAN AMSTERDAM FNWI Voorbeeld Toets Wiskunde A Het is niet toegestaan om een formulekaart of rekenmachine te gebruiken. 1. De twee functies f en g worden gegeven door f(x) = 9x(x 1) en g(x)

Nadere informatie

13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen.

13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. 13.0 Voorkennis Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. Op het interval [-2; -0,94) is de grafiek dalend; Bij x =

Nadere informatie

Functievergelijkingen

Functievergelijkingen Functievergelijkingen Trainingsweek juni 2008 Basistechnieken Je mag alle getallen in het domein invullen in je functievergelijking. Wat er precies handig is, hangt af van het domein en van de functievergelijking.

Nadere informatie

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30 Tentamen WISN11 Wiskundige Technieken 1 Ma 7 nov 16 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie