Functies van één veranderlijke
|
|
|
- Tania Bauwens
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Functies van één veranderlijke Docent : Anton Stoorvogel [email protected] 1/40 Elektrotechniek, Wiskunde en Informatica EWI
2 Functies van één veranderlijke Als je alleen deelneemt aan dit vak en niet aan de andere onderdelen van deze module, dan bij mij afmelden voor de andere vakken. Onderwijs Hoorcollege Zelfstudie / Computer ondersteund onderwijs Werkcollege Practicum 2/40 Elektrotechniek, Wiskunde en Informatica EWI
3 Functies van één veranderlijke Tentamen 4 deeltoetsen 1 herkansing geen formuleblad geen rekenmachine 3/40 Elektrotechniek, Wiskunde en Informatica EWI
4 Kwalitatieve modellen Kwantitatieve modellen 4/40 Elektrotechniek, Wiskunde en Informatica EWI
5 Heart simulations 5/40 Elektrotechniek, Wiskunde en Informatica EWI
6 Human vertebrae, studying osteoporosis 6/40 Elektrotechniek, Wiskunde en Informatica EWI
7 100 ECG signal (100 Hz) /40 Elektrotechniek, Wiskunde en Informatica EWI
8 50 ECG signal (100 Hz) /40 Elektrotechniek, Wiskunde en Informatica EWI
9 Getallenverzamelingen N D f1; 2; 3; : : :g natuurlijke getallen Z D f: : : ; 2; 1; 0; 1; 2; : : :g gehele getallen Q D f t n j t 2 Z; n 2 N g R C rationale getallen reële getallen complexe getallen 9/40 Elektrotechniek, Wiskunde en Informatica EWI
10 Verzamelingen f2; 4; 6; 8g D f2; 6; 4; 8g maar.2; 4; 6; 8/.2; 6; 4; 8/ 10/40 Elektrotechniek, Wiskunde en Informatica EWI
11 Doorsnede en vereniging f2; 4; 6; 8g \ f1; 3; 6; 9g D f6g f2; 4; 6; 8g [ f1; 3; 6; 9g D f1; 2; 3; 4; 6; 8; 9g 11/40 Elektrotechniek, Wiskunde en Informatica EWI
12 Deelverzameling en element We hebben: f2; 4; 6g f1; 2; 3; 4; 5; 6g en Let op: f1; 2; 3; 4; 5; 6g f2; 4; 6g f3g f3; 6; 9g en 3 2 f3; 6; 9g 12/40 Elektrotechniek, Wiskunde en Informatica EWI
13 x 2 Œ0; 4, x > 0 en x 6 4 x 2.0; 4, x > 0 en x 6 4 x 2.0; 4/, x > 0 en x < 4 13/40 Elektrotechniek, Wiskunde en Informatica EWI
14 Ongelijkheden a < b ) a C c < b C c a < b en c > 0 ) ac < bc a < b ) a > b a < b en a > 0 ) a 2 < b 2 14/40 Elektrotechniek, Wiskunde en Informatica EWI
15 xy < zy 6) x < z x 2 < y 2 6) x < y 15/40 Elektrotechniek, Wiskunde en Informatica EWI
16 Los op: p 3x 8 < x 2 16/40 Elektrotechniek, Wiskunde en Informatica EWI
17 Los op: p 3x 8 < x 2 We krijgen als x > 8 3 : 3x 8 <.x 2/ 2 en x 2 7x C 12 > 0.x 4/.x 3/ > 0.x > 4 en x > 3/ of.x < 3 en x < 4/ x > 4 of x < 3 Dus: x > 4 of x ; 3 17/40 Elektrotechniek, Wiskunde en Informatica EWI
18 Los op: x.x C 3/ > x.2x 1/ 18/40 Elektrotechniek, Wiskunde en Informatica EWI
19 x.x C 3/ > x.2x 1/ Als x > 0: x C 3 > 2x 1 x < 4 Als x < 0: x C 3 < 2x 1 x > 4 Dus: x 2.0; 4/ 19/40 Elektrotechniek, Wiskunde en Informatica EWI
20 Los op: x 2 x 1 > 3 20/40 Elektrotechniek, Wiskunde en Informatica EWI
21 Als x > 1: x 2 x 1 > 3 x 2 > 3x 3 2x < 1 Als x < 1: x 2 < 3x 3 2x > 1 Conclusie: x ; 1/ 21/40 Elektrotechniek, Wiskunde en Informatica EWI
22 Los op: j2x 1j > 3 22/40 Elektrotechniek, Wiskunde en Informatica EWI
23 j2x 1j > 3 Als 2x > 1: 2x 1 > 3 x > 2 Als 2x < 1: 2x C 1 > 3 2x < 2 Conclusie: x > 2 of x < 1 23/40 Elektrotechniek, Wiskunde en Informatica EWI
24 We analyseren in dit vak functies f.x/ D y; x 2 A A wordt het domein van de functie genoemd. Het bereik van de functie wordt gedefinieerd door: B D fy 2 R j9x 2 A zodanig dat f.x/ D y g 24/40 Elektrotechniek, Wiskunde en Informatica EWI
25 Voorbeelden f.x/ D p x 2 5x C 6 8 < 1 x x 6 1 f.x/ D : x 2 x > 1 25/40 Elektrotechniek, Wiskunde en Informatica EWI
26 Even functie: f.x/ D f. x/ f.x/ D cos.x/ Oneven functie: f.x/ D f. x/ f.x/ D sin.x/ 26/40 Elektrotechniek, Wiskunde en Informatica EWI
27 Stijgende functie: f.x 1 / > f.x 2 / als x 1 > x 2. f.x/ D 3x C 1 Dalende functie: f.x 1 / < f.x 2 / als x 1 > x 2. f.x/ D 1 x ; x > 0 27/40 Elektrotechniek, Wiskunde en Informatica EWI
28 Samengestelde functie f; g functies, a een constante.f Cg/.x/ D f.x/cg.x/;.af /.x/ D af.x/; f g.x/ D f.x/ g.x/ Voorbeeld tan.x/ D sin.x/ cos.x/ 28/40 Elektrotechniek, Wiskunde en Informatica EWI
29 Samengestelde functie.f ı g/.x/ D f.g.x// Voorbeeld f.x/ D x C 2 ; g.x/ D 2x C 1 2x C 1 29/40 Elektrotechniek, Wiskunde en Informatica EWI
30 We hebben: met y D g.x/ D 2x C 1. Dus:.f ı g/.x/ f.y/ D y C 2 2y C 1.f ı g/.x/ D.2x C 1/ C 2 2.2x C 1/ C 1.f ı g/.x/ D 2x C 3 4x C 3 30/40 Elektrotechniek, Wiskunde en Informatica EWI
31 Exponentiële functie f.x/ D a x x > 0 geheeltallig: a x D a a a x > 0 rationaal: a x D a p=q D qp a p x < 0 rationaal: a x D 1 a x Hoe doen we dit voor x irrationaal? Speciaal geval: a D e. 31/40 Elektrotechniek, Wiskunde en Informatica EWI
32 Machten D D 25 3 D 2 2 3p 5 D 5 1= D 3 2C3 D /40 Elektrotechniek, Wiskunde en Informatica EWI
33 Logaritme f.x/ D log x; g.x/ D ln x Voor x > 0 hebben we: 10 log x D x e ln x D x log.10 x / D x log.xy/ D log x C log y log.x a / D a log x ln.e x / D x ln.xy/ D ln x C ln y ln.x a / D a ln x 33/40 Elektrotechniek, Wiskunde en Informatica EWI
34 Rekenvaardigheden Effecten van: Grafische rekenmachine Formuleblad Weinig oefenen 34/40 Elektrotechniek, Wiskunde en Informatica EWI
35 Functies van één veranderlijke ( ) Zelfstudie 3 september 35/40 Elektrotechniek, Wiskunde en Informatica EWI
36 Bereken zonder gebruik te maken van een rekenmachine maar met behulp van pen en papier: /40 Elektrotechniek, Wiskunde en Informatica EWI
37 Schrijf, zonder rekenmachine, als een enkele breuk en vereenvoudig zoveel mogelijk: C C C C C C /40 Elektrotechniek, Wiskunde en Informatica EWI
38 C /40 Elektrotechniek, Wiskunde en Informatica EWI
39 =2 1=4 1=3 1=7 3=11 3=7 2=5 5=2 3 1=4 5=2 1=4 39/40 Elektrotechniek, Wiskunde en Informatica EWI
40 28. 6=2 3=4 40/40 Elektrotechniek, Wiskunde en Informatica EWI
Functies van één veranderlijke
Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel
Functies van één veranderlijke
Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein
Functies van één veranderlijke 191512600
Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /40 Elektrotechniek, Wiskunde en Informatica EWI Partieel Breuksplitsen a0 x m C a x m C C a m x C a m
Functies van één veranderlijke
Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx
Voorbeeldtoets. Het gebruik van een rekenmachine of een formulekaart is niet toegestaan.
Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4, Delft Voorbeeldtoets Lees zorgvuldig onderstaande punten door Deze toets is bedoeld om een idee te krijgen van
Functies van één veranderlijke
Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde
Tussentoets Analyse 1
Tussentoets Analyse Maandag 0 oktober 008, 0.00 -.00u Schrijf op ieder vel je naam en studentnummer, de naam van de docent S. Hille, O. van Gaans en je studierichting. Geef niet alleen antwoorden, leg
Functies van één veranderlijke
Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/
Vergelijkingen oplossen met categorieën
Vergelijkingen oplossen met categorieën De bewerkingen die tot de oplossing van een vergelijking leiden zijn niet willekeurig, maar vallen in zes categorieën. Het stappenplan voor het oplossen maakt gebruik
Bouwstenen van signalen
Bouwstenen van signalen Docent : Anton Stoorvogel E-mail: [email protected] Zonder wiskunde geen snelle communicatie 1/27 Elektrotechniek, Wiskunde en Informatica EWI We sturen steeds meer informatie
Inhoud college 6 Basiswiskunde
Inhoud college 6 Basiswiskunde 4.0 Taylorpolynomen (slot) Zie college 5: Vanaf 4.0 Voorbeeld 4 3. Inverse functies 3.2 Exponentiële en logaritmische functies 3.3 De natuurlijke logaritme en de exponentiële
4051CALC1Y Calculus 1
4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 [email protected] Slides op http://homepage.tudelft.nl/v9r7r/
Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur
Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef
Paragraaf 5.1 : Machten en wortels
Hoofdstuk 5 Machten, exponenten en logaritmen (H Wis B) Pagina 1 van 1 Paragraaf 5.1 : Machten en wortels Machtsregels SPECIAAL GEVAL MACHTREGEL 1 : MACHTREGEL 2 : MACHTREGEL : a p a q = a p+q a p aq =
TECHNISCHE UNIVERSITEIT EINDHOVEN
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven
Inverse functies en limieten
Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x
Dictaat Rekenvaardigheden. Loek van Reij
Dictaat Rekenvaardigheden Loek van Reij 0 maart 006 i ii Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de daaraan verbonden profielkeuze
12.0 Voorkennis. Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op.
12.0 Voorkennis Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op. Stap 1: Bepaal de richtingscoëfficiënt van l:y = ax + b : y yb ya 123 9 a 3 x x x 8 5 3 Hieruit
Paragraaf 12.1 : Exponentiële groei
Hoofdstuk 12 Exponenten en logaritmen (V5 Wis A) Pagina 1 van 12 Paragraaf 12.1 : Exponentiële groei Les 1 Exponentiële functies Definitie Exponentiële functies Algemene formule : N = b g t waarbij b =
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven
Hints en uitwerkingen huiswerk 2013 Analyse 1 H17
Hints en uitwerkingen huiswerk 013 Analyse 1 H17 Rocco van Vreumingen augustus 014 1 Inhoudsopgave 1 Hints 1 3 Hints 4 3 Hints 3 4 4 Hints 4 5 5 Hints 5 5 6 Hints 6 6 7 Hints 7 6 8 Hints 8 6 9 Hints 9
V.2 Limieten van functies
V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de
Transformaties van grafieken HAVO wiskunde B deel 1
Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen
Voorkennis wiskunde voor Biologie, Chemie, Geografie
Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan
Derive in ons wiskundeonderwijs Christine Decraemer
Dag van de Wiskunde 003 de en 3 de graad Module 6: Eerste sessie Derive in ons wiskundeonderwijs Christine Decraemer Je kunt Derive het best vergelijken met een uitgebreid rekentoestel. Niet enkel numerieke,
Integratietechnieken: substitutie en partiële integratie
Integratietechnieken: substitutie en partiële integratie Inleiding In dit pakket wordt zeer kort de definitie van onbepaalde integralen herhaald evenals het verband tussen bepaalde en onbepaalde integralen.
Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde
In onderstaande zelftest zijn de vragen gebundeld die als voorbeeldvragen zijn opgenomen in de bijhorende overzichten van de verwachte voorkennis wiskunde. Naast de vragen over strikt noodzakelijke voorkennis,
voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen
Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen
Calculus TI1 106M. I.A.M. Goddijn, Faculteit EWI 1 september 2014
Calculus TI1 106M, 1 september 2014 Inleiding Studiemateriaal Onderwerpen Calculus 1 september 2014 1 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : [email protected] homepage :
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op maandag 4 januari 2, 8.45.45 uur. De uitwerkingen van de opgaven dienen
Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)
Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De
Uitwerkingen tentamen Wiskunde B 16 januari 2015
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b
2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2
2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 Inleverdatum 30 maart 207, uiterlijk :5 uur Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je mag de theorie gebruiken die op het college
Wiskunde met (bedrijfs)economische toepassingen
FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste
Logaritmische functie
Logaritmische functie WISNET-HBO update aug 2013 1 Inleiding De bedoeling van deze les is het repeteren met pen en papier van logaritmen. Voorkennis van de rekenregels van machten is voor deze les beslist
3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.
3.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je
exponentiële en logaritmische functies
CAMPUS BRUSSEL Opfriscursus Wiskunde exponentiële en logaritmische functies Exponentiële en logaritmische functies Machten van getallen 000 euro wordt belegd aan een samengestelde interest van % per jaar
15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))
5.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( x) a f '( x) 0 n f ( x) ax f '( x) nax n f ( x) c g( x) f '( x) c g'( x) f ( x) g( x) h( x) f '( x) g'( x) h'( x) p( x) f ( x) g( x) p'( x)
Voorkennis wiskunde voor Bio-ingenieurswetenschappen
Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt
Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur
Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer)
Rekenvaardigheden voor klas 3 en 4 VWO
Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)
CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen
0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b
Wiskunde voor bachelor en master Deel 1 Basiskennis en basisvaardigheden. c 2015, Syntax Media, Utrecht Uitwerkingen hoofdstuk 11
Wiskunde voor bachelor en master Deel Basiskennis en basisvaardigheden c 05, Syntax Media, Utrecht www.syntaxmedia.nl Uitwerkingen hoofdstuk.. a. In de onderstaande figuur zijn de grafieken van y = ( )x,
Oefentoets uitwerkingen
Vak: Wiskunde Onderwerp: Hogere machtsverb., gebr. func=es, exp. func=es en logaritmen Leerjaar: 3 (206/207) Periode: 3 Oefentoets uitwerkingen Opmerkingen vooraf: Geef je antwoord al=jd mét berekening
Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008
Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.
14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.
14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.
Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,
Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.
Business Mathematics VUBK-VOORBEELD
Business Mathematics VUBK-VOORBEELD Maak kans op 1 jaar lang gratis collegegeld! Haal jouw studiepunten binnen met de studieondersteuning van SlimAcademy! Voor de ideale voorbereiding op jouw tentamens
1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.
Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en
== Tentamen Analyse 1 == Maandag 12 januari 2009, u
== Tentamen Analyse == Maandag januari 009, 400-700u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille of O van Gaans) en je studierichting Elk antwoord dient gemotiveerd te
1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling
Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil
14.1 Vergelijkingen en herleidingen [1]
4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk
rekenregels voor machten en logaritmen wortels waar of niet waar
Hoofdstuk 5 - machten, eponenten en logaritmen rekenregels voor machten en logaritmen wortels waar of niet waar 0. voorkennis HERLEIDEN VAN MACHTEN - rekenregels voor machten Bij het vermenigvuldigen van
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een
In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies.
03 college 5: meer technieken In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. Opmerking over de notatie. Net als in het
Inleiding Wiskundige Systeemtheorie
Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: [email protected] 1/27 Elektrotechniek, Wiskunde en Informatica EWI Tx D Ax; x.t/ 2 R 2 x D 0 is een evenwichtspunt;
Analyse 1 November 2011 Januari 2011 November 2010
WI1330CT/CT1135-1/CTB1001-1 Januari 2013 November 2012 Januari 2012 Analyse 1 November 2011 Januari 2011 November 2010 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" TU DELFT, 2010
TENTAMEN ANALYSE 1. dinsdag 3 april 2007,
TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan
Inleiding Wiskundige Systeemtheorie
Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: [email protected] 1/28 Elektrotechniek, Wiskunde en Informatica EWI x.k C 1/ D Ax.k/ C Bu.k/; y.k/ D Cx.k/ C Du.k/ We
stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden).
Samenvatting door Sterre 1437 woorden 5 mei 2018 7.8 3 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Vocabulair Algebraïsch stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen
Machten, exponenten en logaritmen
Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde
Signalen en Transformaties
Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: [email protected] 1/42 Elektrotechniek, Wiskunde en Informatica EWI Laplace transformatie éénzijdige Laplace-transformatie:
Vergelijkingen van cirkels en lijnen
Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen
Wiskunde 20 maart 2014 versie 1-1 -
Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6
Dit vak bestaat uit een werk- en instructiecollege, verplicht en vrijwillig huiswerk, één tussentoets op blackboard en één tentamen aan het eind.
Wiskunde 1A - groep 3 (Gabor Wiese) 16/09/2003 Wat informatie: Dit vak bestaat uit een werk- en instructiecollege, verplict en vrijwillig uiswerk, één tussentoets op blackboard en één tentamen aan et eind.
IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback
IJkingstoets wiskunde-informatica-fysica september 8 - reeks - p. IJkingstoets Wiskunde-Informatica-Fysica september 8: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),
IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde
IJkingstoets burgerlijk ingenieur-architect september 8: feedback deel wiskunde Positionering ten opzichte van andere deelnemers In totaal namen 5 studenten deel aan de ijkingstoets burgerlijk ingenieur-architect
IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde
IJkingstoets burgerlijk ingenieur-architect september 8: feedback deel wiskunde Positionering ten opzichte van andere deelnemers In totaal namen 5 studenten deel aan de ijkingstoets burgerlijk ingenieur-architect
Handleiding gebruik van Wortel TU/e
Handleiding gebruik van Wortel TU/e Wortel TU/e ( http://wortel.tue.nl ) is een website waar je (zelfstudie ) materiaal Wiskunde kunt vinden. Om gebruik te maken van de website, moet je een moderne browser
Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:
Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)
Limieten. Theorie: De begrippen limiet en continuïteit. Laat f een functie zijn, gedefinieerd op een interval of een vereniging van intervallen.
Limieten Theorie: De begrippen limiet en continuïteit Laat f een functie zijn, gedefinieerd op een interval of een vereniging van intervallen. Definitie: Het begrip limiet We zeggen dat de limiet van f(x)
I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.
I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk
Programma. - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen. hfst 9 rekenen2.
Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen 1 priemfactoren Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na
Samenvatting wiskunde B
Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!
integreren is het omgekeerde van differentiëren
Integraalrekening Als we een functie f(x) differentiëren is het resultaat de eerste afgeleide f (x). Dezelfde functie f(x) kunnen we ook integreren met als resultaat de zogenaamde primitieve functie F(x).
Hoofdstuk 1 - Inleiding hogere machtsverbanden
Wiskunde Leerjaar 3 - periode 3 Hogere machtsverbanden, gebroken functies, exponentiële functies en logaritmen Hoofdstuk - Inleiding hogere machtsverbanden A. Tweedegraads vergelijking. Ga naar www.desmos.com
Signalen en Transformaties
Signalen en Transformaties 200009 Docent : Anton Stoorvogel E-mail: [email protected] /48 Elektrotechniek, Wiskunde en Informatica EWI Convolutie.f g/.t/ D Z f./g.t / d Goed gedefinieerd als f.t/
Het is niet toegestaan om een formulekaart of rekenmachine te gebruiken. f(x) = 9x(x 1) en g(x) = 9x 5. Figuur 1: De grafieken van de functies f en g.
UNIVERSITEIT VAN AMSTERDAM FNWI Voorbeeld Toets Wiskunde A Het is niet toegestaan om een formulekaart of rekenmachine te gebruiken. 1. De twee functies f en g worden gegeven door f(x) = 9x(x 1) en g(x)
13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen.
13.0 Voorkennis Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. Op het interval [-2; -0,94) is de grafiek dalend; Bij x =
Functievergelijkingen
Functievergelijkingen Trainingsweek juni 2008 Basistechnieken Je mag alle getallen in het domein invullen in je functievergelijking. Wat er precies handig is, hangt af van het domein en van de functievergelijking.
Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30
Tentamen WISN11 Wiskundige Technieken 1 Ma 7 nov 16 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke
10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:
10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld
