Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Maat: px
Weergave met pagina beginnen:

Download "Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie"

Transcriptie

1 Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

2 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft het stijgen en dalen van de functie f en is zelf ook een functie. Het domein D f is deel van D f. De afgeleide van f wordt met f aangegeven en beschrijft het stijgen en dalen van f. Ook f is een functie en D f is deel van D f. De afgeleide van f wordt met f aangegeven etc. Een andere notatie voor de hogere afgeleiden van f is f 1 = f, f 2 = f, f 3 = f etc. Dus f n is de n de afgeleide van f voor n = 1, 2, De functie f zelf wordt ook wel met f 0 aangegeven.

3 2.6 Faculteit Basiswiskunde_College_4.nb 3 Bij de afgeleiden speelt n-faculteit, n!, een grote rol. We definiëren 0! =1 1! =1 n! =n μ n - 1 μ μ 2 μ 1, n = 2, 3, 4, Merk op dat n! =n ÿ n - 1! voor n = 1, 2, 3,. Voorbeelden: 8! = 8 ÿ 7 = 56 6! 2 n! = 2 n ÿ 2 n-1 ÿ 2 n-2 n+3 n! 2 n n-1 n-2 3 n+2 2 n+1 1 2n

4 4 Basiswiskunde_College_4.nb 2.6 Structuur hogere afgeleiden 1 Beschouw de functie f x = ln 2 + x. Geef een uitdrukking voor f n x voor algemene n in N. Geef een uitdrukking voor f n 0 voor algemene n in N. Via uitproberen: f 1 x = 2 + x -1 f 2 x = x -2 f 3 x = x -3 f 4 x = x -4 Vermoeden f n x = - n x n. n-1 factoren Dus f n x = -1 n-1 n - 1! 2 + x -n en f n 0 = -1 n-1 n-1! 2 n. Het vermoeden klopt voor n = 1, 2, 3, 4 Voor het bewijzen van dergelijke vermoedens bestaat een bewijstechniek die u niet hoeft te kennen. U moet wel in staat zijn om in eenvoudige gevallen een vermoeden uit te spreken over de vorm van f n.

5 2.6 Structuur hogere afgeleiden 2 Basiswiskunde_College_4.nb 5 Beschouw de functie f x = x x. Geef een uitdrukking voor f n x voor algemene n in N Via uitproberen: f 1 x = x + x x f 2 x = 2 x + x x f 3 x = 3 x + x x Vermoeden f n x = n x + x x. Het vermoeden is waar voor n = 0, 1, 2, 3.

6 6 Basiswiskunde_College_4.nb 2.6 Structuur hogere afgeleiden 3 * Beschouw de functie f x = x 2 x. Geef een uitdrukking voor f n x voor algemene n. Via uitproberen: f 1 x = x 2 x + 2 x x f 2 x = x 2 x + 4 x x + 2 f 3 x = x 2 x + 6 x x + 6 f 4 x = x 2 x + 8 x x + 12 Vermoeden f n x = x 2 x + 2 nx x + n n - 1 x. Voor n = 0, 1, 2, 3, 4 is het vermoeden waar.

7 2.8 Middelwaardestelling 1 Basiswiskunde_College_4.nb 7 Stelling 11 De middelwaardestelling (The Mean-Value Theorem) Beschouw een functie f op een gesloten interval a, b met de eigenschappen dat de functie f continu is op het interval a, b en differentieerbaar is op het interval a, b. f b -f a Dan bestaat er c in a, b met = f c. b-a f b f a f x a x 1 x 2 b Hier staat een grafische toelichting voor een gekozen f. De grafiek van f is zonder sprongen en in ieder punt van a, b heeft de grafiek een raaklijn. De lijn { door de punten a, f a en b, f b heeft rc f b -f a b-a. Door { parallel te verschuiven vindt u punten op de grafiek met raaklijn parallel aan {. In dit plaatje zijn er twee punten. Zodoende is c = x 1 of c = x 2.

8 8 Basiswiskunde_College_4.nb 2.8 Middelwaardestelling 2 De stelling zegt niet hoeveel getallen c er zijn met De stelling zegt niets over de plaats van c. f b -f a b-a = f c. De stelling wordt op twee manieren gebruikt: f b -f a b-a = f c of f b - f a = f c b - a. Gevolg 1: Beschouw een functie f en een interval I zodanig dat f x = 0 voor alle x in I. Dan bestaat er een constante d zodanig dat f x = d voor alle x in I. Gevolg 2: Beschouw een functie f en een interval I zodanig dat f x > 0 voor alle x in I. Dan is de functie f monotoon stijgend op I.

9 2.8 Voorbeeld 1 Basiswiskunde_College_4.nb 9 Laat zien dat sin x sin x 1 voor alle x in R. Laat f x = sin x, b = x + 1 en a = x. Dan is f x = cos x Er geldt dat sin x sin x = cos c x x = cos c voor zekere c tussen x en x + 1. Dus sin x sin x = cos c 1.

10 10 Basiswiskunde_College_4.nb 2.8 Voorbeeld 2 Laat zien dat x x+1 < x ln x ln x < 1 voor alle x > 0. Op het verschil ln x ln x kan de middelwaardestelling worden toegepast. Laat f x = ln x, a = x en b = x + 1. Nu is f x = 1 x Dus ln x ln x = 1 c x x = 1 c voor zekere c met x < c < x + 1. Gevolg x ln x ln x = x c 1 Omdat x > 0 geldt dat < 1 < 1 en ook x < x < 1 x+1 c x x+1 c x Conclusie: < x ln x ln x < 1. x+1

11 2.8 Voorbeeld 3 Basiswiskunde_College_4.nb 11 Laat zien dat sin2 b -sin 2 a 1 voor alle a en b in R, a b. b-a Laat f x = sin 2 x. Dan is f x = 2 sin x cos x. Dus sin2 b -sin 2 a b-a = 2 sin c cos c met c tussen a en b. Gevolg sin2 b -sin 2 a = 2 sin c cos c. b-a Er moet worden aangetoond dat 2 sin c cos c 1. Merk op dat 2 sin c cos c = sin 2 c. Dus sin2 b -sin 2 a = sin 2 c 1. b-a

12 12 Basiswiskunde_College_4.nb 2.8 Voorbeeld 4 Laat zien dat tan x > x voor alle x in 0, p 2. Op een verschil van de functiewaarden kan de middelwaardestelling worden toegepast. Nu is tan x = tan x - tan 0. We kiezen f x = tan x. Dan is f x = Dus tan x = f x - f 0 = f c x - 0 met c tussen x en 0. 1 x Gevolg tan x = x - 0 = cos 2 c cos 2 c. Omdat 0 < x < p 2, is 0 < cos2 c < 1, Conclusie: tan x = 1 cos 2 c x > x. 1 cos 2 c > 1 en x cos 2 c > x. 1 cos 2 x.

13 2.8 Generalisatie * Basiswiskunde_College_4.nb 13 Deze slide valt buiten stof. Stelling 16 Generalisatie van middelwaardestelling Beschouw de functies f en g en een interval a, b met de volgende eigenschappen: f en g zijn continu op a, b, f en g zijn differentieerbaar op a, b, g x 0 voor alle x met a x b, Dan bestaat er c in a, b met f b -f a = f c g b -g a g. c Waarom heet deze stelling een generalisatie?

14 14 Basiswiskunde_College_4.nb 2.9 Inleiding impliciet differentiëren De grafiek van de functie f x = 4 - x 2 is de helft van een cirkel. De punten van de grafiek van f voldoen aan de vgl x 2 + y 2 = 4. Omgekeerd zijn niet alle punten van de cirkel x 2 + y 2 = 4 punten van de grafiek van f. In de buurt van het punt 1, 3 vallen cirkel en grafiek van f samen. Als we y als functie van x zien dan wordt door x 2 + y 2 = 4 en y 1 = 3 een functie vastgelegd, namelijk y x = 4 - x 2 = f x. Door f x = 4 - x 2 wordt de functie f expliciet gegeven. Door x 2 + y 2 = 4 en y 1 = 3 wordt de functie y impliciet gegeven. Een vergelijking met x en y is meestal niet oplosbaar, maar legt vaak een kromme in het vlak vast die locaal als de grafiek van een functie gezien kan worden. Als y x niet expliciet bepaald kan worden, dan kan men toch iets zeggen over y x.

15 2.9 Opdrachten Basiswiskunde_College_4.nb 15 (1) Differentieer de uitdrukking x sin 3 x + ln 2 + x sin x naar x. (2) Differentieer de uitdrukking xy 3 x + ln 2 + xy x naar x (1) Antwoord: sin 3 x + 3 x sin 2 x cos x x sin x (2) Antwoord: y 3 x + 3 xy 2 x y x y x y x + xy x sin x + x cos x

16 16 Basiswiskunde_College_4.nb 2.9 Voorbeeld impliciete differentiatie * Beschouw de functie y impliciet gegeven door x2 + y y 2 = 5, 1 y 1 =-1, 2 (a) Druk y uit in x en y (b) Bepaal y 1 (c) Bepaal y 1 als dat kan. (a) Vgl (1) is eigenlijk x 2 + y 4 x + 3 y 2 x = 5. In Adams wordt het argument van y weggelaten. Aan beide kanten differentiëren geeft 2 x + 4 y 3 y + 6 yy = 0, vgl (3). Dus y = -2 x 4 y 3 +6 y. (b) Vul x = 1 in vgl 3. Dan 2-4 y 1-6 y 1 = 0; Dus y 1 = 1 5 (c) Vgl (3) herschrijven geeft 2 x + 4 y y y = 0. Differentiëren levert y 2 y + 6 y y + 4 y y y = 0. Invullen geeft y 1 = 0. Dus y 1 =

17 4.9 Inleiding linearisatie Basiswiskunde_College_4.nb 17 Er bestaat geen formule om alle functiewaarden sin x uit te rekenen. Voor speciale hoeken kan dit wel: sin 0 = 0, sin p = 1, sin p = 1 2 etc Een rekenmachine geeft de waarde voor sin 0.1. Dit is een benadering voor sin 0.1. Vaak zijn (functie)waarden niet exact te bepalen, maar wel te benaderen. Beschouw een differentieerbare functie f met een punt a in het domein D f. Als van de functie f de functiewaarde f a en de afgeleide f a bekend zijn, dan kan de waarde van f x rond x = a benaderd worden. Als x dicht bij a ligt dan zal f x -f a x-a º f a ofwel f x º f a + f a x - a.

18 18 Basiswiskunde_College_4.nb 4.9 Linearisatie Beschouw een functie f die differentieerbaar is in het punt a in D f. f x f a Y f x p 1 x p 0 x a x X De raaklijn in a, f a heeft vergelijking y = f a + f a x - a. De raaklijn is de grafiek van de functie p 1 met p 1 x = f a + f a x - a. De horizontale lijn door a, f a is de grafiek van de functie p 0 met p 0 x = f a. De functie p 1 x = f a + f a x - a heet de linearisatie van f rond a. Rond a zal p 1 x een betere benadering voor f x zijn dan p 0 x.\ De linearisatie wordt ook vaak met L x aangegeven. Een linerisatie past locaal bij een functie!

19 4.9 Voorbeeld 1 linearisatie Basiswiskunde_College_4.nb 19 Beschouw de functie f x = x. (1) Bepaal de linearisatie van f rond a = 1 en benader 1.1. (2) Bepaal de linearisatie van f rond a = 4 en benader 4.1. Er geldt f x = 1 2 x. (1) L x = f 1 + f 1 x - 1 = x - 1. Nu is 1.1 = f 1.1 º L 1.1 = μ 0.1 = (2) L x = f 4 + f 4 x - 4 = x - 4. Nu is 4.1 = f 4.1 º L 4.1 = μ 0.1 =

20 20 Basiswiskunde_College_4.nb 4.9 Voorbeelden linearisatie Voorbeeld 1 Benader met een linearisatie. Beschouw de functie f x = 1 x met afgeleide f x =- 1 x 2. Van deze functie is rond a = 10 de linearisatie L x = En = f 10.2 º L 10.2 = 1-1 μ 0.2 = Een rekenmachine geeft = x Voorbeeld 2 Beschouw de functie f x = sin x. Benader sin 0.1 met een linearisatie. Van deze functie is rond a = 0 de linearisatie L x = x. Nu is sin 0.1 = f 0.1 º L 0.1 = 0.1 Een rekenmachine geeft sin 0.1 = , dus de benadering is niet slecht. Voorbeeld 3 Benader 37 met een linearisatie. Omdat 36 = 6, kiezen we f x = 36 + x. Dan 37 = f 1. De linearisatie van f rond a = 0 is L x = x. 12 Dus 37 º L 1 = = Een rekenmachine geeft 37 =

21 4.9 Fout bij linearisatie Basiswiskunde_College_4.nb 21 Stelling 11 Fout bij linearisatie Gegeven functie f, getal a in D f en getal x in D f zodanig dat f 2 continu is op interval met eindpunten a en x. Dan geldt dat f x = f a + f a x - a + 1 f s x - a 2 voor zekere s tussen a en x. 2 De stelling zegt dat er een s bestaat en niet hoeveel het er zijn en hoe u ze kunt vinden. De term 1 2 f s x - a 2 wordt de fout van de linearisatie genoemd en met E 1 x aangegeven. Anders gezegd: f x = p 1 x + E 1 x Zeker als x dicht bij a ligt, zal de fout klein zijn ten opzichte van x - a. Het teken van E 1 x bepaalt of p 1 x onder of boven f x ligt.

22 22 Basiswiskunde_College_4.nb 4.9 Benadering met interval 1 Geef benadering voor sin 0.1 met een geschikt interval er omheen. Beschouw f x = sin x en a = 0. Dan is L x = x. Nu is x = 0.1 en sin 0.1 = L E Nu is E = 1 f s = sin s met 0 < s < 0.1. Merk op dat 0 < sin s < sin 0.1 < 0.1. Dus E 0.1 =-sin s ÿ is negatief. Er geldt dat -0.1 <-sin s < 0 ofwel < E < 0. Overal L 0.1 bij optellen levert < sin 0.1 < 0.1 De rekenmachine geeft sin 0.1 =

23 4.9 Benadering met interval 2 Basiswiskunde_College_4.nb 23 Geef benadering voor 1.04 met een geschikt interval er omheen. Beschouw f x = x en a = 1. Er geldt dat f 1 x = 1 en f 2 x = x 4 x x Nu is de linearisatie L x = f 1 + f 1 x - 1 = ÿ x Omdat 1.04 = f 1.04, 1.04 º L 1.04 = ÿ 0.04 = Er geldt f 1.04 = L E en E =- 1 8 c c met 1 < c < Omdat 0 < 1 < 1, vinden we < E < 0. c c Dus met optellen van L 1.04 vinden we < 1.04 < De rekenmachine geeft 1.04 =

24 24 Basiswiskunde_College_4.nb 4.9 Slotopmerkingen linearisatie * é In L x de haakjes van x - a laten staan! é De linearisatie L x is een polynoom in x van de graad hoogstens 1. é Grafiek van linearisatie L x is rechte. é Beschouw een functie f x met linearisatie L x rond a. Aan het teken van de tweede afgeleide van f is te zien aan welke kant van de functiewaarde f x de benadering L x ligt.

Basiswiskunde Week 3_ Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Basiswiskunde Week 3_ Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Basiswiskunde Week 3_2 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_Week_3_2.nb 2.8 Middelwaardestelling 1 Stelling 11 De middelwaardestelling (The Mean-Value

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Basiswiskunde, 2DL03, woensdag 1 oktober 2008, uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Basiswiskunde, 2DL03, woensdag 1 oktober 2008, uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Basiswiskunde, DL3, woensdag oktober 8, 9.. uur. Geef op het eerste vel met uitwerkingen aan welk programma (Schakelprogramma

Nadere informatie

Inhoud college 6 Basiswiskunde

Inhoud college 6 Basiswiskunde Inhoud college 6 Basiswiskunde 4.0 Taylorpolynomen (slot) Zie college 5: Vanaf 4.0 Voorbeeld 4 3. Inverse functies 3.2 Exponentiële en logaritmische functies 3.3 De natuurlijke logaritme en de exponentiële

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Algemeen deel. Bij het vermenigvuldigen met van de ongelijkheid moet u rekening houden met twee gevallen, te weten > 0 en < 0 en u moet

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013, Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0.

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0. Gegeven is de functie.0 Voorkennis Deze functie bestaat niet bij een van. Invullen van = geeft een deling door 0. De functie g() = heeft als domein R en is een ononderbroken kromme. Deze functie is continu

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

1.1 Differentiëren, geknipt voor jou

1.1 Differentiëren, geknipt voor jou 1.1 Differentiëren, geknipt voor jou Je hebt leren omgaan met hellings of, wat hetzelfde is: s. We frissen de begrippen en rekenmethoden die hierbij horen nu wat op. Stel dat je met een (gewone) schaar

Nadere informatie

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0.

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0. OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE (COLLEGE NAJAAR 6).. Bepaal alle oplossingen van de vergelijking (z + i) 4 = 6 in het complee vlak. a. Schrijf het getal i in poolcoördinaten. b. Bereken de rechthoekige

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Colleges. Woensdag 5 februari 2014, college 1. ã Stof. Tijdschema colleges Basiswiskunde 2DL00 Cursus , Semester 2 Avondonderwijs

Colleges. Woensdag 5 februari 2014, college 1. ã Stof. Tijdschema colleges Basiswiskunde 2DL00 Cursus , Semester 2 Avondonderwijs Tijdschema colleges Basiswiskunde 2DL00 Cursus 2013-2014, Semester 2 Avondonderwijs Versie vrijdag 21 februari 2014 Na ieder avondcollege wordt een klein verslag van het college in dit document opgenomen.

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/

Nadere informatie

2 Lijn door P met gegeven richtingscoëfficiënt

2 Lijn door P met gegeven richtingscoëfficiënt Lineariseren Wisnet-HBO update april 008 Inleiding Hieronder zijn twee grafieken getekend van de zelfde functie f := x x x met de raaklijn in het punt x =. raaklijn_y = x+ 5 0 x f(x) The tangent at x=.0.05.00.95.90

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 5 bladzijde 9 ab f g h i j functie nr 5 Domein [ 0, 0, Bereik [ 0, [ 0, 0, c D k B k, 0 0, d Spiegelen in de -as geeft het tegengestelde bereik, dus, 0]. e u ( ) en yu ( ) u f D q, 0 0, ; B q 0, a [, b

Nadere informatie

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

Week 2_2. 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels

Week 2_2. 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels Week 2_2 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels 2 Basiswiskunde_Week_2_2.nb 1.2 Voorbeeld Beschouw de uitdrukking x2 +3 x in de buurt van x = 2. x-4 Als x op 2 lijkt, dan

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

EERSTE AFGELEIDE TWEEDE AFGELEIDE

EERSTE AFGELEIDE TWEEDE AFGELEIDE Lesrief EERSTE AFGELEIDE etreme waarden raaklijn normaal TWEEDE AFGELEIDE uigpunten 6/7Np GGHM03 Inleiding Met ehulp van de grafische rekenmachine kun je snel zien of de grafiek daalt of stijgt. Het horizontaal

Nadere informatie

Signalen 4CA00 (1) Gedeelte Signalen, docent M.J.G. van de Molengraft. Gedeelte Wiskunde, docent F.J.L. Martens

Signalen 4CA00 (1) Gedeelte Signalen, docent M.J.G. van de Molengraft. Gedeelte Wiskunde, docent F.J.L. Martens Signalen 4CA00 (1) Gedeelte Signalen, docent M.J.G. van de Molengraft Gedeelte Wiskunde, docent F.J.L. Martens Inhoud wiskundedeel Functies van meer variabelen Partiële afgeleiden Extrema Eigenwaarden

Nadere informatie

Tussentoets Analyse 1

Tussentoets Analyse 1 Tussentoets Analyse Maandag 0 oktober 008, 0.00 -.00u Schrijf op ieder vel je naam en studentnummer, de naam van de docent S. Hille, O. van Gaans en je studierichting. Geef niet alleen antwoorden, leg

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid

Nadere informatie

n=0 en ( f(y n ) ) ) n=0 equivalente rijen zijn.

n=0 en ( f(y n ) ) ) n=0 equivalente rijen zijn. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 8 juli 2011, 14.00 17.00 Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek Analysis I. Geef

Nadere informatie

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n. Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

6. Toon aan dat voor alle 2]0; ß [ geldt dat sin <<tan Onderstel dat de functie f afleidbaar in ]a; +1[ is en dat Toon aan dat!+1 f ) = A.!+1 f

6. Toon aan dat voor alle 2]0; ß [ geldt dat sin <<tan Onderstel dat de functie f afleidbaar in ]a; +1[ is en dat Toon aan dat!+1 f ) = A.!+1 f Afleiden en primitiveren Oefeningen Wiskundige Analyse I 1. Toon aan dat de functie f gedefinieerd op [ß; 3ß 2 ] door 1 p 1 + sin2 ) een inverse ffi bezit. Wat kan men besluiten omtrent de monotoniteit,

Nadere informatie

Paragraaf 2.1 Toenamediagram

Paragraaf 2.1 Toenamediagram Hoofdstuk 2 Veranderingen (H4 Wis B) Pagina 1 van 11 Paragraaf 2.1 Toenamediagram Les 1 Interval / Getallenlijn / x-notatie Interval Getallenlijn x-notatie -------------

Nadere informatie

Vak Basiswiskunde 2DL00

Vak Basiswiskunde 2DL00 Basiswiskunde_College_1.nb 1 Vak Basiswiskunde 2DL00 Cursus 2013-2014 Basis van wiskundige kennis en vaardigheden Kennismaking vooraf met wiskunde op TU/e Ook vak in allerlei schakelprogramma s Zie ook

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

(x x 1 ) + y 1. x x 1 x k x x x k 1

(x x 1 ) + y 1. x x 1 x k x x x k 1 Les Taylor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

Paragraaf 7.1 : Eenheidscirkel en radiaal

Paragraaf 7.1 : Eenheidscirkel en radiaal Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel

Nadere informatie

(x x 1 ) + y 1. x x k+1 x k x k+1

(x x 1 ) + y 1. x x k+1 x k x k+1 Les Talor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

e x x 2 cos 2 (sin t) cos(t) dt

e x x 2 cos 2 (sin t) cos(t) dt Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP3B 5 november, 8.3.3 Het gebruik van een rekenmachine, telefoon en boeken) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

1E HUISWERKOPDRACHT CONTINUE WISKUNDE

1E HUISWERKOPDRACHT CONTINUE WISKUNDE E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk

Nadere informatie

Hoofdstuk 3 - Transformaties

Hoofdstuk 3 - Transformaties Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 V-a f () = g () = sin h () = k () = log m () = n () = p () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

Basiswiskunde Week 4_2

Basiswiskunde Week 4_2 Basiswiskunde Week 4_2 4.10 Taylorpolynomen, staan al in Basiswiskunde week 4_1 3.1 Inverse functies 3.2 Exponentiële en logaritmische functies Bestudeer de inhoud van de secties 3.1 en 3.2 in hun geheel

Nadere informatie

Wisnet-HBO. update maart. 2010

Wisnet-HBO. update maart. 2010 Wat is Differentiëren? 1 Wat is differentiëren? Wisnet-HBO update maart. 2010 Differentiëren is eigenlijk het differentiaalquotient bepalen. Je begint met het delen van uiterst kleine verschillen op elkaar.

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

ICT in de lessen wiskunde van de 3de graad: een overzicht

ICT in de lessen wiskunde van de 3de graad: een overzicht ICT in de lessen wiskunde van de 3de graad: een overzicht Dr Didier Deses KA Koekelberg - VUB wiskak@yahoo.com Inleiding Wat omvat ICT in de wiskunde? Rekenmachine Wetenschappelijk Grafisch Symbolisch

Nadere informatie

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 Inleverdatum 30 maart 207, uiterlijk :5 uur Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je mag de theorie gebruiken die op het college

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

Antwoordenboekje. Willem van Ravenstein

Antwoordenboekje. Willem van Ravenstein Antwoordenboekje Willem van Ravenstein 2006-2007 versie 2 herzien in 2010 1 Inhoudsopgave Inhoudsopgave... 2 Vermenigvuldigen, delen, optellen en aftrekken... 3 Breuken en haakjes... 4 Machten en wortels...

Nadere informatie

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een

Nadere informatie

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt

Nadere informatie

G Biochemie & Biotechnologie, Chemie, Geografie. K Geologie, Informatica, Schakelprogramma s

G Biochemie & Biotechnologie, Chemie, Geografie. K Geologie, Informatica, Schakelprogramma s Tussentijdse Toets Wiskunde I ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, Master Chemie donderdag 3 november 06, :00-3:00

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (15126) op dinsdag 4 januari 211, 8.45 11.45 uur. De uitwerkingen van de opgaven

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

Analyse 1 Handout limieten en continuïteit

Analyse 1 Handout limieten en continuïteit Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

Week 2. P.5 Combineren van functies P.6 Polynomen en rationale functies P.7 Goniometrische functies

Week 2. P.5 Combineren van functies P.6 Polynomen en rationale functies P.7 Goniometrische functies Week 2 P.5 Combineren van functies P.6 Polynomen en rationale functies P.7 Goniometrische functies 2 Basiswiskunde_College_2.nb P.5 Combineren van functies Het combineren gaat op 3 manieren: é algebraïsch

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

Tentamen Wiskundige Technieken 1 Ma 6 nov 2017 Uitwerkingen

Tentamen Wiskundige Technieken 1 Ma 6 nov 2017 Uitwerkingen Tentamen Wiskundige Technieken Ma 6 nov 207 Uitwerkingen Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Cijfer = totaal punten/10 met minimum 1

Cijfer = totaal punten/10 met minimum 1 VOORBLAD SCHRIFTELIJKE TOETSEN OPLEIDING TOETSCODE GROEP Me MeWIS1-T1 MeP1 TOETSDATUM 7 november 011 TIJD 13.00 14.30 uur AANTAL PAGINA S (incl. dit voorblad) 6 DEZE TOETS BESTAAT UIT (aantal) GEBRUIK

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Over de functies arcsin, arccos en arctan

Over de functies arcsin, arccos en arctan Over de functies arcsin, arccos en arctan Booglengte figuur figuur De grafiek van een functie f tussen twee punten P (met a) en Q (met b) kan worden opgedeeld in stukjes die kunnen worden opgevat als lijnstukken,

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die

Nadere informatie

Correctievoorschrift HAVO. Wiskunde B (oude stijl)

Correctievoorschrift HAVO. Wiskunde B (oude stijl) Wiskunde B (oude stijl) Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 0 0 Tijdvak Inzenden scores Uiterlijk 6 juni de scores van de alfabetisch eerste vijf kandidaten per school op de daartoe

Nadere informatie

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie

Vergelijkingen van cirkels en lijnen

Vergelijkingen van cirkels en lijnen Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f() = Differentiequotiënt van f() op [0, 3] = y f (3) f (0) 6 0 30 30 y 1 16.1

Nadere informatie

7.1 De afgeleide van gebroken functies [1]

7.1 De afgeleide van gebroken functies [1] 7.1 De afgeleide van gebroken functies [1] Regels voor het differentiëren: f() = a geeft f () = a f() = a geeft f () = a f() = a geeft f () = 0 Algemeen geldt: f() = a n geeft f () = na n-1 Voorbeeld 1:

Nadere informatie

Examen havo wiskunde B 2016-I (oefenexamen)

Examen havo wiskunde B 2016-I (oefenexamen) Examen havo wiskunde B 06-I (oefenexamen) De rechte van Euler Gegeven is cirkel c met middelpunt (, ) p Stel een vergelijking op van c. De punten B(, 0) en ( 4, 0) M die door het punt A( 0, 4) C liggen

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk

Nadere informatie

Opmerking In de berekening mogen v = 0 en/of v = 187,5 zonder toelichting zijn weggelaten.

Opmerking In de berekening mogen v = 0 en/of v = 187,5 zonder toelichting zijn weggelaten. HAVO wb 00-I Weerstand De formules voor P rol en P lucht invoeren in de grafische rekenmachine (GR) en bepalen voor welke waarde van v deze gelijk zijn v,7 P lucht > P rol voor v > =,7 (km/uur) (v >,7

Nadere informatie

Goniometrische functies

Goniometrische functies Goniometrische functies gonè (Grieks) = hoek metron (Grieks) = maat Goniometrie, afkomstig van de Griekse woorden voor hoek en maat, betekent letterlijk hoekmeetkunde. Daarmee wordt aangegeven dat het

Nadere informatie

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1},

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1}, Hoofdstuk II Calculus Les Differentiatie van functies Waarscijnlijk eeft iedereen wel een idee ervan wat een functie is, maar voor de duidelijkeid zal et andig zijn om de meest belangrijke begrippen na

Nadere informatie