Signalen en Transformaties

Maat: px
Weergave met pagina beginnen:

Download "Signalen en Transformaties"

Transcriptie

1 Signalen en Transformaties Docent : Anton Stoorvogel [email protected] 1/29 Elektrotechniek, Wiskunde en Informatica EWI

2 Complexe getallen z D a C bi We definiëren de complex toegevoegde: z D a bi. We hebben de volgende eigenschappen:.z 1 C z 2 / D z1 C z 2 ;.z 1z 2 / D z1 z 2 ; z1 D z 1 De volgende rekenregel wordt vaak gebruikt: z 2 z 2 a C bi c C di D a C bi c C di c c di di ac C bd D c 2 C d 2 C bc ad c 2 C d 2 i 2/29 Elektrotechniek, Wiskunde en Informatica EWI

3 Modulus en argument Elk complex getal kan worden geschreven als (formule van Euler): z D re i' D r cos ' C ir sin ' r heet de absolute waarde of modulus van z, ' heet het argument van z. 3/29 Elektrotechniek, Wiskunde en Informatica EWI

4 Modulus en argument Elk complex getal kan worden geschreven als (formule van Euler): z D re i' D r cos ' C ir sin ' r > 0 en uniek bepaald. ' is voor z 0 uniek bepaald op een geheel veelvoud van 2 na. Voor z D 0 is ' vrij te kiezen. We gebruiken de notatie: ' D arg.z/, r D jzj. Vermenigvuldigen en delen van complexe getallen veel eenvoudiger in poolcoördinaten. 4/29 Elektrotechniek, Wiskunde en Informatica EWI

5 Een polynoom: heeft als oplossing: az 2 C bz C c D 0;.a; b; c 2 R; a 0/ z 1;2 D b pb 2 4ac 2a Echter als b 2 oplossing. 4ac < 0 dan heeft deze vergelijking geen reële Voorbeeld: z 2 C 2z C 3 D 0. 5/29 Elektrotechniek, Wiskunde en Informatica EWI

6 Hoofdstelling van de algebra Elk niet-constant polynoom p.z/ D p 0 C p 1 z C C p n z n ;.p i 2 C/ heeft een nulpunt in z 2 C. 6/29 Elektrotechniek, Wiskunde en Informatica EWI

7 Complexe functies Een signaal f.t/ kan geschreven worden als: Limieten f.t/ D f 1.t/ C if 2.t/ Definitie Zij f.t/ D f 1.t/ C if 2.t/ en L D L 1 C il 2. Stelling lim f.t/ D L lim f 1.t/ D L 1 ; lim f 2.t/ D L 2 t!a t!a t!a lim f.t/ D L lim jf.t/ Lj D 0 t!a t!a 7/29 Elektrotechniek, Wiskunde en Informatica EWI

8 Continuïteit De functie heet continu in t als de limiet bestaat. Differentiëerbaar lim f.t C h/ D f.t/ h!0 De functie heet differentiëerbaar als de limiet lim h!0 f.t C h/ h f.t/ bestaat. 8/29 Elektrotechniek, Wiskunde en Informatica EWI

9 Integreren Z b f.t/ dt D Z b f 1.t/ dt C i Z b f 2.t/ dt a a a 9/29 Elektrotechniek, Wiskunde en Informatica EWI

10 Voorbeelden Zij n een geheel getal, 0! 0 D 2 T 1 T ZT=2 T=2 e in! 0t dt D 8 < 0.n 0/ : 1.n D 0/ 10/29 Elektrotechniek, Wiskunde en Informatica EWI

11 Voorbeelden Zij a zodanig dat Re a > 0. Z 1 0 e at dt D 1 a 11/29 Elektrotechniek, Wiskunde en Informatica EWI

12 Voorbeelden Zij n 0 geheel, 0! 0 D 2 T Z T 0 te in! 0t dt D T 2 2in 12/29 Elektrotechniek, Wiskunde en Informatica EWI

13 ˇ Z b a f.t/ dt ˇ 6 Z b a jf.t/j dt Z b 1 f.t/ dta D Z b f.t/ dt a a 13/29 Elektrotechniek, Wiskunde en Informatica EWI

14 Een signaal f.t/ heet stuksgewijs glad op een interval Œa; b indien: f.t/ differentiëerbaar is op.a; b/ met uitzondering van een eindig aantal punten c i. f 0.t/ continu is op.a; b/ eventueel met uizondering van de punten c i. In de discontinuïteitspunten c i de volgende limieten bestaan: lim h#0 f.c i Ch/; lim h#0 f.c i h/; lim h#0 f 0.c i Ch/; lim h#0 f 0.c i h/ De volgende limieten bestaan: lim h#0 f.a C h/; lim h#0 f 0.a C h/; lim h#0 f.b h/; lim h#0 f 0.b h/ 14/29 Elektrotechniek, Wiskunde en Informatica EWI

15 Periodieke signalen Sinusoïdale signalen f.t/ D A cos.!t C '/ A de amplitude,! de hoekfrequentie, ' de beginfase Tijdsharmonische signalen f.t/ D ce i!t jcj de amplitude,! de hoekfrequentie, arg.c/ de beginfase 15/29 Elektrotechniek, Wiskunde en Informatica EWI

16 Periodieke signalen en de versleepstelling Een signaal f heet T -periodiek als voor all t 2 R. f.t C T / D f.t/ Zij f een T -periodiek signaal dan geldt voor elke a 2 R: act Z f.t/ dt D ZT=2 f.t/ dt a T=2 (versleepstelling) 16/29 Elektrotechniek, Wiskunde en Informatica EWI

17 Niet-periodieke signalen Rechthoekige puls Eenheidsstapfunctie rect a.t/ D 8 1 jtj < ˆ< a 2 0 jtj > a 2 ˆ: 1 2 jtj D a 2 ½.t/ D 8 1 t > 0 ˆ< 0 t < 0 ˆ: 1 2 t D 0 17/29 Elektrotechniek, Wiskunde en Informatica EWI

18 Driehoekige puls trian a.t/ D 8 < 1 jtj a jtj < a : 0 jtj > a sinc.t/ D 8 < sin t t 0 t : 1 t D 0 18/29 Elektrotechniek, Wiskunde en Informatica EWI

19 Energie en vermogen Zij f.t/ een signaal. De energie-inhoud E f van het signaal wordt gegeven door: E f D Z 1 1 jf.t/j 2 dt Zij f.t/ een periodiek signaal met periode T. Het vermogen P f van het signaal wordt gegeven door: P f D 1 T ZT=2 T=2 jf.t/j 2 dt 19/29 Elektrotechniek, Wiskunde en Informatica EWI

20 Voorbeelden Van het sinusoïdale signaal f.t/ D A cos.! 0 t C '/ is het vermogen gelijk aan A 2 =2. Een signaal dat T -periodiek is, is ook nt periodiek voor gehele n. Opgevat als periodiek signaal met periode nt heeft het signaal hetzelfde vermogen als het vermogen van f opgevat als functie van periode T. 20/29 Elektrotechniek, Wiskunde en Informatica EWI

21 Differentieren Produktregel Kettingregel Integreren Partieel integreren Gonio formules 21/29 Elektrotechniek, Wiskunde en Informatica EWI

22 Rijen van complexe getallen Gegeven een reeks complexe getallen a n D u n C iv n en een kandidaat limiet a D u C iv. Dan: Ook nu geldt: lim a n D a lim u n D u; lim v n D v: n!1 n!1 n!1 lim a n D a lim ja n aj D 0: n!1 n!1 Voorbeeld: als jzj < 1. lim n!1 np z n D 0 22/29 Elektrotechniek, Wiskunde en Informatica EWI

23 Stelling van l Hôpital Stelling Zij f en g differentieerbaar en is g 0.t/ 0 in een omgeving van a. Als bovendien lim t!a f.t/ D 0 en f lim t!a g.t/ D 0 en de limiet lim 0.t/ t!a bestaat dan hebben we g 0.t/ lim t!a f.t/ g.t/ D lim t!a f 0.t/ g 0.t/ 23/29 Elektrotechniek, Wiskunde en Informatica EWI

24 Reeksen van complexe getallen 1X Beschouw de reeks a k. kd0 Dit wordt beschouwd als de limiet van de rij: s n D nx kd0 a k : en dus gelden dezelfde eigenschappen als voor rijen. Bijv. als a n D u n C iv n dan geldt: 1X kd0 a k is convergent 1X kd0 u k en 1X kd0 v k convergent zijn. 24/29 Elektrotechniek, Wiskunde en Informatica EWI

25 Nodige voorwaarde voor convergentie lim k!1 a k D 0 Voldoende voorwaarde voor convergentie 1X kd0 ja k j is convergent. 25/29 Elektrotechniek, Wiskunde en Informatica EWI

26 Gegeven een reeks: 1X a k Convergentiecriteria van Cauchy Definieer: kd0 c D lim k!1 p k jak j De reeks is convergent als c < 1 en divergent als c > 1. 26/29 Elektrotechniek, Wiskunde en Informatica EWI

27 Gegeven een reeks: 1X kd0 a k Convergentiecriteria van d Alembert Definieer: a D lim k!1 ja kc1 j ja k j De reeks is convergent als a < 1 en divergent als a > 1. 27/29 Elektrotechniek, Wiskunde en Informatica EWI

28 e z D 1 C z C 1 2Š z2 C 1 3Š z3 C en: D 1X kd0 1 kš zk e i' D 1 C.i'/ C 1 2Š.i'/2 C 1 3Š.i'/3 C 1 4Š.i'/4 C 1 5Š.i'/5 C 1 D 1 2Š '2 C 1 1 4Š '4 C i ' 3Š '3 C 1 5Š '5 D cos.'/ C i sin.'/ 28/29 Elektrotechniek, Wiskunde en Informatica EWI

29 Eindige som met z D e i'. kdn X kd N e ik' D 8 < 2N C 1 z D 1 : z N z N C1 1 z z 1 29/29 Elektrotechniek, Wiskunde en Informatica EWI

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx

Nadere informatie

Signalen en Transformaties

Signalen en Transformaties Signalen en Transformaties 200009 Docent : Anton Stoorvogel E-mail: [email protected] /48 Elektrotechniek, Wiskunde en Informatica EWI Convolutie.f g/.t/ D Z f./g.t / d Goed gedefinieerd als f.t/

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 [email protected] Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel

Nadere informatie

Signalen en Transformaties

Signalen en Transformaties Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: [email protected] 1/42 Elektrotechniek, Wiskunde en Informatica EWI Laplace transformatie éénzijdige Laplace-transformatie:

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, maandag K. P. Hart Faculteit EWI TU Delft Delft, 30 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 33 Outline 1 2 Algemeenheden Gedrag op de rand Machtreeksen

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.1, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 21 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 32 Outline 1 K. P. Hart TW2040: Complexe Functietheorie

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

Functies van één veranderlijke 191512600

Functies van één veranderlijke 191512600 Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: [email protected] /40 Elektrotechniek, Wiskunde en Informatica EWI Partieel Breuksplitsen a0 x m C a x m C C a m x C a m

Nadere informatie

Convexe Analyse en Optimalisering

Convexe Analyse en Optimalisering Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

Tentamen Functies en Reeksen

Tentamen Functies en Reeksen Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

5.1 Constructie van de complexe getallen

5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Complexe getallen. 5.1 Constructie van de complexe getallen

Complexe getallen. 5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van limiet dat lim y 0 y = 0. (b) Bewijs lim y 0 y 3 = 0 uit de definitie van limiet. (c)

Nadere informatie

Lineaire algebra 1 najaar Complexe getallen

Lineaire algebra 1 najaar Complexe getallen Lineaire algebra 1 najaar 2008 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 + 1 steeds

Nadere informatie

Uitwerking herkansing Functies en Reeksen

Uitwerking herkansing Functies en Reeksen Uitwerking herknsing Functies en Reeksen 3 jnuri 14, 9: - 1: uur Opgve 1 () De functie ' is prtieel differentieerbr, met prtiële fgeleiden @'.x; y/ D.1; 1/T en @x @' @y.x; y/ D. v; v/t : Deze prtiële fgeleiden

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.1, maandag K. P. Hart Faculteit EWI TU Delft Delft, 18 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 31 Outline 1 Section I.1 Complex numbers K. P. Hart

Nadere informatie

Inleiding Analyse. Opgaven. E.P. van den Ban. c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien

Inleiding Analyse. Opgaven. E.P. van den Ban. c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien Inleiding Analyse Opgaven E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Voorjaar 2003, herzien 0 1 1 Limieten en continuïteit Opgave 1.1 (a) Bewijs direct uit de definitie van limiet dat

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: [email protected] 1/32 Elektrotechniek, Wiskunde en Informatica EWI Definitie Een ingang-uitgang systeem H heet een

Nadere informatie

Oefeningen Wiskundige Analyse I

Oefeningen Wiskundige Analyse I Oneigenlijke integralen Oefeningen Wiskundige Analyse I. Voor welke waarden van de reële parameters α en β is de oneigenlijke integraal x α ( + x β ) dx convergent? divergent? 2. Voor welke waarden van

Nadere informatie

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.3, maandag K. P. Hart Faculteit EWI TU Delft Delft, 2 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 34 Outline 1 Conforme afbeeldingen 2 K. P. Hart TW2040:

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n. Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Utrecht, 25 november Numerieke Wiskunde. Gerard Sleijpen Department of Mathematics.

Utrecht, 25 november Numerieke Wiskunde. Gerard Sleijpen Department of Mathematics. Utrecht, 25 november 2014 Numerieke Wiskunde Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ [a, b] R, : [a, b] R Benader f door eenvoudige functies Voorbeelden eenvoudige

Nadere informatie

3 Opgaven bij Hoofdstuk 3

3 Opgaven bij Hoofdstuk 3 3 Opgaven bij Hoofdstuk 3 Opgave 3. Voor k beschouwen we de functie f k : x sin(x/k). Toon aan dat f k 0 uniform op [ R, R] voor iedere R > 0. Opgave 3.2 Zij V een verzameling. Een functie f : V C heet

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: [email protected] 1/27 Elektrotechniek, Wiskunde en Informatica EWI Tx D Ax; x.t/ 2 R 2 x D 0 is een evenwichtspunt;

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal

Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, 14.00 17.00, Examenzaal Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

Het uitwendig product van twee vectoren

Het uitwendig product van twee vectoren Het uitwendig product van twee vectoren Als u, v R 3, u = u 1, u 2, u 3 en v = v 1, v 2, v 3 dan is het uitwendig product van u en v gelijk aan een vector in R 3 en wel u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3,

Nadere informatie

Niet-standaard analyse (Engelse titel: Non-standard analysis)

Niet-standaard analyse (Engelse titel: Non-standard analysis) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Niet-standaard analyse (Engelse titel: Non-standard analysis) Verslag ten behoeve

Nadere informatie

Uitwerking tentamen Analyse B

Uitwerking tentamen Analyse B Uitwerking tentamen Analyse B 30 juni 20, 7:00 20:00 uur De hieronder gegeven uitwerkingen moeten worden opgevat als voorbeelden van correcte oplossingen. In veel gevallen zijn andere correcte oplossingen

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft

Nadere informatie

Tentamen Wiskundige Technieken 1 Ma 6 nov 2017 Uitwerkingen

Tentamen Wiskundige Technieken 1 Ma 6 nov 2017 Uitwerkingen Tentamen Wiskundige Technieken Ma 6 nov 207 Uitwerkingen Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

1. Toon aan dat de rij (e n := (1 + 1 n )n ) monotoon stijgend en naar boven begrensd is. Conclusie i.v.m. convergentie? 13. Toon aan dat er voor elk

1. Toon aan dat de rij (e n := (1 + 1 n )n ) monotoon stijgend en naar boven begrensd is. Conclusie i.v.m. convergentie? 13. Toon aan dat er voor elk Rijen en reeksen Oefeningen Wiskundige Analyse I 1. Toon aan dat de limiet van een convergente rij uniek is.. Toon aan dat elke deelrij van een convergente rij, convergeert naar dezelfde limiet als de

Nadere informatie

de optelling en vermenigvuldiging van complexe getallen, de beschrijving van complexe getallen in termen van poolcoördinaten,

de optelling en vermenigvuldiging van complexe getallen, de beschrijving van complexe getallen in termen van poolcoördinaten, Hoofdstuk 1 Complexe getallen 1.1 Rekenen met complexe getallen 1.1.1 We kunnen reële getallen opvatten als punten van een rechte lijn, de getallenrechte. Net zo kunnen we complexe getallen opvatten als

Nadere informatie

Leeswijzer bij het college Functies en Reeksen

Leeswijzer bij het college Functies en Reeksen Leeswijzer bij het college Functies en Reeksen Erik van den Ban Najaar 2012 Introductie eze leeswijzer bij het dictaat Functies en Reeksen (versie augustus 2011) heeft als doel een gewijzigde opbouw van

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3

Nadere informatie

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1 Radboud Universiteit Nijmegen Tentamen Calculus 2 NWI-NP004B 6 april 205, 8.00 2.00 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten

Nadere informatie

Wiskunde 2 voor kunstmatige intelligentie (BKI 316) Bernd Souvignier

Wiskunde 2 voor kunstmatige intelligentie (BKI 316) Bernd Souvignier Wiskunde 2 voor kunstmatige intelligentie (BKI 316) Bernd Souvignier najaar 2004 Deel I Voortgezette Analyse Les 1 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat

Nadere informatie

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden 10.0 Voorkennis 5 1 6 6 cos( ) = -cos( ) = -½ 3 [cos is x-coördinaat] 5 1 3 3 sin( ) = -sin( ) = -½ 3 [sin is y-coördinaat] 1 Voorbeeld 1: Getekend is de lijn k: y = ½x 1. De richtingshoek α van de lijn

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie week 4.8, maandag Faculteit EWI TU Delft Delft, 6 juni, 2016 1 / 33 Outline 1 Maximum-modulusprincipe Lemma van Schwarz 2 2 / 33 Maximum-modulusprincipe Lemma van Schwarz Maximum-modulusprincipe Stelling

Nadere informatie

(x x 1 ) + y 1. x x k+1 x k x k+1

(x x 1 ) + y 1. x x k+1 x k x k+1 Les Talor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 2 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 38 Outline 1 Rekenregels 2 K. P. Hart TW2040: Complexe

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Bouwstenen van signalen

Bouwstenen van signalen Bouwstenen van signalen Docent : Anton Stoorvogel E-mail: [email protected] Zonder wiskunde geen snelle communicatie 1/27 Elektrotechniek, Wiskunde en Informatica EWI We sturen steeds meer informatie

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Complexe functies. 2.1 Benadering door veeltermen

Complexe functies. 2.1 Benadering door veeltermen Wiskunde voor kunstmatige intelligentie, Les Complexe functies Nadat we de complexe getallen hebben leren kennen, is het een voor de hand liggende vraag of hiervoor net als voor de reële getallen ook functies

Nadere informatie

) translatie over naar rechts

) translatie over naar rechts Hoofdstuk opmerkingen/adviezen Leer deze grafieken precies! Zorg dat je de volgende formules ziet in de grafieken: Periode sinus, cosinus en tangens: resp,, sin( ) sin( ) cos( ) cos( ) cos( ) c a k a k

Nadere informatie

De wortel uit min één. Jaap Top

De wortel uit min één. Jaap Top De wortel uit min één Jaap Top IWI-RuG & DIAMANT [email protected] 20 maart 2007 1 Marten Toonder, verhaal de minionen (1980) 2 3 4 5 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen

Nadere informatie

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten)

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten) 8.I.00 Wiskundige Analyse I, theorie 60% van de punten) Beantwoord elk van de vragen I,II,III en IV op één van de dubbele geruite bladen. Schrijf op elk van die dubbele geruite bladen, bovenaan de eerste

Nadere informatie

Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30)

Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30) Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 016, 1:30 15:30 (16:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van aantekeningen

Nadere informatie

Wiskundige Analyse 1

Wiskundige Analyse 1 Wiskundige Anlyse 1 Belngrijkste stellingen 1 Getllen Driehoeksongelijkheid : b ± b + b Supremumprincipe : Elke nietlege verzmeling reële getllen die nr boven begrensd is, heeft een supremum Infimumprincipe

Nadere informatie

Oefeningen Analyse I

Oefeningen Analyse I Inleiding Oefeningen Analyse I Wil je de eventuele foutjes melden. Met dank, Yannick Meers e-mail: [email protected] Hoofdstuk 7: Functiereeksen Oefening Gevraagd: We gaan opsplitsen voor x : GEVAL : x

Nadere informatie

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in de weken 37-42 in zaal S 209, in de weken 44-49 in

Nadere informatie

Op deze manier ligt φ exact vast (als we zouden zeggen 0 φ 2π zouden we de reële getallen dubbelop hebben, en dat willen wij als wiskundigen niet).

Op deze manier ligt φ exact vast (als we zouden zeggen 0 φ 2π zouden we de reële getallen dubbelop hebben, en dat willen wij als wiskundigen niet). Moddergooien n.a.v. 31 augustus Allereerst: hartelijk dank voor de vragen; als dat zo doorgaat en als jullie zo blijven komen en ook nog eens huiswerk maken, dan weet ik zeker dat ik dicht bij 100% ga

Nadere informatie

Inleiding Complexe Functietheorie

Inleiding Complexe Functietheorie Dictaat Inleiding Complexe Functietheorie voor TN behorende bij het gelijknamige college met vakcode wi243tn G. Sweers versie van juli 2003 Inhoud Inleiding. Enkelebegrippen..... Complexegetallen.....2

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

Studiehandleiding Basiswiskunde cursus

Studiehandleiding Basiswiskunde cursus Studiehandleiding Basiswiskunde cursus 2008 2009 Materiaal Bij dit college heb je nodig: Het boek Basisboek wiskunde van Jan van de Craats en Rob Bosch Isbn: 90 430 1156 8 De syllabus Aanvulling basiscursus

Nadere informatie

Week 2_2. 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels

Week 2_2. 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels Week 2_2 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels 2 Basiswiskunde_Week_2_2.nb 1.2 Voorbeeld Beschouw de uitdrukking x2 +3 x in de buurt van x = 2. x-4 Als x op 2 lijkt, dan

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.9, maandag K. P. Hart Faculteit EWI TU Delft Delft, 13 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 41 Outline III.6 The Residue Theorem 1 III.6 The

Nadere informatie

Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren

Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren a = (a 1,..., a s ) en b = (b 1,..., b s ). Toepassing van deze Cauchy Schwarz-ongelijkheid levert

Nadere informatie

== Tentamen Analyse 1 == Maandag 12 januari 2009, u

== Tentamen Analyse 1 == Maandag 12 januari 2009, u == Tentamen Analyse == Maandag januari 009, 400-700u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille of O van Gaans) en je studierichting Elk antwoord dient gemotiveerd te

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB1002 deel 1 - Lineaire algebra 1 College 1 11 februari 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 [email protected] Slides

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 2 Ruimte en oppervlakken collegejaar : 18-19 college : 2 build : 5 september 2018 slides : 25 Vandaag Ruimte 1 Vectoren in R 3 recap 2 Oppervlakken 3 Ruimte 4 1 intro VA Voorkennis uit Ruimtewiskunde

Nadere informatie

1 Verzamelingen en afbeeldingen

1 Verzamelingen en afbeeldingen Samenvatting Wiskundige Structuren, 2010 Aad Offerman, www.offerman.com 1 1 Verzamelingen en afbeeldingen Notaties: A = {1,2,3},, x A, y / A, A = B A B en B A, N = {0,1,2,...}, Z = {..., 3, 2, 1,0,1,2,...},

Nadere informatie