K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

Maat: px
Weergave met pagina beginnen:

Download "K.0 Voorkennis. Herhaling rekenregels voor differentiëren:"

Transcriptie

1 K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( ) g( ) f ( ) g'( ) ( product regel) t( ) n( ) t '( ) t( ) n'( ) q( ) q'( ) n ( ) ( n ( )) f() = u(v()) geeft f () = u (v()) v () f() = sin() geeft f () = cos() f() = cos() geeft f () = -sin() f() = tan() geeft f () = + tan () = f() = e geeft f () = e cos ( ) f() = g geeft f () = g ln(g) ( quotiënt regel) (kettingregel) f() = ln() geeft f () = f() = g log() geeft f () = ln( g)

2 K.0 Voorkennis Herhaling rekenregels voor primitiveren: a f a F c met n n g f ( ) g F( ) c ln( g) n n ( ) ( ) f ( ) e F( ) e c f ( ) F( ) ln c f ( ) ln( ) F( ) ln( ) c g f ( ) log( ) F( ) ( ln( ) ) c ln( g) F( a b) c f() = sin() => F() = -cos() + c a f() = cos() => F() = sin() + c De primitieven van f(a + b) zijn

3 K. De substitutiemethode [] Substitutiemethode primitiveren: (f (u) u )d = f(u) du = F(u) +c Voorbeeld : Primitiveer de functie f() = 5( + ) 4 ( + ) F() = 5( + ) 4 ( + ) d = 5( + ) 4 d( + ) [Neem + = u()] 5(u()) 4 d(u()) = (u()) 5 + c = ( + ) 5 + c Let op: Door het handig toepassen van de substitutiemethode krijgt je een functie, die je kunt primitiveren met de regels, die je eerder geleerd hebt. Er wordt een integraalteken zonder grenzen gebruikt. Dit is een onbepaalde integraal. Als er wel grenzen bij het integraalteken staan is het een bepaalde integraal. Merk op dat in het voorbeeld + de afgeleide is van +.

4 K. De substitutiemethode [] Substitutiemethode primitiveren: (f (u) u )d = f(u) du = F(u) +c Voorbeeld : Primitiveer de functie f() = F( ) d 4 ( 7) 4 d ( 7) d( ) 4 4 ( 7) d( 7) u du 5u c u c c [Herschrijven zodat je de functie en de afgeleide ziet.] [ 4 mag je in veranderen. De afgeleiden hiervan zijn aan elkaar gelijk.] [Schrijf als u] 4

5 K. De substitutiemethode [] Opgave 4D: J( ) sin( ) d sin( ) d( ) sin( ) d( ) sinudu cos cos( ) u c c 5

6 K. De substitutiemethode [] Substitutiemethode integreren: (f (u) u )d = f(u) du = F(u) +c Voorbeeld : Primitiveer de functie f() = tan() = sin( ) cos( ) F( ) sin( ) d cos( ) ( cos( )) cos( ) d d(cos( )) cos( ) du u -ln u + c = -ln cos() + c [Het minteken mag je voor de d zetten] [Schrijf cos() als u] 6

7 K. De substitutiemethode [] Substitutiemethode integreren: (f (u) u )d = f(u) du = F(u) +c Voorbeeld : 4 6 cos ( ) cos ( ) cos( ) ( sin ( )) cos( ) ( sin ( )) d sin( ) ( u ) du u u d d d Herschrijven zodat je de functie en de afgeleide ziet. De variabele was en wordt nu u = sin(). Hierdoor veranderen de grenzen van de integraal. sin( ) sin( ) 6 4 7

8 Opgave C: e e d d e d( ) 6e d( ) 0 u u 6e du 6e 0 0 K. De substitutiemethode [] 0 e 6 e 6 e 6 6e 6e Herschrijven zodat je de functie en de afgeleide ziet. De variabele was en wordt nu u = -. Hierdoor veranderen de grenzen van de integraal. 8

9 K. Partieel integreren [] Voor partieel integreren geldt de volgende regel: (f g )d = f dg = f g - gdf = f g - g f d Voorbeeld : Primitiveer de functie h() = ln() ln()d = ln() d(½ ) [Deze stap is hetzelfde als bij partieel integreren. Je krijgt nu niet een functie en de afgeleide.] = ½ ln() ½ d(ln()) [ f dg = f g - g df ] = ½ ln() ½ d [f g - g f d] = ½ ln() ½ d = ½ ln() - ¼ + c 9

10 K. Partieel integreren [] Algemeen: (f g )d = f dg = f g - gdf = f g - g f d Bij het primitiveren van een functie, die het product van twee functies is, noem je het ene deel f en het andere deel g. Met behulp van de bovenstaande formule bereken je dan de primitieve. Dit heet partieel primitiveren. Als je vastloopt, moet je de f en g andersom kiezen. Voorbeeld : h() = sin() sin() d = d(-cos()) [ (f g )d = f dg ] = - cos()) - -cos() d [f() = en g () = sin()] = - cos() + sin() + c 0

11 Voorbeeld : ln ( ) d K. Partieel integreren [] ln ( ) d ln ( ) (ln ( )) d ln ( ) ln ( ) d ln ( ) ln ( ) d ln ( ) ln ( ) d 4 ln ( ) ln ( ) d(ln ( )) 4 4 ln ( ) ln ( ) 4 ln( ) d 4 ln ( ) ln ( ) ln( ) d 4 Nog een keer partieel integreren geeft de oplossing.

12 K. Partieel integreren [] Voorbeeld : sin() d [ (f g )d = f dg ] = d(-cos()) [g () = sin() en f() = ] = -cos() - -cos() d partieel integreren = - cos() + cos() d De functie sin() kon niet op de normale manier geprimitiveerd worden. Na toepassen van partiële integratie kan de functie cos() niet op de normale manier geprimitiveerd worden. In plaats van een staat er nu wel een. Wanneer we de functie cos() nu nogmaals partieel integreren, zal deze dus een los getal worden. Een functie van de vorm a sin() kan op de normale manier geprimitiveerd worden. - cos() + cos() d = - cos() + d sin() = - cos() + sin() sin() d = - cos() + sin() - sin() d = - cos() + sin() + cos() + c

13 K. Partieel integreren [] Voorbeeld : e sin() d [ (f g )d = f dg ] = e d(-cos()) [g () = sin() en f() = e ] = -cos() e + cos() de partieel integreren = -e cos() + e cos() d De functie e sin() kon niet op de normale manier geprimitiveerd worden. Na toepassen van partiële integratie kan de functie e cos() ook niet op de normale manier geprimitiveerd worden. We passen nu nogmaals partiële integratie toe. = -e cos() + e d sin() = -e cos() + sin() e sin() d e = -e cos() + e sin() e sin() d e sin() d = -e cos() + e sin() e sin() d e sin() d = -e cos() + e sin()) e sin() d = -½e cos() + ½e sin()) + c [herschrijven]

14 Opgave 7A: K. Partieel integreren [] ( ) e d ( ) de ( ) e e d( ) ( ) e ( ) e d ( ) e ( ) de ( ) e ( ) e e d( ) ( ) ( ) e e e d ( ) ( ) e e e c ( ) e d [( ) e ( ) e e ] e e 4

15 K. Cyclometrische functies [] Herhaling: In het algemeen geldt: Uit g log() = y volgt = g y Er bestaat dus een verband tussen een machtsfunctie en een logaritmische functie. De grafieken van f() = en g() = log() spiegelen in de lijn y =. We noemen f en g nu inverse functies. 5

16 K. Cyclometrische functies [] In het plaatje hiernaast is de blauwe functie f() = tan() op het interval ( - ½π, ½π) gespiegeld in de lijn y =. Hierdoor ontstaat de rode inverse functie g() = f inv () = arctan() = tan - () met D f = R en B f = (- ½π, ½π) De inverse functie van een goniometrische formule heet een cyclometrische functie. Let op: De inverse functie van tan() is dus niet (tan( )) tan( ) 6

17 K. Cyclometrische functies [] Er geldt: De functie f() = heeft als primitieve: F()= arctan() + c De functie g() = arctan() heeft als afgeleide: g () = Wanneer je een eacte oplossing moet geven bij een goniometrische functie kun je onderstaande tabel gebruiken: hoek sinus ½ ½ ½ cosinus ½ ½ ½ tangens Let op: Op de GR is de arctan te vinden via ND tan 7

18 K. Cyclometrische functies [] Voorbeeld : arctan( ) = (of 0 ) want tan( ) = arctan () = (of 45 ) want tan( ) = arctan( ) = (of 60 ) want tan( ) = Voorbeeld : Los algebraïsch op arctan() =. Rond het antwoord af op drie decimalen. arctan() = = tan(),557 [arctan() is de inverse functie van tan()] 8

19 K. Cyclometrische functies [] Voorbeeld : Differentieer f() = arctan( + ) f() = arctan( + ) = arctan(u) met u = + f () = u ( ) 4 [Gebruik de kettingregel] Voorbeeld 4: Bereken eact 0 d 0 [arctan( )] arctan() arctan(0) 0 d

20 K. Cyclometrische functies [] Voorbeeld : Primitiveer de functie f() = 9 4 Stap : Schrijf de functie in de vorm f( ) 9 4 u 9 4 met u = Stap : Primitiveer nu de functie. F() = arctan(u) = arctan(½) Let op: Vermenigvuldig de primitieve met vanwege u = 0

21 K. Cyclometrische functies [] Voorbeeld : Primitiveer de functie f() = arctan() Gebruik partieel primitiveren arctan()d = arctan() - d arctan() = arctan() - d = arctan() - d(½ ) = arctan() - ½ d( +) Neem + = u = arctan() - ½ du u = arctan() - ½ ln u = arctan() - ½ ln( + )

22 K. Cyclometrische functies [] Voorbeeld : Bereken eact d Stap : Schrijf de functie in de vorm f( ) ( ) 4 ( ) ( ) u 4 met u = ½ -

23 K. Cyclometrische functies [] Voorbeeld : Bereken eact d Stap : Primitiveer nu de functie. f( ) F() = u arctan( u) arctan( ) Let op: Vermenigvuldig de primitieve met vanwege u =

24 K. Cyclometrische functies [] Voorbeeld : Bereken eact d Stap : Bereken nu het gevraagde: 0 6 [ arctan( )] 48 d 0 arctan(0) arctan(-) = 0 - ¼π = ¾π 4

25 K. Cyclometrische functies [] De inverse van f() = sin() met het domein [-½π, ½π] is de functie g() = arcsin() g() = arcsin() heeft domein [-, ] en bereik [-½π, ½π] De functie f() = heeft als primitieve: F()= arcsin() + c De functie g() = arcsin() heeft als afgeleide: g () = 5

26 K. Cyclometrische functies [] De inverse van f() = cos() met het domein [0, π] is de functie g() = arccos() g() = arcsin() heeft Domein [-, ] en bereik [0, π] De functie f() = heeft als primitieve: F()= arccos() + C De functie g() = arccos() heeft als afgeleide: g () = 6

27 K. Cyclometrische functies [] Voorbeeld: Bereken eact 4 d d d d 4 4( ) 4 4 d arcsin arcsin( ) arcsin( ) 6 6 7

28 K.4 Breuksplitsen [] Voorbeeld : De functie f() = + heeft als integraal F() = + ln + + c De functie f() is te schrijven als één breuk door middel van breuksplitsen. ( ) 5 5 De functie f() = valt niet te integreren. Wanneer deze breuk gesplitst wordt, kan wel een integraal berekend worden. 8

29 K.4 Breuksplitsen [] Voorbeeld : Primitiveer de functie f() = 5 Stap : Gebruik staartdelen om een functie te krijgen die je kunt primitiveren: + / + 5 \ maal + = ( + ) = + + Let op: hierdoor valt de weg!!! De functie f() = is nu te schrijven als + Stap : Bereken de primitieven van de functie f(): F() = + ln + + c 9

30 K.4 Breuksplitsen [] Voorbeeld : Bereken eact 4 5 d Stap : Gebruik staartdelen om een functie te krijgen die je kunt primitiveren: + / \ maal + = ( + ) = + + Let op: Hierdoor valt de weg / \ + maal + = ( + ) = + + Let op: Hierdoor valt de weg

31 K.4 Breuksplitsen [] Voorbeeld : Bereken eact Stap : Gebruik staartdelen om een functie te krijgen die je kunt primitiveren: De functie f() = f() = d 5 kan dus geschreven worden als: Stap : De primitieven van de functie f() = + - F() = + ln + + c zijn: Let op: Staartdelen kan alleen als de graad van de teller groter of gelijk is Dan de graad van de noemer.

32 K.4 Breuksplitsen [] Voorbeeld : Bereken eact 4 5 d Stap : Bereken nu de gevraagde integraal: d d ln 4 (4 4 ln 4 ) ( ln ) 8 ln 5 5 ln ln 5 ln

33 Voorbeeld : Primitiveer de functie f() = K.4 Breuksplitsen [] 45 Let op: ) De discriminant van de noemer ( ) is kleiner dan 0 (4 4 5 = -4). Je kunt de noemer niet ontbinden in factoren; ) De afgeleide van is + 4; ) Staartdelen is niet mogelijk d d d d 45 d( 4 5) 45 du ln u u ln 45 Door het herschrijven van de functie ontstaan twee breuken die je kunt primitiveren: ) Gebruik de substitutiemethode (breuk ); ) Primitieve is de natuurlijke log. (breuk ).

34 K.4 Breuksplitsen [] Voorbeeld : Primitiveer de functie f() = 5 d 45 5 d ( ) 5arctan( ) 45 Herleiden van de breuk zorgt dat je de tweede breuk kunt primitiveren. De primitieve van de functie f() = 45 wordt nu: F() = ln arctan( + ) + c 4

35 K.4 Breuksplitsen [] Voorbeeld : Primitiveer de functie f() = 44 Let op: ) De discriminant van de noemer ( ) is gelijk aan 0 (4 4 4 = 0); ) De noemer is te schrijven als = ( + ) ; ) De teller is te schrijven als - = = ( + ) 5; 4) Staartdelen is niet mogelijk. ( ) 5 d d 4 4 ( ) 5 d 5( ) d ( ) ln 5( ) c Door het herschrijven van de functie ontstaan twee breuken die je kunt primitiveren. 5

36 K.4 Breuksplitsen [] Voorbeeld: Bereken de primitieven van f( ) 8 8 ( )( ) Let op: ) De discriminant van de noemer ( + -) is groter dan 0 ( 4 - = 9). De noemer kan in factoren ontbonden worden; ) De noemer geschreven worden als + - = ( )( + ); ) Staartdelen is niet mogelijk. Stap : Merk op dat je deze functie niet kunt primitiveren op de manieren zoals geleerd. Dit is op te lossen door de functie f als volgt te schrijven: f( ) a b 6

37 K.4 Breuksplitsen [] Stap : a b a( ) b( ) ( )( ) ( )( ) a( ) b( ) ( )( ) a a b b ( )( ) ( a b) a b ( )( ) We kiezen a en b nu zodanig dat (a + b) + a b gelijk is aan + 8 Er geldt nu: a + b = en a b = 8 7

38 K.4 Breuksplitsen [] Stap : Los het nu ontstane stelsel van vergelijkingen op: ab ab8 a 9 a Invullen van a = in a + b = geeft b = -. De vergelijking f( ) 8 8 ( )( ) kan dus geschreven worden als: f( ) a b met a = en b = -. Dit geeft: f( ) 8

39 K.4 Breuksplitsen [] Stap : Primitiveer de functie f( ) F() = ln - - ln + + c 9

40 K.5 Integralen bij parameterkrommen [] Bij het rekenen met integralen kun je de volgende regels gebruiken: b a Bij Bij yd a b c c a b a b yd yd yd yd yd dy werk je van links naar rechts. werk je van beneden naar boven. yd De integraal is dan positief als y 0 en negatief als y 0. dy De integraal is dan positief als 0 en negatief als 0. 40

41 K.5 Integralen bij parameterkrommen [] Voorbeeld: De kromme K is gegeven door: ( t) t y( t) t t Het vlakdeel V wordt ingesloten door K, de positieve -as en de positieve y-as. Bereken eact de oppervlakte van V. t t4 O( V ) yd yd t0 t0 t0 t4 O( V ) yd yd O( V ) O( V ) t t0 t 4 t t t 4 yd yd Van links naar rechts. Deel van t = 0 tot t = 4 ligt onder de -as. Omdraaien van de grenzen Samenvoegen Omdraaien van de grenzen 4

42 K.5 Integralen bij parameterkrommen [] Voorbeeld: t t 4 t t 4 t t t4 t4 t t t dt t t dt 4 t t 8 4 O( V ) yd t t d t ( ) ( ) ( 4 4 )

43 K.5 Integralen bij parameterkrommen [] In het bovenste plaatje doorloop t de kromme met de klok mee. De kromme wordt nu in negatieve richting doorlopen. t b t a O( V ) yd of O( V ) dy t a t b In het onderste plaatje doorloop t de kromme tegen de klok in. De kromme wordt nu in positieve richting doorlopen. t a t b O( V ) yd of O( V ) dy t b t a Kies steeds de integraal die het eenvoudigst te berekenen is. 4

44 K.5 Integralen bij parameterkrommen [] De kromme K die gegeven is door ( t) t t y t ( ) t 4 Sluit het vlakdeel V in. Bereken eact de oppervlakte van V. Stap : Bepaal welke integraal het eenvoudigst is om uit te rekenen: 4 dy ( t t ) d( t 4) ( t t ) t dt (6t t ) dt 4 yd ( t 4) d( t t ) ( t 4) ( t ) dt (5t t ) dt Hieruit volgt dat de bovenste integraal het eenvoudigst is om uit te rekenen. 44

45 K.5 Integralen bij parameterkrommen [] De kromme K die gegeven is door ( t) t t y t Sluit het vlakdeel V in. Bereken eact de oppervlakte van V. Stap : Bereken de grenzen van de integraal en onderzoek de richting: t t = 0 t( t ) = 0 t = 0 t = t = 0 t = t = - ( ) t 4 Invullen van t = geeft het punt (, -), dus V wordt in positieve richting doorlopen. 45

46 K.5 Integralen bij parameterkrommen [] De kromme K die gegeven is door ( t) t t y t Sluit het vlakdeel V in. Bereken eact de oppervlakte van V. Stap : Bereken de integraal: t t ( ) t (6t t ) dt t t 9 ( 9 )

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Paragraaf K.1 : Substitutiemethode

Paragraaf K.1 : Substitutiemethode Hoofdstuk K Voortgezette Integraalrekening (V5 Wis B) Pagina van 8 Paragraaf K. : Substitutiemethode Stappenplan voor de substitutiemethode : () Neem y = formule (bij kettingregel noem je deze formule

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

Voorwoord Rekenvaardigheden

Voorwoord Rekenvaardigheden Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de daaraan verbonden profielkeuze en het studiehuis zijn ingevoerd. In sommige opzichten

Nadere informatie

Cursusreader Analyse Plus (Capita selecta uit de Analyse)

Cursusreader Analyse Plus (Capita selecta uit de Analyse) Cursusreader Analyse Plus (Capita selecta uit de Analyse) Jaar uitgave:, herziene versie -, grondig herzien in 6-7 Versie: e versie Opleiding: WISKUNDE Auteur: Willem van Ravenstein (), Cornelia Wallien

Nadere informatie

Standaardafgeleiden. Wisnet-HBO. update maart 2011

Standaardafgeleiden. Wisnet-HBO. update maart 2011 Standaardafgeleiden Wisnet-HBO update maart 2011 1 Inleiding Als je nog niets over differentiëren weet, kun je beter eerst naar de les Wat is Differentiëren gaan in Wisnet Verder zijn er Maplets om de

Nadere informatie

11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20

11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20 .0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

Over de functies arcsin, arccos en arctan

Over de functies arcsin, arccos en arctan Over de functies arcsin, arccos en arctan Booglengte figuur figuur De grafiek van een functie f tussen twee punten P (met a) en Q (met b) kan worden opgedeeld in stukjes die kunnen worden opgevat als lijnstukken,

Nadere informatie

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x)) 5.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( x) a f '( x) 0 n f ( x) ax f '( x) nax n f ( x) c g( x) f '( x) c g'( x) f ( x) g( x) h( x) f '( x) g'( x) h'( x) p( x) f ( x) g( x) p'( x)

Nadere informatie

Cijfer = totaal punten/10 met minimum 1

Cijfer = totaal punten/10 met minimum 1 VOORBLAD SCHRIFTELIJKE TOETSEN OPLEIDING TOETSCODE GROEP Me MeWIS1-T1 MeP1 TOETSDATUM 7 november 011 TIJD 13.00 14.30 uur AANTAL PAGINA S (incl. dit voorblad) 6 DEZE TOETS BESTAAT UIT (aantal) GEBRUIK

Nadere informatie

Dictaat Rekenvaardigheden. Faculteit Wiskunde en Informatica

Dictaat Rekenvaardigheden. Faculteit Wiskunde en Informatica Dictaat Rekenvaardigheden Faculteit Wiskunde en Informatica 7 mei 007 Voorwoord Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de

Nadere informatie

Dictaat Rekenvaardigheden. Loek van Reij

Dictaat Rekenvaardigheden. Loek van Reij Dictaat Rekenvaardigheden Loek van Reij 0 maart 006 i ii Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de daaraan verbonden profielkeuze

Nadere informatie

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0.

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0. Gegeven is de functie.0 Voorkennis Deze functie bestaat niet bij een van. Invullen van = geeft een deling door 0. De functie g() = heeft als domein R en is een ononderbroken kromme. Deze functie is continu

Nadere informatie

Training integreren WISNET-HBO. update aug 2013

Training integreren WISNET-HBO. update aug 2013 Training integreren WISNET-HBO update aug 2013 Primitiveren De primitieve bepalen betekent in feite de functie bepalen waarvoor geldt dat Anders geschreven: Links en rechts maal dx: df = f dx De betekenis

Nadere informatie

9.1 Logaritmische en exponentiële vergelijkingen [1]

9.1 Logaritmische en exponentiële vergelijkingen [1] 9.1 Logaritmische en eonentiële vergelijkingen [1] Voor logaritmen gelden de volgende rekenregels: (1) log( ab) log( a) log( b) g g g () g g g (4) (3) g n g (5) g log() = y volgt = g y Voorbeeld: a log

Nadere informatie

ONLY FOR PERSONAL USE. This digital version of the DictaatRekenvaardigheden - Algebraic Skills is for personal use because of copyright.

ONLY FOR PERSONAL USE. This digital version of the DictaatRekenvaardigheden - Algebraic Skills is for personal use because of copyright. ONLY FOR PERSONAL USE This digital version of the DictaatRekenvaardigheden - Algebraic Skills is for personal use because of copyright. c Dictaat Rekenvaardigheden Faculteit Wiskunde en Informatica 0 mei

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Algemeen deel. Bij het vermenigvuldigen met van de ongelijkheid moet u rekening houden met twee gevallen, te weten > 0 en < 0 en u moet

Nadere informatie

1E HUISWERKOPDRACHT CONTINUE WISKUNDE

1E HUISWERKOPDRACHT CONTINUE WISKUNDE E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk

Nadere informatie

Primitiveren. Omgekeerd differentiëren (primitieve bepalen)

Primitiveren. Omgekeerd differentiëren (primitieve bepalen) Primitiveren WISNET-HBO update april 2006 Inleiding Soms moet je juist de functie bepalen waarvan de afgeleide bekend is. Dit omgekeerd differentiëren (de primitieve bepalen) heet in het Engels de antiderivative.

Nadere informatie

Inhoud college 6 Basiswiskunde

Inhoud college 6 Basiswiskunde Inhoud college 6 Basiswiskunde 4.0 Taylorpolynomen (slot) Zie college 5: Vanaf 4.0 Voorbeeld 4 3. Inverse functies 3.2 Exponentiële en logaritmische functies 3.3 De natuurlijke logaritme en de exponentiële

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0.

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0. OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE (COLLEGE NAJAAR 6).. Bepaal alle oplossingen van de vergelijking (z + i) 4 = 6 in het complee vlak. a. Schrijf het getal i in poolcoördinaten. b. Bereken de rechthoekige

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

rekenregels voor machten en logaritmen wortels waar of niet waar

rekenregels voor machten en logaritmen wortels waar of niet waar Hoofdstuk 5 - machten, eponenten en logaritmen rekenregels voor machten en logaritmen wortels waar of niet waar 0. voorkennis HERLEIDEN VAN MACHTEN - rekenregels voor machten Bij het vermenigvuldigen van

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

Integratietechnieken: substitutie en partiële integratie

Integratietechnieken: substitutie en partiële integratie Integratietechnieken: substitutie en partiële integratie Inleiding In dit pakket wordt zeer kort de definitie van onbepaalde integralen herhaald evenals het verband tussen bepaalde en onbepaalde integralen.

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies.

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. 03 college 5: meer technieken In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. Opmerking over de notatie. Net als in het

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early Transcendental Functions Robert T. Smith,

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1 Inhoud Aan de student V Studiewijzer Aan de docent VII IX Over de auteurs XI Hoofdstuk 0 Basiswiskunde 1 Leereenheid 0.1 Elementaire algebra 3 0.1.1 Verzameling van getallen en het symbool 4 0.1.2 Merkwaardige

Nadere informatie

Calculus TI1 106M. I.A.M. Goddijn, Faculteit EWI 1 september 2014

Calculus TI1 106M. I.A.M. Goddijn, Faculteit EWI 1 september 2014 Calculus TI1 106M, 1 september 2014 Inleiding Studiemateriaal Onderwerpen Calculus 1 september 2014 1 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage :

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Infi A oefententamen ψ

Infi A oefententamen ψ Infi A oefententamen ψ Aanwijzingen Motiveer alle antwoorden. Werk rustig, netjes en duidelijk. Zorg dat je uitwerking maar één interpretatie toelaat. Alle informatie op dit opgavenblad mag bij alle (deel)opgaven

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen 0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b

Nadere informatie

Colleges. Woensdag 5 februari 2014, college 1. ã Stof. Tijdschema colleges Basiswiskunde 2DL00 Cursus , Semester 2 Avondonderwijs

Colleges. Woensdag 5 februari 2014, college 1. ã Stof. Tijdschema colleges Basiswiskunde 2DL00 Cursus , Semester 2 Avondonderwijs Tijdschema colleges Basiswiskunde 2DL00 Cursus 2013-2014, Semester 2 Avondonderwijs Versie vrijdag 21 februari 2014 Na ieder avondcollege wordt een klein verslag van het college in dit document opgenomen.

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Studiehandleiding Basiswiskunde cursus

Studiehandleiding Basiswiskunde cursus Studiehandleiding Basiswiskunde cursus 2008 2009 Materiaal Bij dit college heb je nodig: Het boek Basisboek wiskunde van Jan van de Craats en Rob Bosch Isbn: 90 430 1156 8 De syllabus Aanvulling basiscursus

Nadere informatie

Voorbeeldtoets. Het gebruik van een rekenmachine of een formulekaart is niet toegestaan.

Voorbeeldtoets. Het gebruik van een rekenmachine of een formulekaart is niet toegestaan. Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4, Delft Voorbeeldtoets Lees zorgvuldig onderstaande punten door Deze toets is bedoeld om een idee te krijgen van

Nadere informatie

Samenvatting wiskunde B

Samenvatting wiskunde B Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!

Nadere informatie

wiskunde B pilot vwo 2017-II

wiskunde B pilot vwo 2017-II Twee machten van maimumscore 5 f' ( ) = ln() + ln() Uit f' ( ) = volgt dat = Dus + = ( = ) Hieruit volgt = a+ a, met a =, moet minimaal zijn De vergelijking a = moet worden opgelost Dit geeft Hieruit volgt

Nadere informatie

De notatie van een berekening kan ook aangeven welke bewerking eerst moet = = 16

De notatie van een berekening kan ook aangeven welke bewerking eerst moet = = 16 Rekenregels De voorrangsregels van de hoofdbewerkingen geven aan wat als eerste moet worden uitgerekend. Voorrangsregels 1. Haakjes 2. Machtsverheffen en Worteltrekken. Vermenigvuldigen en Delen 4. Optellen

Nadere informatie

Paragraaf 13.1 : Berekeningen met de afgeleide

Paragraaf 13.1 : Berekeningen met de afgeleide Hoofdstuk 13 Toepassingen vd differentiaalrekening (V5 Wis A) Pagina 1 van 7 Paragraaf 13.1 : Berekeningen met de afgeleide Differentiëren van e-machten en logaritmen f() = e f () = e f() = ln() f () =

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Paragraaf 7.1 : Eenheidscirkel en radiaal

Paragraaf 7.1 : Eenheidscirkel en radiaal Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)

Nadere informatie

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen:

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: e 00

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op dinsdag 26 augustus 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013, Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie

Nadere informatie

Uitwerkingen goniometrische functies Hst. 11 deel B3

Uitwerkingen goniometrische functies Hst. 11 deel B3 Uitwerkingen goniometrische functies Hst. deel B. f() = sin(-) = -sin() g() = cos(-) = cos () h() = sin( + ) = cos() j() = cos( + ) = -sin() k() = sin ( + ) = -sin () l() = cos ( + ) = -cos (). Zie ook

Nadere informatie

) translatie over naar rechts

) translatie over naar rechts Hoofdstuk opmerkingen/adviezen Leer deze grafieken precies! Zorg dat je de volgende formules ziet in de grafieken: Periode sinus, cosinus en tangens: resp,, sin( ) sin( ) cos( ) cos( ) cos( ) c a k a k

Nadere informatie

Hoofdstuk 6 - de afgeleide functie

Hoofdstuk 6 - de afgeleide functie Hoofdstuk 6 - de afgeleide functie 0. voorkennis Het differentiequotiënt Het differentiequotiënt van y op de gemiddelde verandering van y op [ ] is: A B de richtingscoëfficiënt (ook wel helling) van de

Nadere informatie

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A.

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Wiskunde voor het hoger onderwijs deel A Errata 00 Noordhoff Uitgevers Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Hoofdstuk. 4 Op blz. in het Theorieboek staat halverwege de

Nadere informatie

7.1 De afgeleide van gebroken functies [1]

7.1 De afgeleide van gebroken functies [1] 7.1 De afgeleide van gebroken functies [1] Regels voor het differentiëren: f() = a geeft f () = a f() = a geeft f () = a f() = a geeft f () = 0 Algemeen geldt: f() = a n geeft f () = na n-1 Voorbeeld 1:

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

(2) Bepaal de absolute waarde van (1 + i) 10 + ( x x 1 = 1. (4) Bepaal lim

(2) Bepaal de absolute waarde van (1 + i) 10 + ( x x 1 = 1. (4) Bepaal lim Tentamen Calculus I, 4 februari 009, 9:00 :00. Schrijf op elk in te leveren blad je naam, en op het eerste blad het aantal ingeleverde bladen. Alle (negen) opgaven tellen even zwaar. Het gebruik van boek(en),

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 2 oktober 200, 3.45 6.45 uur. De uitwerkingen van de opgaven

Nadere informatie

e x x 2 cos 2 (sin t) cos(t) dt

e x x 2 cos 2 (sin t) cos(t) dt Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP3B 5 november, 8.3.3 Het gebruik van een rekenmachine, telefoon en boeken) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk

Nadere informatie

OEFENPROEFWERK VWO B DEEL 3

OEFENPROEFWERK VWO B DEEL 3 Formules OEFENROEFWERK VWO B DEEL HOOFDSTUK GONIOMETRISCHE FORMULES cos( t u) cos( t)cos( u) sin( t)sin( u) sin( A) sin( A)cos( A) sin( t u) sin( t)cos( u) cos( t)sin( u) cos( t u) cos( t)cos( u) sin(

Nadere informatie

Paragraaf 9.1 : Logaritmen

Paragraaf 9.1 : Logaritmen Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Paragraaf 9. : Logaritmen Les Logaritmen Definitie Logaritmen Hoofdregel : g t = b t = g log b met domein b>0 Om logaritmen uit

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early T ranscendental F unctions, Robert T. Smith,

Nadere informatie

ProefToelatingstoets Wiskunde B

ProefToelatingstoets Wiskunde B Uitwerking ProefToelatingstoets Wiskunde B Hulpmiddelen :tentamenpapier,kladpapier, een eenvoudige rekenmachine (dus geen grafische of programmeerbare rekenmachine) De te bepalen punten per opgave staan

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

12.0 Voorkennis. Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op.

12.0 Voorkennis. Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op. 12.0 Voorkennis Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op. Stap 1: Bepaal de richtingscoëfficiënt van l:y = ax + b : y yb ya 123 9 a 3 x x x 8 5 3 Hieruit

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie Utrecht Les 2: en differentiaalrekening Dr Harm van der Lek vdlek@vdleknl Natuurkunde hobbyist Programma 211 1 Goniometrische functies 2 Som formules 3 Cosinus regel

Nadere informatie

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =

Nadere informatie

Differentiëren. Training met de rekenregels en de standaard afgeleiden

Differentiëren. Training met de rekenregels en de standaard afgeleiden Differentiëren Training met de rekenregels en de standaard afgeleiden Wisnet-HBO update maart 2011 Voorkennis Repeteer de standaardafgeleiden en de rekenregels voor differentiëren. Draai eventueel het

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

12.0 Voorkennis. Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0.

12.0 Voorkennis. Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. 12.0 Voorkennis Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. Dit is in de punten (1,0) en (-1,0) (1,0) heeft draaiingshoek 0 (-1,0) heeft

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Inverse functies en limieten

Inverse functies en limieten Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x

Nadere informatie

13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen.

13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. 13.0 Voorkennis Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. Op het interval [-2; -0,94) is de grafiek dalend; Bij x =

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie HOVO Utrecht Les 2: Matrixen en differentiaalrekening Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 2.1.1 Goniometrie Matrixen Integraal rekening

Nadere informatie

Hertentamen WISN101 Wiskundige Technieken 1 Do 5 jan :30 16:30

Hertentamen WISN101 Wiskundige Technieken 1 Do 5 jan :30 16:30 Hertentamen WISN0 Wiskundige Technieken Do 5 jan 207 3:30 6:30 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde

Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde In onderstaande zelftest zijn de vragen gebundeld die als voorbeeldvragen zijn opgenomen in de bijhorende overzichten van de verwachte voorkennis wiskunde. Naast de vragen over strikt noodzakelijke voorkennis,

Nadere informatie

Wiskunde B Herhaling en technische vaardigheden klas 5

Wiskunde B Herhaling en technische vaardigheden klas 5 Wiskunde B Herhaling en technische vaardigheden klas Begin klas : Raaklijnen Hieronder zien we de grafiek van f() + +. De gestippelde lijn is de raaklijn in het punt (,). raaklijn: Lijn die in een bepaald

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie