Toegepaste Wiskunde 2: Het Kalman-filter

Maat: px
Weergave met pagina beginnen:

Download "Toegepaste Wiskunde 2: Het Kalman-filter"

Transcriptie

1 Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer correcte benaming zou zijn: het lineaire Stratonovich- Kalman-Bucy filter. Het is zeer geschikt om electronica te programmeren die vliegende objecten in real time localiseert. Tegenwoordig wordt het filter ook ingezet om beurskoeren te voorspellen, en diverse andere, in de tijd veranderende grootheden. Het filter wordt gevoed met stochastische a priori aannamen over bijvoorbeeld plaats en snelheid van het te volgen object, en vertaalt deze na elke nieuwe waarneming in bijgestelde, a posteriori schattingen. De schatting op zeker tijdstip is de voorwaardelijke verwachting van de betreffende grootheid, gegeven alle observaties die tot dan toe zijn gedaan. De geschiedenis van het Kalmanfilter is een van de succesverhalen van de Toegepaste Wiskunde. Meteen na de ontwikkeling ervan door Kalman, op basis van ideeën van Stratonovich, is het door de NASA ingezet in het Apolloproject, dat ten doel had een mens op de maan te brengen. Without me no moon, placht Kalman te zeggen. 2. Voorwaardelijke Verwachting De voorwaardelijke kans op een gebeurtenis A, gegeven een gebeurtenis B is gedefinieerd als P(A B) P(A B) :=, P(B) mits P(B) 0. Dit leidt onmiddellijk tot de definitie van een voorwaardelijke verwachting van een discrete stochast X, gegeven een gebeurtenis B: zij W de waardenverzameling van X, dan is E(X B) := x W x P([X = x] B). 1 Modellenpracticum 2008: Kalmanfilter

2 En deze leidt weer tot de definitie van een voorwaardelijke verwachting van een discrete stochast X, gegeven een tweede discrete stochast Z: E(X Z) : Ω R : ω f(z(ω)), waarbij f(z) := E(X Z = z). (1) Merk op dat deze voorwaardelijke verwachting zelf een stochast is, helemaal vastgelegd door Z. We beweren nu dat dit de beste schatting is van X op basis van kennis over Z. Lemma 1. Laten X en Z discrete stochasten zijn, zeg met waardeverzamelingen W X en W Z. Dan is E(X Z) = f(z), waarbij f díe functie is van W Z naar R, waarvoor minimaal is. E ( (f(z) X) 2) Dit is een uitbreiding van het eenvoudige stellinkje dat zegt dat voor een willekeurige stochast X de waarde van λ R waarvoor E ( (λ X) 2) minimaal is gegeven wordt door de verwachting E(X). Immers: voor alle λ R geldt: E ( (λ X) 2) = λ 2 2λE(X) + E(X 2 ) = ( (λ E(X)) 2) + Var(X). Bewijs van het Lemma. Zij f : W Z R zó dat E(f(Z) 2 ) <. Dan geldt: E ( (f(z) X) 2) = ( P[Z = z] E (f(z) X) 2 Z = z ) z W Z = ( P[Z = z] f(z) 2 2f(z)E(X Z = z) + E(X 2 Z = z) ) z W Z = ( P[Z = z] (f(z) E(X Z = z)) 2 + E(X 2 Z = z) E(X Z = z) 2) z W Z = E ( (f(z) E(X Z)) 2) + E ( E(X 2 Z) E(X Z) 2). De tweede term hangt niet van f af, en de eerste is minimaal (namelijk 0) voor f(z) = E(X Z = z), dus f(z) = E(X Z). Voor continu verdeeld stochasten, waar we in het volgende voornamelijk in geïnteresseerd zullen zijn, gaat definitie (1) van E(X Z) niet meer op, omdat een gebeurtenis als [Z = z] kans 0 heeft, zodat je er niet op kunt conditioneren. De karakterisering als gegeven in het Lemma blijft echter zinvol, en we zullen deze daarom gaan gebruiken als definitie van E(X Z). Het zal handig blijken te zijn, meer dan één stochast te gebruiken als voorwaarde. Definitie. Laten X en Z 1, Z 2,..., Z n stochasten zijn met eindige variantie. Onder de voorwaardelijke verwachting E(X Z 1,..., Z n ) van X, gegeven Z 1, Z 2,, Z n verstaan we f(z 1, Z 2,, Z n ), waarbij (de meetbare functie) f : R n R zó gekozen is dat ( (X E f(z1, Z 2,, Z n ) ) 2) minimaal is. 2 Modellenpracticum 2008: Kalmanfilter

3 3. Gaussische stochastische variabelen Het Kalman-filter berekent voorwaardelijke verwachtingen in het heel speciale, maar belangrijke geval van normaal verdeelde stochasten. Het zal blijken dat bovenstaande definitie een mooie meetkundige interpretatie krijgt Een concreet model Zij N N. We maken een kansruimte (Ω N, Σ N, P N ) als volgt. Voor Ω N nemen we de N- dimensionale ruimte R N, en voor Σ N de standaard-sigma-algebra die daarbij hoort. (We maken ons nu niet druk over de maattheorie van R N, en doen alsof we precies weten wat meetbare verzamelingen zijn. Voor de kenners: we nemen de Borel-verzamelingen. Voor anderen: we beschouwen alleen verzamelingen waar we over kunnen integreren.) Voor P = P N kiezen we die kansmaat op R N die de coordinaten tot onafhankelijke normaalverdeelde stochasten maakt: voor A R N : P(A) := 1 (2π) n/2 A e 1 2 (x2 1 +x x2 N ) dx 1 dx 2 dx N. De stochastische variabelen die we zullen beschouwen zijn de lineaire functies Ω R, oftewel vectoren v in de duale ruimte Ω van Ω: X v : Ω R : x v, x. Deze keuze van stochasten heeft de volgende consequenties: 1. De stochast X v is normaal verdeeld, met verwachting 0 en variantie v Als v w, dan zijn X v en X w onafhankelijk: X v X w. Deze twee eigenschappen vatten we samen met: De stochasten X v, v Ω zijn gezamenlijk Gaussisch. Verdere gevolgen van onze constructie zijn: 3. De voorwaardelijke verwachting van X v, gegeven X z is X Pv, waarbij P de orthogonale projectie is op de lijn door z Voorbeeld Zij X een stochastische variabele met gemiddelde 0 en variantie a 2. Stel dat we X niet direct kunnen observeren, maar alleen met een normaal verdeelde waarnemingsfout W, die onafhankelijk is van X en die gemiddelde 0 en variantie m 2 heeft. We nemen dus de volgende stochast waar: Z := X + W. Wat is de beste schatting X van X, gebaseerd op onze waarneming van Z? Bewering. De beste schatting van X, gegeven Z is (zie figuur) X = E(XZ) E(Z 2 ) Z = a 2 a 2 + m 2 Z. 3 Modellenpracticum 2008: Kalmanfilter

4 Bewijs. We modelleren deze situatie met de kansruimte (Ω N, Σ N, P N ). Zij N = 2, X = X (a,0), W = X (o,m), zodat Z = X (a,m). De projectie van (a, 0) op de lijn door 0 en (a, m) laat zich in het plaatje gemakkelijk aflezen: p = a 2 (a, m). a 2 + m2 En dus is X := E(X Z) = X p = a 2 a 2 + m 2 Z. W = (0, m) Z = (a, m) X^ X = (a, 0) Je zou de factor a 2 /(a 2 + m 2 ) kunnen interpreteren als de geloofwaardigheid van de waarneming Z. Deze brengt tot uitdrukking brengt in hoeverre wij de afwijking van Z van de a priori schatting 0 toeschrijven aan het voorwerp zelf, en in hoeverre we ze afdoen als ruis. 4. Een Kalman-filter Neem aan dat de positie van een vliegend voorwerp ten tijde t gegeven wordt door X + tv, waarbij X en V onafhankelijke, normaal verdeelde stochasten zijn, zeg met varianties respectievelijk α 2 en β 2, en met verwachting 0. Het idee is, dat α en β heel groot zijn, zodat wij van plaats en snelheid van het voorwerp op tijdstip 0 niet veel weten. De aanname E(X) = E(V ) = 0 is hier enkel voor de eenvoud gemaakt. Nu gaan we waarnemingen doen op tijdstippen t 1, t 2,, t n ; op tijdstip t j meten we Z j := X + t j V + R j. De ruis R j is een rij onafhankelijke normaal verdeelde stochasten met verwachting 0 en variantie ε 2, onafhankelijk van X en V. We modelleren dit probleem met behulp van Paragraaf Modellenpracticum 2008: Kalmanfilter

5 Laat N = n + 2 en identificeer de volgende vectoren in Ω N probleem. X = (α, 0, 0, 0, 0,..., 0) V = (0, β, 0, 0, 0,..., 0) R 1 = (0, 0, ε, 0, 0,..., 0) R 2 = (0, 0, 0, ε, 0,..., 0). Z 1 = (α, t 1 β, ε, 0, 0,..., 0) Z 2 = (α, t 1 β, 0, ε, 0,..., 0). met de stochasten uit het Zij nu Z j de lineaire ruimte, opgespannen door Z 1, Z 2,..., Z j. Zij P j de orthogonale projectie van Ω op Z j. Dan is de beste schatting X j := E(X Z 1, Z 2,, Z j ) de projectie van X = X (α,0,0,...,0) op Z j : Xj = P j (X), en evenzo is V j = P j (V ). Op tijdstip 0 hebben we nog niets gezien, en schatten we X en V met hun verwachtingswaarden: X 0 = 0, V0 = 0. Op tijdstip t 1 zien we Z 1, en we updaten onze kennis over X en V : X 1 = c 1 Z 1, met c 1 zó dat X X 1 Z 1. Dus moet X c 1 Z 1, Z 1 = 0, zodat X, Z 1 = c 1 Z 1, Z 1, dat wil zeggen: α 2 = c 1 (α 2 + β 2 t ε 2 ). We vinden: α X 2 1 = α 2 + β 2 t Z ε2 1, en analoog: V 1 = β 2 t 2 1 α 2 + β 2 t ε2 Z 1. De volgende stap, na de waarneming van Z 2, is ingewikkelder dat de eerste, omdat Z 1 en Z 2 niet onafhankelijk (orthogonaal) zijn. Het is dan voordelig, in stap j 2 eerst het innovatieve of verrassende deel N j uit de nieuwe waarneming Z j te isoleren: N j := Z j P j 1 (Z j ). Deze innovaties N 1, N 2,, N n zijn onderling onafhankelijk, en, gezien als vecoren in Ω, orthogonaal. Hieruit volgt dat X j = X j 1 + E(XN j) E(N 2 j ) N j en Vj = V j 1 + E(V N j) E(N 2 j ) N j. (2) Op basis hiervan komen we tot het volgende resultaat 5 Modellenpracticum 2008: Kalmanfilter

6 Stelling 2. De beste schattingen van X en V, gegeven de eerste j waarnemingen worden gegeven door de volgende recursieve vergelijkingen. X j = X α 2 j 1 j t ( jγ j 1 α 2 j 1 + t2 j β2 j 1 + 2t jγ j 1 + ε 2 Z j ( ) ) Xj 1 + t j Vj 1 ; V j = V t j βj 1 2 j γ ( j 1 α 2 j 1 + t2 j β2 j 1 + 2t jγ j 1 + ε 2 Z j ( ) ) (3) Xj 1 + t j Vj 1, waarin de parameters α j, β j en γ j worden berekend met de recursie α 0 = α ; β 0 = β ; γ 0 = 0 ; α 2 j = α 2 j 1 β 2 j = β 2 j 1 (α 2 j 1 + t jγ j 1 ) 2 α 2 j 1 + t2 j β2 j 1 + 2t jγ j 1 + ε 2 ; (t j β 2 j 1 + γ j 1) 2 α 2 j 1 + t2 j β2 j 1 + 2t jγ j 1 + ε 2 ; γ j = γ j 1 (α2 j 1 + t jγ j 1 )(t j β 2 j 1 + γ j 1) α 2 j 1 + t2 j β2 j 1 + 2t jγ j 1 + ε 2. Bewijs. Definieer α 2 j := X X j 2 ; β 2 j := V V j 2 ; γ j := X X j, V V j. Dan geldt: E(XN j ) = X, (1 P j )Z j = X X j 1, (X X j 1 ) + t j (V V j 1 ) + R j = X X j t j X X j 1, V V j 1 = α 2 j 1 + t jγ j 1. E(Nj 2 ) = (X X j 1 ) + t j (V V j 1 ) + R j 2 = α 2 j 1 + t2 j β2 j 1 + 2t jγ j + ε 2. Met (2) volgt nu (3). De recursies voor α j, β j en γ j worden nu gevonden met α 2 j 1 α 2 j = X, (P j P j 1 )X = E(XN j) 2 E(N 2 j ) ; β 2 j 1 β 2 j = V, (P j P j 1 )V = E(V N j) 2 E(N 2 j ) ; γ j 1 γ j = X, (P j P j 1 )V = E(XN j)e(v N j ) E(N 2 j ). 6 Modellenpracticum 2008: Kalmanfilter

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking tentamen Kansrekening en Stochastische Processen (2S61) op woensdag 27 april 25, 14. 17. uur. 1. Gegeven zijn twee onafhankelijke

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

Tuyaux 3de Bachelor Wiskunde WINAK

Tuyaux 3de Bachelor Wiskunde WINAK Tuyaux 3de Bachelor Wiskunde WINAK Eerste Semester 2011-2012 Inhoudsopgave 1 Inleiding 2 2 Maattheorie 3 2.1 Theorie....................................... 3 2.2 Oefeningen.....................................

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1/19

Stochastiek 2. Inleiding in de Mathematische Statistiek 1/19 Stochastiek 2 Inleiding in de Mathematische Statistiek 1/19 Herhaling H.1 2/19 Mathematische Statistiek We beschouwen de beschikbare data als realisatie(s) van een stochastische grootheid X.(Vaak een vector

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 19.a) Laat zien dat 5 een voortbrenger is van F 37. b) In het sleuteldistributiesysteem van Diffie en Hellman (met G = F 37, α =

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim

Nadere informatie

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling. Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/39 Een stochastisch proces (stochastic proces) X (t) bestaat

Nadere informatie

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren Overzicht Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen Cursusjaar 2009 Peter de Waal Departement Informatica Voorwaardelijke kans Rekenregels Onafhankelijkheid Voorwaardelijke Onafhankelijkheid

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg)

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg) Voorbeeld Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen Cursusjaar 2009 Peter de Waal Departement Informatica In een eperiment gooien we 4 maal met een zuivere munt.

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

UitwerkingenOefenQuiz Kansrekening 2009

UitwerkingenOefenQuiz Kansrekening 2009 Universiteit Utrecht *Universiteit-Utrecht Boedapestlaan 6 Mathematisch Instituut 3584 CD Utrecht UitwerkingOefQuiz Kansreking 29 1. James Bond zoekt e brief in één van de drie ladkast in het voormalige

Nadere informatie

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur.

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Deze opdracht bestaat uit vier onderdelen; in elk onderdeel wordt gevraagd een Matlabprogramma te schrijven. De vier bijbehore bestanden stuur

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

TI83-werkblad. Vergelijkingen bij de normale verdeling

TI83-werkblad. Vergelijkingen bij de normale verdeling TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18 Stochastiek 2 Inleiding in de Mathematische Statistiek 1 / 18 t-toetsen 2 / 18 Steekproefgemiddelde en -variantie van normale observaties Stelling. Laat X 1,..., X n o.o. zijn en N(µ, σ 2 )-verdeeld. Dan:

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Eindexamen wiskunde B 1-2 vwo I

Eindexamen wiskunde B 1-2 vwo I Eindexamen wiskunde B - vwo - I Beoordelingsmodel Oppervlakte en inhoud bij f(x) = e x maximumscore e Lijn AB heeft richtingscoëfficiënt = (e ) Voor lijn AB geldt de formule y = (e ) x + De oppervlakte

Nadere informatie

uitwerkingen OefenTentamen kansrekening 2007

uitwerkingen OefenTentamen kansrekening 2007 Universiteit Utrecht *Universiteit-Utrecht Boedaestlaan Mathematisch Instituut 3584 CD Utrecht uitweringen OefenTentamen ansreening 2007 Uitwering van Ogave Ogave Veronderstel dat α de ans is dat van een

Nadere informatie

Analyse 1 Handout limieten en continuïteit

Analyse 1 Handout limieten en continuïteit Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

De enveloppenparadox

De enveloppenparadox De enveloppenparadox Mats Vermeeren Berlin Mathematical School) 6 april 013 1 Inleiding Een spel gaat als volgt. Je krijgt twee identiek uitziende enveloppen aangeboden, waarvan je er één moet kiezen.

Nadere informatie

College WisCKI. Albert Visser. 10 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties.

College WisCKI. Albert Visser. 10 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 10 oktober, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Wat is een equivalentierelatie? Een equivalentie

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

Verwachtingswaarde, Variantie en Standaarddeviatie

Verwachtingswaarde, Variantie en Standaarddeviatie Verwachtingswaarde, Variantie en Standaarddeviatie Wisnet-hbo Verwachtingswaarde update maart 200 De verwachtingswaarde van een kansvariabele is een soort gemiddelde waarde. Deze wordt aangeduid met E(k)

Nadere informatie

Eindexamen wiskunde B 1-2 vwo 2002-II

Eindexamen wiskunde B 1-2 vwo 2002-II Eindexamen wiskunde B 1-2 vwo 2002-II ppervlakte Gegeven is de functie f ( x) = x 1. De lijn k raakt aan de grafiek van f in het punt (10, 3). Zie figuur 1. figuur 1 y k 1 1 f x 5p 1 Stel met behulp van

Nadere informatie

4.1 College Week 4. Probleem (P 3.1 ) Zij f : D IR, met D IR n :

4.1 College Week 4. Probleem (P 3.1 ) Zij f : D IR, met D IR n : 4.1 College Week 4 Probleem (P 3.1 ) Zij f : D IR, met D IR n : f 0 (x) extr, f i (x) = 0, 1 i m, noemen wij een n-dimensionaal optimaliseringsprobleem met nevenvoorwaarden in vorm van een stelsel bestaande

Nadere informatie

HOOFDSTUK I - INLEIDENDE BEGRIPPEN

HOOFDSTUK I - INLEIDENDE BEGRIPPEN HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.1 Waarschijnlijkheidsrekening 1 Beschouw een toevallig experiment (de resultaten zijn aan het toeval te danken) Noem V de verzameling van alle mogelijke uitkomsten

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Aanwijzingen bij vraagstukken distributies

Aanwijzingen bij vraagstukken distributies Aanwijzingen bij vraagstukken distributies Vraagstuk 9.7 Voor het eerste deel, test x x + iε 1 met een testfunctie. Voor het laatste deel: vind eerst bijzondere oplosssingen door de gesuggereerde procedure

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Lineaire programmering

Lineaire programmering Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum

Nadere informatie

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom 8. Fouriertheorie Periodieke functies. Veel verschijnselen en processen hebben een periodiek karakter. Na een zekere tijd, de periode, komt hetzelfde patroon terug. Denk maar aan draaiende of heen en weer

Nadere informatie

Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2

Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2 1 INLEIDING 1 Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2 Volg stap voor stap de tekst en los de vragen op. Bedoeling is dat je op het einde van de rit een verzorgd verslag afgeeft

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Handout limietstellingen Kansrekening 2WS20

Handout limietstellingen Kansrekening 2WS20 Handout limietstellingen Kansrekening WS0 Remco van der Hofstad 13 januari 017 Samenvatting In deze hand out bespreken we een aantal limietstellingen en hun bewijzen. In meer detail, behandelen we de volgende

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms R1 S0 240 ms Ack L1 R2 10 ms Internet R3 L2 D0 10 ms D1 D2 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

De Wachttijd-paradox

De Wachttijd-paradox De Wachttijd-paradox Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Mastercourse 15 november 25 Peter Spreij spreij@science.uva.nl 1 Het probleem In deze mastercourse behandelen

Nadere informatie

Leeswijzer bij het college Functies en Reeksen

Leeswijzer bij het college Functies en Reeksen Leeswijzer bij het college Functies en Reeksen Erik van den Ban Najaar 2012 Introductie eze leeswijzer bij het dictaat Functies en Reeksen (versie augustus 2011) heeft als doel een gewijzigde opbouw van

Nadere informatie

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e.

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e. Tentamen Statistische methoden MST-STM 1 april 2011, 9:00 12:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in; en op het open vragen formulier graag beide, naar volgend

Nadere informatie

INLEIDING. Definitie Stochastisch Proces:

INLEIDING. Definitie Stochastisch Proces: Definitie Stochastisch Proces: INLEIDING Verzameling van stochastische variabelen die het gedrag in de tijd beschrijven van een systeem dat onderhevig is aan toeval. Tijdparameter: discreet: {X n, n 0};

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

HOVO statistiek November 2011 1

HOVO statistiek November 2011 1 Principale Componentenanalyse en hockeystick-short centring Principale Componentenanalyse bedacht door Karl Pearson in 1901 Peter Grünwald HOVO 31-10 2011 Stel we hebben een grote hoeveelheid data. Elk

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 31 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 31 mei uur wiskunde B,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag 3 mei 3.30 6.30 uur 20 05 Voor dit examen zijn maximaal 89 punten te behalen; het examen bestaat uit 20 vragen. Voor elk

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

Set 1 Inleveropgaven Kansrekening (2WS20)

Set 1 Inleveropgaven Kansrekening (2WS20) 1 Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 1 Inleveropgaven Kansrekening (2WS20) 2014-2015 1. (Het sleutelprobleem) In een denkbeeldige wedstrijd kunnen deelnemers auto s

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

Mathematische Statistiek

Mathematische Statistiek Mathematische Statistiek Bert van Es Korteweg-de Vries Instituut Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam 5 februari 2007 ii Inhoudsopgave 1 Introductie 1 2 Algemene begrippen

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Oefening 2.2. Welke van de volgende beweringen zijn waar?

Oefening 2.2. Welke van de volgende beweringen zijn waar? Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Statistiek voor A.I. College 9. Donderdag 11 Oktober

Statistiek voor A.I. College 9. Donderdag 11 Oktober Statistiek voor A.I. College 9 Donderdag 11 Oktober 1 / 48 2 Deductieve statistiek Bayesiaanse statistiek 2 / 48 Reistijd naar college (minuten). Jullie - onderzoek Tim Histogram of CI Frequency 0 1 2

Nadere informatie

1. Vectoren in R n. y-as

1. Vectoren in R n. y-as 1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale

Nadere informatie

en-splitsingen: een aantal alternatieven worden parallel toegepast, of-splitsingen: van een aantal alternatieven wordt er één toegepast,

en-splitsingen: een aantal alternatieven worden parallel toegepast, of-splitsingen: van een aantal alternatieven wordt er één toegepast, Kansrekening voor Informatiekunde, 25 Les 8 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin knopen acties aangeven en opdrachten langs verbindingen tussen de knopen verwerkt

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten: Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+1 = j X n = i, X n 1,...,

Nadere informatie

Conway s algoritme. Roelof Kuipers 7 juli 2015. Bachelorscriptie Begeleiding: dr. Sonja Cox

Conway s algoritme. Roelof Kuipers 7 juli 2015. Bachelorscriptie Begeleiding: dr. Sonja Cox Conway s algoritme Roelof Kuipers 7 juli 2015 Bachelorscriptie Begeleiding: dr. Sonja Cox Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit

Nadere informatie

Complexe Analyse - Bespreking Examen Juni 2010

Complexe Analyse - Bespreking Examen Juni 2010 Complexe Analyse - Bespreking Examen Juni 2010 Hier volgt een bespreking van het examen van Complexe Analyse op 18 juni. De bedoeling is je de mogelijkheid te geven na te kijken wat je goed en wat je minder

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

2. Transformaties en matrices

2. Transformaties en matrices Transformaties en matrices Lineaire afbeelding Onder een lineaire afbeelding van R n naar R m verstaan we een functie A die aan iedere vector uit R n een vector uit R m toevoegt en van het volgende type

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Zeldzame en extreme gebeurtenissen

Zeldzame en extreme gebeurtenissen 24 March 215 Outline 1 Inleiding 2 Extreme gebeurtenissen 3 4 Staarten 5 Het maximum 6 Kwantielen 23 maart 215 Het Financieele Dagblad Vijf grootste rampen (verzekerd kapitaal) 1 Orkaan Katrina (25, MU$

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

HOOFDSTUK 0. = α g1 α g2

HOOFDSTUK 0. = α g1 α g2 HOOFDSTUK 0 Acties van groepen 0.1 Groep-actie Uit de cursus Meetkunde en Lineaire Algebra van 1ste jaar Bachelor Wiskunde ([KI] in de referentielijst) weten we reeds wat een permutatiegroep G op een verzameling

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differtiaalvergelijking Fourierreeks Partiële differtiaalvergelijking zijn vergelijking waarin e onbekde functie van twee of meer variabel z n partiële afgeleide(n) voorkom. Dit in

Nadere informatie

Oriëntatie Econometrie Tijdreeksmodellen en Voorspellen. Marius Ooms. 23 April 2002, Amsterdam

Oriëntatie Econometrie Tijdreeksmodellen en Voorspellen. Marius Ooms. 23 April 2002, Amsterdam Oriëntatie Econometrie Tijdreeksmodellen en Voorspellen Marius Ooms 23 April 2002, Amsterdam Carlson and Thorne (1997) Multiple Regression Key Ideas: 15.1, 15.2, 15.10, 15.14, 15.17, 15.19, 15.20 Ch. 16.1-16.4:

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2005-I

Eindexamen wiskunde B1-2 vwo 2005-I Inademen Bij controlemetingen aan de ademhaling wordt men gevraagd om diep uit te ademen en vervolgens gedurende vijf seconden zo diep mogelijk in te ademen. Tijdens het inademen is de hoeveelheid verse

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

EERSTE DEELTENTAMEN WISB 212 Analyse in Meer Variabelen

EERSTE DEELTENTAMEN WISB 212 Analyse in Meer Variabelen Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A Eskwadraat. A Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten in dit tentamen. EERSTE

Nadere informatie