Toegepaste Wiskunde 2: Het Kalman-filter

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Toegepaste Wiskunde 2: Het Kalman-filter"

Transcriptie

1 Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer correcte benaming zou zijn: het lineaire Stratonovich- Kalman-Bucy filter. Het is zeer geschikt om electronica te programmeren die vliegende objecten in real time localiseert. Tegenwoordig wordt het filter ook ingezet om beurskoeren te voorspellen, en diverse andere, in de tijd veranderende grootheden. Het filter wordt gevoed met stochastische a priori aannamen over bijvoorbeeld plaats en snelheid van het te volgen object, en vertaalt deze na elke nieuwe waarneming in bijgestelde, a posteriori schattingen. De schatting op zeker tijdstip is de voorwaardelijke verwachting van de betreffende grootheid, gegeven alle observaties die tot dan toe zijn gedaan. De geschiedenis van het Kalmanfilter is een van de succesverhalen van de Toegepaste Wiskunde. Meteen na de ontwikkeling ervan door Kalman, op basis van ideeën van Stratonovich, is het door de NASA ingezet in het Apolloproject, dat ten doel had een mens op de maan te brengen. Without me no moon, placht Kalman te zeggen. 2. Voorwaardelijke Verwachting De voorwaardelijke kans op een gebeurtenis A, gegeven een gebeurtenis B is gedefinieerd als P(A B) P(A B) :=, P(B) mits P(B) 0. Dit leidt onmiddellijk tot de definitie van een voorwaardelijke verwachting van een discrete stochast X, gegeven een gebeurtenis B: zij W de waardenverzameling van X, dan is E(X B) := x W x P([X = x] B). 1 Modellenpracticum 2008: Kalmanfilter

2 En deze leidt weer tot de definitie van een voorwaardelijke verwachting van een discrete stochast X, gegeven een tweede discrete stochast Z: E(X Z) : Ω R : ω f(z(ω)), waarbij f(z) := E(X Z = z). (1) Merk op dat deze voorwaardelijke verwachting zelf een stochast is, helemaal vastgelegd door Z. We beweren nu dat dit de beste schatting is van X op basis van kennis over Z. Lemma 1. Laten X en Z discrete stochasten zijn, zeg met waardeverzamelingen W X en W Z. Dan is E(X Z) = f(z), waarbij f díe functie is van W Z naar R, waarvoor minimaal is. E ( (f(z) X) 2) Dit is een uitbreiding van het eenvoudige stellinkje dat zegt dat voor een willekeurige stochast X de waarde van λ R waarvoor E ( (λ X) 2) minimaal is gegeven wordt door de verwachting E(X). Immers: voor alle λ R geldt: E ( (λ X) 2) = λ 2 2λE(X) + E(X 2 ) = ( (λ E(X)) 2) + Var(X). Bewijs van het Lemma. Zij f : W Z R zó dat E(f(Z) 2 ) <. Dan geldt: E ( (f(z) X) 2) = ( P[Z = z] E (f(z) X) 2 Z = z ) z W Z = ( P[Z = z] f(z) 2 2f(z)E(X Z = z) + E(X 2 Z = z) ) z W Z = ( P[Z = z] (f(z) E(X Z = z)) 2 + E(X 2 Z = z) E(X Z = z) 2) z W Z = E ( (f(z) E(X Z)) 2) + E ( E(X 2 Z) E(X Z) 2). De tweede term hangt niet van f af, en de eerste is minimaal (namelijk 0) voor f(z) = E(X Z = z), dus f(z) = E(X Z). Voor continu verdeeld stochasten, waar we in het volgende voornamelijk in geïnteresseerd zullen zijn, gaat definitie (1) van E(X Z) niet meer op, omdat een gebeurtenis als [Z = z] kans 0 heeft, zodat je er niet op kunt conditioneren. De karakterisering als gegeven in het Lemma blijft echter zinvol, en we zullen deze daarom gaan gebruiken als definitie van E(X Z). Het zal handig blijken te zijn, meer dan één stochast te gebruiken als voorwaarde. Definitie. Laten X en Z 1, Z 2,..., Z n stochasten zijn met eindige variantie. Onder de voorwaardelijke verwachting E(X Z 1,..., Z n ) van X, gegeven Z 1, Z 2,, Z n verstaan we f(z 1, Z 2,, Z n ), waarbij (de meetbare functie) f : R n R zó gekozen is dat ( (X E f(z1, Z 2,, Z n ) ) 2) minimaal is. 2 Modellenpracticum 2008: Kalmanfilter

3 3. Gaussische stochastische variabelen Het Kalman-filter berekent voorwaardelijke verwachtingen in het heel speciale, maar belangrijke geval van normaal verdeelde stochasten. Het zal blijken dat bovenstaande definitie een mooie meetkundige interpretatie krijgt Een concreet model Zij N N. We maken een kansruimte (Ω N, Σ N, P N ) als volgt. Voor Ω N nemen we de N- dimensionale ruimte R N, en voor Σ N de standaard-sigma-algebra die daarbij hoort. (We maken ons nu niet druk over de maattheorie van R N, en doen alsof we precies weten wat meetbare verzamelingen zijn. Voor de kenners: we nemen de Borel-verzamelingen. Voor anderen: we beschouwen alleen verzamelingen waar we over kunnen integreren.) Voor P = P N kiezen we die kansmaat op R N die de coordinaten tot onafhankelijke normaalverdeelde stochasten maakt: voor A R N : P(A) := 1 (2π) n/2 A e 1 2 (x2 1 +x x2 N ) dx 1 dx 2 dx N. De stochastische variabelen die we zullen beschouwen zijn de lineaire functies Ω R, oftewel vectoren v in de duale ruimte Ω van Ω: X v : Ω R : x v, x. Deze keuze van stochasten heeft de volgende consequenties: 1. De stochast X v is normaal verdeeld, met verwachting 0 en variantie v Als v w, dan zijn X v en X w onafhankelijk: X v X w. Deze twee eigenschappen vatten we samen met: De stochasten X v, v Ω zijn gezamenlijk Gaussisch. Verdere gevolgen van onze constructie zijn: 3. De voorwaardelijke verwachting van X v, gegeven X z is X Pv, waarbij P de orthogonale projectie is op de lijn door z Voorbeeld Zij X een stochastische variabele met gemiddelde 0 en variantie a 2. Stel dat we X niet direct kunnen observeren, maar alleen met een normaal verdeelde waarnemingsfout W, die onafhankelijk is van X en die gemiddelde 0 en variantie m 2 heeft. We nemen dus de volgende stochast waar: Z := X + W. Wat is de beste schatting X van X, gebaseerd op onze waarneming van Z? Bewering. De beste schatting van X, gegeven Z is (zie figuur) X = E(XZ) E(Z 2 ) Z = a 2 a 2 + m 2 Z. 3 Modellenpracticum 2008: Kalmanfilter

4 Bewijs. We modelleren deze situatie met de kansruimte (Ω N, Σ N, P N ). Zij N = 2, X = X (a,0), W = X (o,m), zodat Z = X (a,m). De projectie van (a, 0) op de lijn door 0 en (a, m) laat zich in het plaatje gemakkelijk aflezen: p = a 2 (a, m). a 2 + m2 En dus is X := E(X Z) = X p = a 2 a 2 + m 2 Z. W = (0, m) Z = (a, m) X^ X = (a, 0) Je zou de factor a 2 /(a 2 + m 2 ) kunnen interpreteren als de geloofwaardigheid van de waarneming Z. Deze brengt tot uitdrukking brengt in hoeverre wij de afwijking van Z van de a priori schatting 0 toeschrijven aan het voorwerp zelf, en in hoeverre we ze afdoen als ruis. 4. Een Kalman-filter Neem aan dat de positie van een vliegend voorwerp ten tijde t gegeven wordt door X + tv, waarbij X en V onafhankelijke, normaal verdeelde stochasten zijn, zeg met varianties respectievelijk α 2 en β 2, en met verwachting 0. Het idee is, dat α en β heel groot zijn, zodat wij van plaats en snelheid van het voorwerp op tijdstip 0 niet veel weten. De aanname E(X) = E(V ) = 0 is hier enkel voor de eenvoud gemaakt. Nu gaan we waarnemingen doen op tijdstippen t 1, t 2,, t n ; op tijdstip t j meten we Z j := X + t j V + R j. De ruis R j is een rij onafhankelijke normaal verdeelde stochasten met verwachting 0 en variantie ε 2, onafhankelijk van X en V. We modelleren dit probleem met behulp van Paragraaf Modellenpracticum 2008: Kalmanfilter

5 Laat N = n + 2 en identificeer de volgende vectoren in Ω N probleem. X = (α, 0, 0, 0, 0,..., 0) V = (0, β, 0, 0, 0,..., 0) R 1 = (0, 0, ε, 0, 0,..., 0) R 2 = (0, 0, 0, ε, 0,..., 0). Z 1 = (α, t 1 β, ε, 0, 0,..., 0) Z 2 = (α, t 1 β, 0, ε, 0,..., 0). met de stochasten uit het Zij nu Z j de lineaire ruimte, opgespannen door Z 1, Z 2,..., Z j. Zij P j de orthogonale projectie van Ω op Z j. Dan is de beste schatting X j := E(X Z 1, Z 2,, Z j ) de projectie van X = X (α,0,0,...,0) op Z j : Xj = P j (X), en evenzo is V j = P j (V ). Op tijdstip 0 hebben we nog niets gezien, en schatten we X en V met hun verwachtingswaarden: X 0 = 0, V0 = 0. Op tijdstip t 1 zien we Z 1, en we updaten onze kennis over X en V : X 1 = c 1 Z 1, met c 1 zó dat X X 1 Z 1. Dus moet X c 1 Z 1, Z 1 = 0, zodat X, Z 1 = c 1 Z 1, Z 1, dat wil zeggen: α 2 = c 1 (α 2 + β 2 t ε 2 ). We vinden: α X 2 1 = α 2 + β 2 t Z ε2 1, en analoog: V 1 = β 2 t 2 1 α 2 + β 2 t ε2 Z 1. De volgende stap, na de waarneming van Z 2, is ingewikkelder dat de eerste, omdat Z 1 en Z 2 niet onafhankelijk (orthogonaal) zijn. Het is dan voordelig, in stap j 2 eerst het innovatieve of verrassende deel N j uit de nieuwe waarneming Z j te isoleren: N j := Z j P j 1 (Z j ). Deze innovaties N 1, N 2,, N n zijn onderling onafhankelijk, en, gezien als vecoren in Ω, orthogonaal. Hieruit volgt dat X j = X j 1 + E(XN j) E(N 2 j ) N j en Vj = V j 1 + E(V N j) E(N 2 j ) N j. (2) Op basis hiervan komen we tot het volgende resultaat 5 Modellenpracticum 2008: Kalmanfilter

6 Stelling 2. De beste schattingen van X en V, gegeven de eerste j waarnemingen worden gegeven door de volgende recursieve vergelijkingen. X j = X α 2 j 1 j t ( jγ j 1 α 2 j 1 + t2 j β2 j 1 + 2t jγ j 1 + ε 2 Z j ( ) ) Xj 1 + t j Vj 1 ; V j = V t j βj 1 2 j γ ( j 1 α 2 j 1 + t2 j β2 j 1 + 2t jγ j 1 + ε 2 Z j ( ) ) (3) Xj 1 + t j Vj 1, waarin de parameters α j, β j en γ j worden berekend met de recursie α 0 = α ; β 0 = β ; γ 0 = 0 ; α 2 j = α 2 j 1 β 2 j = β 2 j 1 (α 2 j 1 + t jγ j 1 ) 2 α 2 j 1 + t2 j β2 j 1 + 2t jγ j 1 + ε 2 ; (t j β 2 j 1 + γ j 1) 2 α 2 j 1 + t2 j β2 j 1 + 2t jγ j 1 + ε 2 ; γ j = γ j 1 (α2 j 1 + t jγ j 1 )(t j β 2 j 1 + γ j 1) α 2 j 1 + t2 j β2 j 1 + 2t jγ j 1 + ε 2. Bewijs. Definieer α 2 j := X X j 2 ; β 2 j := V V j 2 ; γ j := X X j, V V j. Dan geldt: E(XN j ) = X, (1 P j )Z j = X X j 1, (X X j 1 ) + t j (V V j 1 ) + R j = X X j t j X X j 1, V V j 1 = α 2 j 1 + t jγ j 1. E(Nj 2 ) = (X X j 1 ) + t j (V V j 1 ) + R j 2 = α 2 j 1 + t2 j β2 j 1 + 2t jγ j + ε 2. Met (2) volgt nu (3). De recursies voor α j, β j en γ j worden nu gevonden met α 2 j 1 α 2 j = X, (P j P j 1 )X = E(XN j) 2 E(N 2 j ) ; β 2 j 1 β 2 j = V, (P j P j 1 )V = E(V N j) 2 E(N 2 j ) ; γ j 1 γ j = X, (P j P j 1 )V = E(XN j)e(v N j ) E(N 2 j ). 6 Modellenpracticum 2008: Kalmanfilter

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2, Vrijdag 23 januari 25, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven dienen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking tentamen Kansrekening en Stochastische Processen (2S61) op woensdag 27 april 25, 14. 17. uur. 1. Gegeven zijn twee onafhankelijke

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Tuyaux 3de Bachelor Wiskunde WINAK

Tuyaux 3de Bachelor Wiskunde WINAK Tuyaux 3de Bachelor Wiskunde WINAK Eerste Semester 2011-2012 Inhoudsopgave 1 Inleiding 2 2 Maattheorie 3 2.1 Theorie....................................... 3 2.2 Oefeningen.....................................

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

3 De duale vectorruimte

3 De duale vectorruimte 3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1/19

Stochastiek 2. Inleiding in de Mathematische Statistiek 1/19 Stochastiek 2 Inleiding in de Mathematische Statistiek 1/19 Herhaling H.1 2/19 Mathematische Statistiek We beschouwen de beschikbare data als realisatie(s) van een stochastische grootheid X.(Vaak een vector

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014 Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal Toets Kansrekenen I 28 maart 2014 Naam : Richting : Lees volgende aanwijzingen alvorens aan het examen te beginnen Wie de

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 19.a) Laat zien dat 5 een voortbrenger is van F 37. b) In het sleuteldistributiesysteem van Diffie en Hellman (met G = F 37, α =

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

TI83-werkblad. Vergelijkingen bij de normale verdeling

TI83-werkblad. Vergelijkingen bij de normale verdeling TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale

Nadere informatie

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden.

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden. Hertentamen Inleiding Kansrekening WI64. 9 augustus, 9:-: Het tentamen heeft 5 onderdelen. Met ieder onderdeel kan maximaal punten verdiend worden. Het tentamen is open boek. Boeken, nota s en een (eventueel

Nadere informatie

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling. Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/39 Een stochastisch proces (stochastic proces) X (t) bestaat

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren Overzicht Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen Cursusjaar 2009 Peter de Waal Departement Informatica Voorwaardelijke kans Rekenregels Onafhankelijkheid Voorwaardelijke Onafhankelijkheid

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie Hoofdstuk : Randwaardeproblemen en Sturm-Liouville theorie.. Tweepunts randwaardeproblemen. Bij het oplossen van partiële differentiaalvergelijkingen met behulp van de methode van scheiden van variabelen

Nadere informatie

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg)

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg) Voorbeeld Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen Cursusjaar 2009 Peter de Waal Departement Informatica In een eperiment gooien we 4 maal met een zuivere munt.

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Quantum theorie voor Wiskundigen. Velden en Wegen in de Wiskunde

Quantum theorie voor Wiskundigen. Velden en Wegen in de Wiskunde Quantum theorie voor Wiskundigen door Peter Bongaarts (Rotterdam) bij het afscheidssymposium Velden en Wegen in de Wiskunde voor Henk Pijls Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam,

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 3 Inleveropgaven Kansrekening (2WS2) 23-24 Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.. Voetbalplaatjes. Bij

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Stochastiek 2. Inleiding in the Mathematische Statistiek. staff.fnwi.uva.nl/j.h.vanzanten

Stochastiek 2. Inleiding in the Mathematische Statistiek. staff.fnwi.uva.nl/j.h.vanzanten Stochastiek 2 Inleiding in the Mathematische Statistiek staff.fnwi.uva.nl/j.h.vanzanten 1 / 12 H.1 Introductie 2 / 12 Wat is statistiek? - 2 Statistiek is de kunst van het (wiskundig) modelleren van situaties

Nadere informatie

Opgaven bij Numerieke Wiskunde I

Opgaven bij Numerieke Wiskunde I Opgaven bij Numerieke Wiskunde I 7 november 8 1. (a) Gegeven verschillende interpolatiepunten x, x 1, x [a, b], en getallen y, y 1, y, z 1, toon aan dat er hooguit 1 polynoom p P 3 is met p(x i ) = y i,

Nadere informatie

Ruimtemeetkunde deel 1

Ruimtemeetkunde deel 1 Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor

Nadere informatie

UitwerkingenOefenQuiz Kansrekening 2009

UitwerkingenOefenQuiz Kansrekening 2009 Universiteit Utrecht *Universiteit-Utrecht Boedapestlaan 6 Mathematisch Instituut 3584 CD Utrecht UitwerkingOefQuiz Kansreking 29 1. James Bond zoekt e brief in één van de drie ladkast in het voormalige

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

Sterrenkunde Praktikum 1 Fouten en fitten

Sterrenkunde Praktikum 1 Fouten en fitten Sterrenkunde Praktikum 1 Fouten en fitten Paul van der Werf 12 februari 2008 1 Inleiding In de sterrenkunde werken we vaak met zwakke signalen, of met grote hoeveelheden metingen van verschillende nauwkeurigheid.

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

Eigenschappen en Axioma s van de E 6 -meetkunde

Eigenschappen en Axioma s van de E 6 -meetkunde Faculteit Wetenschappen Vakgroep Wiskunde Eigenschappen en Axioma s van de E 6 -meetkunde Magali Victoor Promotor: Prof. dr. Hendrik Van Maldeghem Masterproef ingediend tot het behalen van de academische

Nadere informatie

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur.

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Deze opdracht bestaat uit vier onderdelen; in elk onderdeel wordt gevraagd een Matlabprogramma te schrijven. De vier bijbehore bestanden stuur

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Dinsdag 18 Oktober 1 / 1 2 Statistiek Vandaag: Centrale Limietstelling Correlatie Regressie 2 / 1 Centrale Limietstelling 3 / 1 Centrale Limietstelling St. (Centrale

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op dinsdag 9 april 8, 9.. uur. Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18 Stochastiek 2 Inleiding in de Mathematische Statistiek 1 / 18 t-toetsen 2 / 18 Steekproefgemiddelde en -variantie van normale observaties Stelling. Laat X 1,..., X n o.o. zijn en N(µ, σ 2 )-verdeeld. Dan:

Nadere informatie

Analyse 1 Handout limieten en continuïteit

Analyse 1 Handout limieten en continuïteit Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................

Nadere informatie

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07)

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07) Uitwerkingen tentamen 6 juli 22. We stellen T de gebeurtenis test geeft positief resultaat, F de gebeurtenis, chauffeur heeft gefraudeerd, V de gebeurtenis, chauffeur heeft vergissing gemaakt C de gebeurtenis,

Nadere informatie

Huiswerk Hints&Tips Analyse 2, College 26

Huiswerk Hints&Tips Analyse 2, College 26 Huiswerk Hints&Tips Analyse, College 6 [K..]. Tip : Toon aan dat er punten (x, y ) en (x, y ) en scalars m, M R bestaan zo dat m = f(x, y ) f(x, y) f(x, y ) = M. Laat dan zien dat m(b a)(d c) = m f M =

Nadere informatie

De enveloppenparadox

De enveloppenparadox De enveloppenparadox Mats Vermeeren Berlin Mathematical School) 6 april 013 1 Inleiding Een spel gaat als volgt. Je krijgt twee identiek uitziende enveloppen aangeboden, waarvan je er één moet kiezen.

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

College WisCKI. Albert Visser. 10 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties.

College WisCKI. Albert Visser. 10 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 10 oktober, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Wat is een equivalentierelatie? Een equivalentie

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

Aanwijzingen bij vraagstukken distributies

Aanwijzingen bij vraagstukken distributies Aanwijzingen bij vraagstukken distributies Vraagstuk 9.7 Voor het eerste deel, test x x + iε 1 met een testfunctie. Voor het laatste deel: vind eerst bijzondere oplosssingen door de gesuggereerde procedure

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten.

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten. WIS8 8 Vectoren 8. Vectoren Vectoren Een vector met dimensie is een kolom bestaande uit twee reële getallen, bijvoorbeeld [ We kunnen deze meetkundig interpreteren als een pijl in het platte vlak van de

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Verzamelingen. Hoofdstuk 5

Verzamelingen. Hoofdstuk 5 Hoofdstuk 5 Verzamelingen In de meest uiteenlopende omstandigheden kan het handig zijn om een stel objecten, elementen, of wat dan ook, samen een naam te geven. Het resultaat noemen we dan een verzameling.

Nadere informatie

Optelling en scalaire vermenigvuldiging zijn weer plaatsgewijs gedefinieerd, bijvoorbeeld: 7 (x 1, x 2, x 3,...)

Optelling en scalaire vermenigvuldiging zijn weer plaatsgewijs gedefinieerd, bijvoorbeeld: 7 (x 1, x 2, x 3,...) 5. Lineaire ruimten Tot nu toe hebben we ons uitsluitend met de R n bezig gehouden. We gaan de behandelde theorie nu uitbreiden tot verzamelingen die een sterke overeenkomst met een R n vertonen. Een dergelijke

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

2: Laat en twee convexe verzamelingen zijn. Laat. Er geldt. Omdat convex is, is de gehele lijn bevat in, dus. Evenzo geldt. Hieruit volgt dat.

2: Laat en twee convexe verzamelingen zijn. Laat. Er geldt. Omdat convex is, is de gehele lijn bevat in, dus. Evenzo geldt. Hieruit volgt dat. CONVEXE MEETKUNDE Pelle Wielinga & Han van der Ven 1. Convexe meetkunde Convexe meetkunde is een tak van de meetkunde die zich bezighoudt met convexe verzamelingen. In de Euclidische ruimte wordt een object

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Eindexamen wiskunde B 1-2 vwo I

Eindexamen wiskunde B 1-2 vwo I Eindexamen wiskunde B - vwo - I Beoordelingsmodel Oppervlakte en inhoud bij f(x) = e x maximumscore e Lijn AB heeft richtingscoëfficiënt = (e ) Voor lijn AB geldt de formule y = (e ) x + De oppervlakte

Nadere informatie

Eindexamen wiskunde B 1-2 vwo 2002-II

Eindexamen wiskunde B 1-2 vwo 2002-II Eindexamen wiskunde B 1-2 vwo 2002-II ppervlakte Gegeven is de functie f ( x) = x 1. De lijn k raakt aan de grafiek van f in het punt (10, 3). Zie figuur 1. figuur 1 y k 1 1 f x 5p 1 Stel met behulp van

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

uitwerkingen OefenTentamen kansrekening 2007

uitwerkingen OefenTentamen kansrekening 2007 Universiteit Utrecht *Universiteit-Utrecht Boedaestlaan Mathematisch Instituut 3584 CD Utrecht uitweringen OefenTentamen ansreening 2007 Uitwering van Ogave Ogave Veronderstel dat α de ans is dat van een

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Fundamentele begrippen in de financiële wiskunde

Fundamentele begrippen in de financiële wiskunde Fundamentele begrippen in de financiële wiskunde Peter Spreij Leve de Wiskunde!, 8 april 2011 Inhoud Doel 1 Doel 2 3 Arbitrage Replicatie, hedging 4 5 6 Peter Spreij Financiële Wiskunde 1/ 60 Inhoud Doel

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Genererende Functies K. P. Hart

Genererende Functies K. P. Hart genererende_functies.te 27--205 Z Hoe kun je een rij getallen zo efficiënt mogelijk coderen? Met behulp van functies. Genererende Functies K. P. Hart Je kunt rijen getallen op diverse manieren weergeven

Nadere informatie

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur Tentamen Kansrekening en statistiek wi205in 25 juni 2007, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Combinatoriek groep 1

Combinatoriek groep 1 Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Statistiek voor A.I. College 5. Dinsdag 25 September 2012

Statistiek voor A.I. College 5. Dinsdag 25 September 2012 Statistiek voor A.I. College 5 Dinsdag 25 September 2012 1 / 34 2 Deductieve statistiek Kansrekening 2 / 34 Percentages 3 / 34 Vragen: blikkie Kinderen worden slanker als ze anderhalf jaar lang limonade

Nadere informatie

FP-theorie. 2IA50, Deel B. Inductieve definities 1/19. / department of mathematics and computer science

FP-theorie. 2IA50, Deel B. Inductieve definities 1/19. / department of mathematics and computer science FP-theorie 2IA50, Deel B Inductieve definities 1/19 Inductieve definitie Definitie IL α, (Cons-)Lijsten over α Zij α een gegeven verzameling. De verzameling IL α van eindige (cons-)lijsten over α is de

Nadere informatie

Leeswijzer bij het college Functies en Reeksen

Leeswijzer bij het college Functies en Reeksen Leeswijzer bij het college Functies en Reeksen Erik van den Ban Najaar 2012 Introductie eze leeswijzer bij het dictaat Functies en Reeksen (versie augustus 2011) heeft als doel een gewijzigde opbouw van

Nadere informatie

Semantiek (2IT40) Bas Luttik. HG 7.14 tel.: Hoorcollege 8 (7 juni 2007)

Semantiek (2IT40) Bas Luttik.  HG 7.14 tel.: Hoorcollege 8 (7 juni 2007) Bas Luttik s.p.luttik@tue.nl http://www.win.tue.nl/~luttik HG 7.14 tel.: 040 247 5152 Hoorcollege 8 (7 juni 2007) Functionele talen Idee: een programma definieert reeks (wiskundige) functies. Programma

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

EWMA Control Charts in Statistical Process Monitoring I.M. Zwetsloot

EWMA Control Charts in Statistical Process Monitoring I.M. Zwetsloot EWMA Control Charts in Statistical Process Monitoring I.M. Zwetsloot EWMA Control Charts in Statistical Process Monitoring Inez M. Zwetsloot Samenvatting EWMA Regelkaarten in Statistische Procesmonitoring

Nadere informatie

Verwachtingswaarde, Variantie en Standaarddeviatie

Verwachtingswaarde, Variantie en Standaarddeviatie Verwachtingswaarde, Variantie en Standaarddeviatie Wisnet-hbo Verwachtingswaarde update maart 200 De verwachtingswaarde van een kansvariabele is een soort gemiddelde waarde. Deze wordt aangeduid met E(k)

Nadere informatie

4.1 College Week 4. Probleem (P 3.1 ) Zij f : D IR, met D IR n :

4.1 College Week 4. Probleem (P 3.1 ) Zij f : D IR, met D IR n : 4.1 College Week 4 Probleem (P 3.1 ) Zij f : D IR, met D IR n : f 0 (x) extr, f i (x) = 0, 1 i m, noemen wij een n-dimensionaal optimaliseringsprobleem met nevenvoorwaarden in vorm van een stelsel bestaande

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie