De dimensie van een deelruimte

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "De dimensie van een deelruimte"

Transcriptie

1 De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van R n als :. o H. u + v H voor alle u, v H 3. λu H voor alle u H en λ R. De optelling en de scalaire vermenigvuldiging moet dus binnen de deelverzameling H mogelijk zijn. Speciale gevallen zijn : Stelling. Als A een (m n)-matrix is, dan is Col A een deelruimte van R m en Nul A een deelruimte van R n. Verder hebben we nog het begrip basis van een deelruimte gedefinieerd : Definitie. Een verzameling vectoren {a,..., a p } in R n heet een basis van H als :. H = Span{a,..., a p }. {a,..., a p } is lineair onafhankelijk. Zo n basis van een deelruimte is in het algemeen niet uniek. Het is meestal mogelijk om verschillende lineair onafhankelijke verzamelingen te kiezen die zo n deelruimte opspannen. Er geldt : Stelling. Als A een (m n)-matrix is, dan vormen de pivotkolommen van A een basis van Col A. Door de kolommen in een andere volgorde te zetten krijgen we een andere matrix waarvan de kolomruimte echter gelijk is aan Col A. De pivotkolommen kunnen dan gemakkelijk anders zijn. Voorbeeld. De verzamelingen { }, { vormen elk een basis van de kolomruimte van de matrix } en { Als B = {b,..., b p } een basis van een deelruimte H van R n is, dan kan elke vector in H op precies één manier geschreven worden als lineaire combinatie van de vectoren in de basis B.. }

2 Immers : stel dat x = c b c p b p en x = d b d p b p voor een vector x H, dan volgt : o = x x = (c d )b (c p d p )b p. Aangezien B lineair onafhankelijk (zie : Lay, pag. 59 voor de definitie) is moeten alle gewichten in deze lineaire combinatie nul zijn, dat wil zeggen : c d =,..., c p d p = oftewel c = d,..., c p = d p. Dit betekent dat de twee representaties x = c b c p b p en x = d b d p b p aan elkaar gelijk zijn. Dit geeft aanleiding tot de volgende definitie : Definitie 3. Stel dat B = {b,..., b p } een basis is van een deelruimte H van R n, dan kan elke vector x H dus op precies één manier geschreven worden als lineaire combinatie x = c b c p b p van de basisvectoren {b,..., b p }. De gewichten c,..., c p van deze lineaire combinatie worden de coördinaten van x ten opzichte van de basis B genoemd. De vector c [x] B =. R p heet de coördinaatvector van x ten opzichte van de basis B. c p Omdat de coördinaten c,..., c p afhankelijk zijn van de keuze van de basis B gebruiken we dus de notatie [x] B. Er geldt dus : c [x] B =. x = c b c p b p met B = {b,..., b p }. c p Voorbeeld. Stel H = Span{ van H. Maar C = { Voor de vector x = 3 [x] B = } en D = { }, dan is B = { H geldt dan (ga na) : ( 3 ) (, [x] C = ) en [x] D = } dus een basis } zijn dan ook bases van H. ( 3 ). Een basis van een deelruimte H van R n is dus niet uniek. Het aantal vectoren in zo n basis is echter wel altijd gelijk (zie : Lay, opgaven 43 en 44 voor een bewijs). Dit aantal noemt men de dimensie van de deelruimte H.

3 Definitie 4. De dimensie van een deelruimte H {o} van R n (notatie : dim H) is het aantal vectoren van een (willekeurige) basis van H. De dimensie van de deelruimte {o} die alleen de nulvector bevat is. Deze triviale deelruimte heeft geen basis. De dimensie van de kolomruimte van een matrix is dus het aantal pivotposities in die matrix. Men noemt dat ook wel de rang van die matrix : Definitie 5. De rang van een matrix A (notatie : rank A) is de dimensie van de kolomruimte van A, dus : rank A = dim(col A). Nu is eenvoudig in te zien dat : Stelling 3. Als A een (m n)-matrix is, dan geldt : dim(col A) + dim(nul A) = n. Immers : dim(nul A) is het aantal vrije variabelen in Ax = o en dat is precies gelijk aan het aantal niet-pivotkolommen van A. Verder is dim(col A) = rank A gelijk aan het aantal pivotkolommen van A. Samen is dit dus gelijk aan het totaal aantal kolommen van A. Markov-ketens We beginnen met de introductie van enkele nieuwe begrippen. Definitie 6. Een vector x = x. x n R n heet een kansvector als x i voor i =,,..., n en x x n =. Zo n kansvector wordt ook wel een stochastische vector of een waarschijnlijkheidsvector genoemd. Een stochastische matrix of Markov-matrix is een vierkante matrix waarvan alle kolommen kansvectoren zijn. Een Markov-keten is een rij vectoren {x k } k= zodat x k+ = P x k, k =,,,..., waarbij P zo n Markov-matrix is. Een vector x k in zo n Markov-keten wordt ook wel een toestandsvector genoemd. Het proces zelf wordt wel een Markov-proces genoemd. Voorbeelden van kansvectoren zijn : ( /4 3/4 ),,, 5, 35, 5 en, 63,, 3,, 3

4 Voorbeelden van Markov-matrices zijn : ( ) /3 / /4 /, /3 /4 3/4 / /3 3/4 / en, 45, 7, 3,, 5, 66, 33, 3, Als een Markov-keten x k+ = P x k, k =,,,... convergeert, dat wil zeggen als lim x k = q k bestaat, dan geldt : q = P q oftewel (P I)q = o. Zo n vector q heet wel een evenwichtstoestand(svector). Men kan aantonen dat er voor elke Markov-matrix P een evenwichtstoestandsvector q bestaat zodat P q = q. Het is nog wel de vraag of het Markov-proces (afhankelijk van de startvector x ) behorende bij zo n Markov-matrix convergeert. Als dat zo is, dan is de limiet dus gelijk aan zo n evenwichtstoestand q. Voorbeeld 3. Vergelijk met Lay, 4.9 opgave 6. We beschouwen een autoverhuurbedrijf met drie vestigingen : één vestiging in de binnenstad, één op het industrieterrein en één bij de luchthaven. De auto s die gehuurd kunnen worden bij dit bedrijf kunnen bij elk van drie vestigingen worden teruggebracht. Onderzoek heeft aangetoond dat 85% van de auto s teruggebracht wordt bij de vestiging waar ze vandaan komen. Verder weet men dat 5% van de auto s die gehuurd worden in de binnenstad bij de vestiging op het industrieterrein worden teruggebracht, terwijl % teruggebracht wordt bij de vestiging bij het vliegveld. Verder komt 5% van de auto s die gehuurd worden op het industrieterrein terug bij de vestiging in de binnenstad, terwijl % van deze auto s bij het vliegveld wordt ingeleverd. Van de gehuurde auto s op het vliegveld komt % terug bij de vestiging in de binnenstad en 5% bij de vestiging op het industrieterrein. Dit leidt tot de volgende Markov-matrix : P =, 85, 5,, 5, 85, 5,,, 85 Om een toestand op een bepaald moment k te beschrijven gebruiken we een vector met drie coördinaten : percentage van de auto s in de binnenstad x k = percentage van de auto s op het industrieterrein percentage van de auto s bij de luchthaven Merk op dat x k een kansvector is, omdat alle auto s zich bij één van de drie vestigingen bevinden. Om de volgende toestand x k+ (bijvoorbeeld één dag of één week later) te berekenen, wordt de vector x k met de Markov-matrix P hierboven vermenigvuldigd : x k+ = P x k. Startend met een zekere vector x ontstaat op deze manier een Markov-keten : x k+ = P x k, k =,,,.... Laten we aannemen dat op zeker moment (de begintoestand) 5% van het wagenpark zich bij de vestiging op de luchthaven bevindt, terwijl de andere 5% netjes verdeeld is over de andere vestigingen. Dan geldt dus : x =, 5, 5, 5 4

5 Voor x vinden we dan : Evenzo : x = P x = x = P x =, 85, 5,, 5, 85, 5,,, 85, 85, 5,, 5, 85, 5,,, 85 Zo doorgaand vinden we eventueel nog :, 3785, x 3 =, 5, x 4 =, 5, 44875, , 5, 5, 5, 75, 5, 475, x 5 =, 75, 5, 475, 9375, 5, 4565, , 5, Opvallend is dat de tweede coördinaat niet veranderd. Het percentage (en dus ook het aantal) auto s bij de vestiging op het industrieterrein lijkt dus constant te blijven. De eerste en de derde coördinaat veranderen wel steeds (een klein beetje). Laten we eens aannemen dat de limiet voor k van dit proces bestaat (we zullen later zien dat dit inderdaad het geval is). Voor die limiet moet dan gelden : q = P q oftewel (P I)q = o, dat wil zeggen : q is een evenwichtstoestand. Dus : P I =, 5, 5,, 5, 5, 5,,, q = c met c R. De evenwichtstoestandsvector q moet echter ook weer een kansvector zijn, dat wil zeggen dat c = /( ) = /. Dus : q = / 5/ 8/ 7/ /4 /5, 35, 5, 4 Merk op, dat de tweede coördinaat weer /4 =, 5 is en dat in het proces hierboven de eerste en de derde coördinaat inderdaad lijken te convergeren naar, 35 en, 4 respectievelijk. De verwachting is dan ook dat op den duur 35% van het wagenpark bij de vestiging in de binnenstad zal staan, 5% daarvan op het industrieterrein en 4% bij de luchthaven. In plaats van het werken met kansvectoren, waarbij dus percentages van een geheel worden beschouwd, kan men ook werken met werkelijke aantallen. In het proces worden dan alle vectoren x k in de Markov-keten met het totaal aantal (auto s bijvoorbeeld) vermenigvuldigd. De vectoren in de keten zijn dan geen kansvectoren meer, maar de som van de coördinaten is dan steeds gelijk aan het totaal aantal (auto s bijvoorbeeld). Als het totaal aantal auto s van 5

6 het verhuurbedrijf in voorbeeld 3 bijvoorbeeld zou zijn, dan ziet de Markov-keten (bij dezelfde beginsituatie er zo uit) : x = 5 5 5, x = , x = 93, 75 5, 456, 5, x 3 = 37, 85 5, 44, 875 Het totaal aantal auto s (de som van de drie coördinaten blijft steeds gelijk aan ). De evenwichtstoestand wordt dan : 35 q = 5, 4 waarbij de verwachting is dat er op den duur 35 auto s bij de vestiging in de binnenstad zullen staan en dat de vestigingen op het industrieterrein en bij de luchthaven de beschikking hebben over respectievelijk 5 en 4 auto s. Wat zou er gebeuren als we uitgaan van een andere beginverdeling over de drie verschillende vestigingen? We bekijken twee voorbeelden, waarbij we uitgaan van dezelfde situatie als in voorbeeld 3 met dezelfde Markov-matrix P. Alleen de begintoestand x kiezen we anders. Als we uitgaan van een gelijkmatige verdeling van het wagenpark over de drie verschillende vestigingen dan vinden we : /3 /3 4/ x = /3, x = P x = 9/6, x = P x = 9/3,... /3 7/ 9/8 oftewel (afgerond op twee decimalen) x =, 33, 33, 33 x 3 =, x =, 34, 9, 37, 33, 3, 35, x 4 =, x =, 34, 8, 38, 33, 3, 36, x 5 =,, 34, 8, 38 Hoewel er bij deze nauwkeurigheid (twee decimalen) geen verandering meer lijkt op te treden is hiermee de evenwichtstoestand nog niet bereikt. Ook in dit geval is de evenwichtstoestand gelijk aan q = 7/ 5/ 8/ 7/ /4 /5, 35, 5, 4 Als we het proces verder doorvoeren, dan vinden we bij deze nauwkerigheid (twee decimalen) uiteindelijk :, 35 x =, 6,, 35 x 3 =, 5,, 35 x 4 =, 5, 4, 4, 4 6

7 Als we uitgaan van de verdeling x = x = P x =, 35, 5, 4, 35, 5, 4, x = P x =, dan vinden we (uiteraard) :, 35, 5, 4, x 3 = P x =, 35, 5, 4 Bij deze verdeling blijft het aantal auto s bij elke vestiging dus constant (evenwichtstoestand). Als de resultaten van het onderzoek (dat de genoemde percentages heeft opgeleverd) betrouwbaar is, dan lijkt het dus handig om de auto s op deze manier over de drie verschillende vestigingen te verdelen. Als het bedrijf beschikt over auto s, dan zet men er dus 35 bij de vestiging in de binnenstad, 5 bij de vestiging op het industrieterrein en 4 bij de vestiging op het vliegveld. Er is nog een andere manier om tegen zo n Markov-keten aan te kijken. Als x k+ = P x k voor k =,,,..., dan geldt dus x = P x, x = P x = P (P x ) = P x, x 3 = P x = P (P x ) = P 3 x,... oftewel x k = P k x voor k =,,,.... Definitie 7. Een stochastische matrix (of Markov-matrix) P heet regulier als P k voor zekere k {,, 3,...} alleen positieve elementen (dus geen nullen) heeft. Dan geldt : Stelling 4. Als P een reguliere stochastische (of Markov-matrix) is, dan heeft P een unieke evenwichtstoestandsvector q (dus q = P q). Verder geldt dat de Markov-keten {x k } k= gedefinieerd door x k+ = P x k met k =,,,... voor iedere startvector x convergeert naar die (unieke) evenwichtstoestandsvector q. Het bewijs van deze stelling laten we buiten beschouwing. In voorbeeld 3 is de matrix P duidelijk regulier, want P = P heeft alleen positieve elementen. De Markov-keten in voorbeeld 3 convergeert dus naar de unieke evenwichtstoestandsvector q. Voorbeeld 4. De stochastische matrix P = P = / /4 /4 / /4 3/4 / / /4 /4 / /4 3/4 / / /4 /4 / /4 3/4 / is regulier, want : 3/8 5/6 5/6 /4 5/6 /4 3/8 3/8 7/6 In de matrix P zijn twee elementen gelijk aan nul, maar in de matrix P zijn alle elementen positief. De matrix P is dus regulier. 7

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1. Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector Les 3 Matrix product We hebben gezien hoe we matrices kunnen gebruiken om lineaire afbeeldingen te beschrijven. Om het beeld van een vector onder een afbeelding te bepalen hebben we al een soort product

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A. TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0

Nadere informatie

1. Vectoren in R n. y-as

1. Vectoren in R n. y-as 1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale

Nadere informatie

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( ) Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten: Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+1 = j X n = i, X n 1,...,

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Modellen en Simulatie Lesliematrices Markovketens

Modellen en Simulatie Lesliematrices Markovketens Utrecht, 6 april 3 Modellen en Simulatie Lesliematrices Markovketens Program Meerdere leeftijdsklassen Leslie matrices Eigenwaarden en eigenvectoren Dominante eigenvector Irreducibele, a-periodieke matrices

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn

Nadere informatie

INLEIDING. Definitie Stochastisch Proces:

INLEIDING. Definitie Stochastisch Proces: Definitie Stochastisch Proces: INLEIDING Verzameling van stochastische variabelen die het gedrag in de tijd beschrijven van een systeem dat onderhevig is aan toeval. Tijdparameter: discreet: {X n, n 0};

Nadere informatie

Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte

Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte Lineaire algebra en kegelsneden Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk Reële vectorruimten. De reële vectorruimte van de reële n-tallen Definitie Een reëel

Nadere informatie

Studiehandleiding. Lineaire Algebra 1. voor. Maritieme Techniek. wi1313mt. Dr. R. Koekoek. gebouw ITS, kamer HB tel (tst.

Studiehandleiding. Lineaire Algebra 1. voor. Maritieme Techniek. wi1313mt. Dr. R. Koekoek. gebouw ITS, kamer HB tel (tst. Studiehandleiding Lineaire Algebra 1 voor Maritieme Techniek wi1313mt Dr. R. Koekoek gebouw ITS, kamer HB 04.300 tel. 015-2787218 (tst. 87218) e-mail : R.Koekoek@ITS.TUDelft.NL website : http://aw.twi.tudelft.nl/

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Lineaire Algebra (2DD12) Laatste nieuws in 2012

Lineaire Algebra (2DD12) Laatste nieuws in 2012 Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer Samenvatting Lineaire Algebra 1 - Collegejaar 2013-2014 Dictaat met verwijzing naar het boek Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst

Nadere informatie

Linalg.nb 1. Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes!

Linalg.nb 1. Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes! Linalg.nb Lineaire Algebra Andr Heck AMSTEL Instituut, Universiteit van Amsterdam Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes! Å Introductie

Nadere informatie

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1.

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. LIMIETGEDRAG VAN REDUCIBELE MARKOV KETEN In het voorgaande hebben we gezien hoe we de limietverdeling van een irreducibele, aperiodieke Markov keten kunnen berekenen: Voorbeeld 1: Zoek de unieke oplossing

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

3. Structuren in de taal

3. Structuren in de taal 3. Structuren in de taal In dit hoofdstuk behandelen we de belangrijkst econtrolestructuren die in de algoritmiek gebruikt worden. Dit zijn o.a. de opeenvolging, selectie en lussen (herhaling). Vóór we

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten:

P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: Voorbeeld: Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. P = 0 1/4

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 9 september 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 september 2015 1 / 23 Huiswerk Huiswerk 1 is beschikbaar op

Nadere informatie

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud college 6 en lineaire collegejaar college build slides Vandaag : : : : 6-7 6 9 juni 27 3 2 3 van een matrix Toepassing: oppervlakte en inhoud.6-7[6] vandaag van de 2 2-matrix a b c d is gelijk aan ad bc.

Nadere informatie

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen.

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen. college 4 collegejaar college build slides Vandaag : : : : 16-17 4 29 maart 217 38 1 2 3.16-17[4] 1 vandaag Vectoren De notatie (x 1, x 2,..., x n ) wordt gebruikt voor het punt P met coördinaten (x 1,

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

2. Transformaties en matrices

2. Transformaties en matrices Transformaties en matrices Lineaire afbeelding Onder een lineaire afbeelding van R n naar R m verstaan we een functie A die aan iedere vector uit R n een vector uit R m toevoegt en van het volgende type

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

3 De duale vectorruimte

3 De duale vectorruimte 3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire

Nadere informatie

Vectorruimten en lineaire afbeeldingen tussen vectorruimten

Vectorruimten en lineaire afbeeldingen tussen vectorruimten Hoofdstuk 3 Vectorruimten en lineaire afbeeldingen tussen vectorruimten 3.1 Vectorruimte : definitie en voorbeelden R DEFINITIE 3.1 vectorruimte Een vectorruimte of lineaire ruimte over een veld F is een

Nadere informatie

College WisCKI. Albert Visser. 28 november, Department of Philosophy, Faculty Humanities, Utrecht University. Lijn, Vlak, etc.

College WisCKI. Albert Visser. 28 november, Department of Philosophy, Faculty Humanities, Utrecht University. Lijn, Vlak, etc. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 28 november, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Vectorvoorstelling Lijn: x = b + λa. b is steunvector

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen.

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. voorraadmodel: voorraadkosten personeelsplanningmodel: salariskosten machineonderhoudsmodel: reparatiekosten

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

2: Laat en twee convexe verzamelingen zijn. Laat. Er geldt. Omdat convex is, is de gehele lijn bevat in, dus. Evenzo geldt. Hieruit volgt dat.

2: Laat en twee convexe verzamelingen zijn. Laat. Er geldt. Omdat convex is, is de gehele lijn bevat in, dus. Evenzo geldt. Hieruit volgt dat. CONVEXE MEETKUNDE Pelle Wielinga & Han van der Ven 1. Convexe meetkunde Convexe meetkunde is een tak van de meetkunde die zich bezighoudt met convexe verzamelingen. In de Euclidische ruimte wordt een object

Nadere informatie

0.97 0.03 0 0 0.008 0.982 0.01 0 0.02 0 0.975 0.005 0.01 0 0 0.99

0.97 0.03 0 0 0.008 0.982 0.01 0 0.02 0 0.975 0.005 0.01 0 0 0.99 COHORTE MODELLEN Markov ketens worden vaak gebruikt bij de bestudering van een groep van personen of objecten. We spreken dan meestal over Cohorte modellen. Een voorbeeld van zo n situatie is het personeelsplanning

Nadere informatie

Optelling en scalaire vermenigvuldiging zijn weer plaatsgewijs gedefinieerd, bijvoorbeeld: 7 (x 1, x 2, x 3,...)

Optelling en scalaire vermenigvuldiging zijn weer plaatsgewijs gedefinieerd, bijvoorbeeld: 7 (x 1, x 2, x 3,...) 5. Lineaire ruimten Tot nu toe hebben we ons uitsluitend met de R n bezig gehouden. We gaan de behandelde theorie nu uitbreiden tot verzamelingen die een sterke overeenkomst met een R n vertonen. Een dergelijke

Nadere informatie

Lineaire Algebra. Samenvatting. De Roover Robin

Lineaire Algebra. Samenvatting. De Roover Robin Lineaire Algebra Samenvatting De Roover Robin 21-211 Deze samenvatting is een overzicht van alle definities, stellingen, lemma's en proposities met hun bijhorende bewijzen. Deze samenvatting is gebaseerd

Nadere informatie

Studiewijzer Lineaire Algebra voor ST (2DS06), blok D, januari 2009

Studiewijzer Lineaire Algebra voor ST (2DS06), blok D, januari 2009 Studiewijzer Lineaire Algebra voor ST (2DS06), blok D, januari 2009 1 Algemeen 1.1 Docenten De cursus wordt gegeven door Judith Keijsper (Dr. J.C.M. Keijsper, HG 9.31, tel 5583, email J.C.M.Keijsper(AT)tue(DOT)nl).

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/28 Elektrotechniek, Wiskunde en Informatica EWI x.k C 1/ D Ax.k/ C Bu.k/; y.k/ D Cx.k/ C Du.k/ We

Nadere informatie

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel C Lineaire Algebra Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Seymour Lipschutz, Marc L. Lipson: (Schaum s Outline of Theory and Problems of) Linear Algebra. McGraw-Hill Companies,

Nadere informatie

Matrices en Grafen (wi1110ee)

Matrices en Grafen (wi1110ee) Matrices en Grafen (wi1110ee) Electrical Engineering TUDelft September 1, 2010 September 1, 2010 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http:

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. HET POISSON PROCES In veel praktische toepassingen kan het aaankomstproces van personen, orders,..., gemodelleerd worden door een zogenaamd Poisson proces. Definitie van een Poisson proces: Een Poisson

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 2 Lineaire afbeeldingen 21 Inleiding Een afbeelding f van een verzameling V naar een verzameling W is een regel die aan ieder element v van V een element f(v) van W toevoegt maw een generalisatie

Nadere informatie

6. Lineaire operatoren

6. Lineaire operatoren 6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

1 Rekenen in eindige precisie

1 Rekenen in eindige precisie Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen

Nadere informatie