Modellen en Simulatie Recursies

Maat: px
Weergave met pagina beginnen:

Download "Modellen en Simulatie Recursies"

Transcriptie

1 Utrecht, 3 mei 3 Modellen en Simulatie Recursies Program Management voorbeeld (affien) Economisch voorbeeld (affien) Rupsen-wespen (niet lineair) Niet-lineaire modellen, evenwicht, stabiliteit Gerard Sleijpen Department of Mathematics Lineairiseren Companion vorm Complex als -d reeel Hoefijzer van Smale sleij/ Economisch model I Economisch model II In n-de jaar C n : totale consumptie I n : totaal aan investeringen Y n = C n + I n : nationaal inkomen Aanname [Keynes 936]: Consumptie hangt lineair af van het nationaal inkomen van vorig jaar Investeringen veranderen niet Model: C n = k Y n + C & I n = I voor zekere positieve (bekende) k, C en I Dan Y n = k Y n + C + I α evenwichtspunt α = k α + C + I α = C + I k Positief evenwicht k < stabiel evenwicht (Y n = α + ε n ε n = kε n ) Schommelingen in de conjunctuur? Aanname [Samuelson & Hicks 939]: Consumptie hangt lineair af van het nationaal inkomen van het vorig jaar Investeringen hangen lineair af van de groei van het nationaal inkomen Model: C n = k Y n + C & I n = d (Y n Y n ) + I voor zekere positieve (bekende) k, C en d, I Y n = k Y n + C + d(y n Y n ) + I =(k + d)y n d Y n + C + I α evenwicht α = (k + d)α d α + C + I α = C + I k Positief evenwicht k < Stabiel?? Y n α als Y α en Y α??

2 Economisch model; Analyse Er geldt (companion vorm) Yn k + d d Yn = Y n Y n Met A= [ k + d d ], c=[ C + I ] + [ C + I, x n = ] x (n) x (n) geldt α α α x n = Ax n + c alle n evenwicht (x = α x = x = ) α = α = (C + I )/( k) Stabiel als x n α (n ) voor x α Y n =x (n ) ( n) Y n =x (n) ( n) Als x n = α + ε n dan Y = x () Y = x () & x n = Ax n + c alle n ε n = A ε n Stelling Stabiel ε n (n ) voor ε λ < alle eigenwaarden λ van A λ, λ eigenwaarden A zodat λ λ Evenwicht is stabiel λ < Met Y n = α + ε n is ε n = ε (n) = e T ε n Voorbeeld Karakteristieke vergelijking A: det(λi A) = λ (k + d) λ + d = Reële oplossing 4d (k + d) k > Stel reële oplossing Dan: λ > k > Stel irreële oplossing Dan: λ < d < 5 faseplot: n > (Y n,y n ) λ < λ (λ dominant) ε n γ λ n : Evenwicht herstelt als λ < (Herstel is monotoon als λ > ) λ = λ = ρ e iφ R Hier ρ λ ε n = ρ n (γ cos(n φ) + γ sin(n φ)): Slingerende herstel van het evenwicht als λ < k =, d = 7, C = 8/9, I = /9

3 Voorbeeld Karakteristieke vergelijking A: det(λi A) = λ (k + d) λ + d = Reële oplossing 4d (k + d) k > Stel reële oplossing Dan: λ > k > Stel irreële oplossing Dan: λ < d < Y n en C n Economisch model, k=, d=7, C= nationaal inkomen Y n Consumptie C n In jaar n: Model: Sluipwespen & Rupsen r n het aantal rupsen, w n het aantal sluipwespen Aanname: groeicoëfficiënt rupsen neemt lineair af bij groeiend aantal rupsen en wespen, groeicoëfficiënt wespen neemt lineair toe bij groeiend aantal rupsen rn+ = (a r n /R w n /W) r n, w n+ = γ r n w n, voor zekere positieve constanten a, γ, R en W Schaal: x n r n /R, y n w n /W levert xn+ = (a x n y n ) x n, y n+ = b x n y n n k =, d = 7, C = 8/9, I = /9 Is er evenwicht? Is dat stabiel? Hoe ontwikkelt de oplossing zich? Niet-lineaire modellen xn+ = f(x n, y n ) 5 x n+ =f(x n ), y n+ =g(x n ) met f(x,y)=(335 x y)*x, g(x,y)=*x*y faseplot n (x n ) of y n+ = g(x n, y n ) xn+ x n+ = f(x y n ) n+ f(xn, y n ) g(x n, y n ) 5 Evenwicht als xn = x n = = x = α, y n = y n = = y = β y n (α, β) evenwicht α = f(α, β) & β = g(α, β) 5 Evenwicht (α, β) is stabiel als x n α & y n β (n ) voor alle x α & y β en x α & y β x n α & y n β alle n x n

4 3 x n+ =f(x n ), y n+ =g(x n ) met f(x,y)=(335 x y)*x, g(x,y)=*x*y rupsen wespen Linearizeren 5 f(α + ε) f(α) + ε f (α) voor ε x n (rupsen), y n (wespen) 5 5 -dimensionaal: ε, δ f(α + ε, β + δ) f(α, β) + ε f f (α, β) + δ (α, β) x y n Linearizeren rond evenwicht Stel (α, β) evenwicht, α Als xn = α + ε n y n = β + δ n α β oplossing met εn δ n Lineariseren en stabiliteit Stelling α evenwichtsoplossing λ eigenwaarde Df( α) Evenwicht stabiel λ < alle λ Evenwicht instabiel λ > zekere λ f εn+ εn x D, met D Df( α) = δ n+ δ n g x de Jacobi matrix of totale afgeleide van f (α, β) f y (α, β) g y (α, β), (α, β) Geen conclusie als λ alle λ & λ = zekere λ! Stelling ook goed in meer dan dimensies εn+ εn = D δ n+ δ n xn α + ε n y n β + δ n opl mits εn δ n

5 Stabiliteit evenwichten -d (reëel) Stabiliteit evenwichten -d (reëel) xn+ xn = A y n+ y n met A = a a x, a ij, a a y reëel xn+ xn = A y n+ y n met A = a a x, a ij, a a y reëel A met eigenwaarden λ en λ, λ λ det(a λi) = (a λ)(a λ) a a = λ (a + a ) λ + (a a a a ) = λ s λ + d met d det(a) a a a a s spoor(a) a + a λ s λ + d = (λ λ )(λ λ ) s = λ + λ en d = λ λ A met eigenwaarden λ en λ, λ λ d a a a a = det(a) = λ λ s a + a = spoor(a) = λ + λ 4d s λ, λ R Stabiel: s + d > en + s + d > < λ λ < 4d > s λ, λ R, λ = λ Stabiel: d = λ : λ = λ < d < Bewering Stabiel als s < d < Instabiel als s > d of d > 3 Stabiliteit evenwichten in d d 4d=s s Horizontaal: s=spoor Verticaal: d=det

6 Voorbeeld xn+ = (a x n y n ) x n, y n+ = b x n y n, met a, b Lineariseer rond (α, β): εn+ a α β α εn = δ n+ b β b α δ n Evenwicht (): εn+ a εn = δ n+ δ n Evenwicht (): εn+ a a εn = δ n+ b(a ) δ n Evenwicht (3): εn+ = b ] b [ εn δ n+ b(a ) δ n Evenwicht () is stabiel a < Evenwicht () is stabiel <a<3 & a< + b Evenwicht (3) is stabiel max( 3 b 3, + b )<a<+ b Wat als a>+ b? N n aantal individuen eind maand n Aanname: Alleen individuen ouder dan maand produceren nakomelingen Productie is met vaste groeicoëfficiënt, Sterfte hangt lineair af van het totaal aantal individuen Model: Voor zekere g > N n+ = ( κ N n N ) N n + g( κ N n N ) N n Na schaling x n N n /N: x n+ = ( κ x n ) x n + g( κ x n ) x n of equivalent hiermee (companion vorm) xn+ = x n κ x n + g(y n κ y n), y n+ = x n (dwz y = x y n+ = x n ) Voor c C, bekijk Complex als -d reëel z n+ = F(z n ) met F(z) z + c (z C) Voor z C, schrijf z = x+iy met x, y R Evenzo c = a+ib Dan F(x + iy) = (x y + a) + i(xy + b) Schrijf z n = x n + iy n Dan x n+ = f(x n, y n ) x n y n + a y n+ = g(x n, y n ) x n y n + b x y Stabiliteit Jacobi matrix in (x, y): y x met eigenwaarden λ = (x + iy) en λ = (x iy) Met z = x + iy is λ = λ = z = F (z) Evenwicht (in C) in ζ ( + 4c) Stabiel als ζ < Voorbeeld Kies c C Definieer F(z) z + c (z C) Voor iedere rij (z n ) met z n+ = F(z n ) zijn er drie mogelijkheden: ) z n α (n ) met α evenwicht: α = F(α) ) z n (n ) 3) anders (chaos, periodieke banen) Julia set: z C (z n ) heeft eigenschap 3)} Kies c = 5 Kleur z C met kleur afhankelijk van gedrag (z n ) voor n Kies z = Kleur c C met kleur afhankelijk van gedrag (z n ) voor n Kleurnuances corresponderen met waarde n waarvoor z n α < 8 of z n > 8

7 Chaos f : I I Cantor verzameling Een iteratief proces x n+ = f(x n ) is chaotisch (op I) als ) er voor iedere x I kleine verstoringen zijn die op den duur tot grote afwijkingen leiden, ) er in de buurt van iedere x I een x I te vinden is waarvoor de baan (x n ) periodiek is, 3) er een baan (x n ) te vinden is in I die voor iedere x I willekeurig dicht in de buurt van x komt Voorbeeld z n+ = F(z n ) met F(z) z (z C), a i 3 i i= met a i,} a i i i= met a i,} z < z n (n ) 5 z > z n (n ) z = Schrijf z n = e πiφ n voor een φ n [,) z n+ = z n φ n+ = φ n mod: 5 Chaos op z C z = } Is chaos zichtbaar hier? Cantor verzameling D a i 3 i a i,} i= Itereren op de Cantor verzameling x n+ = x n mod op [,] is equivalent met (binair) a j j a j+ j j= j= Verplaats dit proces naar D: a j 3 j j= Zo correspondeert x = a j+ 3 j ) j= = op D met Conclusie Proces ) is chaotisch op de Cantor verzameling x n+ = f(x n ) op R op C met F(z) = z 3 (z C) Wat gebeurt er met de bovenste helft van de eenheidscirkel? f (V) V D V f φ 3φ mod F beeldt de eenheidscirkel af binnen deze cirkel Voor de uitleg hebben we echter in de rechter tekening V z z = + ε,im(z) } genomen a j 3 j a j+ 3 j j= j= D e π i φ e π i3φ f(v)

8 x n+ = f(x n ) x n+ = f(x n ) op R op C met F(z) = z 3 (z C) Definieer de keten van verzamelingen V n door V n+ f (V n ) f(v n ) V n Met D V n n= f(d) = D Chaos op D in vorige voorbeeld Is deze constructie algemener toepasbaar? Wanneer werkt hij? geldt is een stabiel evenwicht Andere evenwichten? (z n ) convergeert naar als z < (z n ) convergeert naar (divergeert) als z > Chaotisch gedrag voor z = Varianten x n+ = f(x n ) op R op C met F(z) = z (z C) F(z) z + c voor zekere c Julia set F(z) = F(r e π i φ ) r e π iφ F(z) = F(r e π i φ ) ( r + 8 φ ) 3 9 e3π i φ (r [, ), φ ) Actie F op z C z,re(z) } is samendrukken, uitrekken, oprollen (Plaatjes op de volgende transparanten voor deze iteratie) x n+ = f(x n ) Definieer de keten van verzamelingen V n door V n+ f (V n ) f(v n ) V n Met D n= V n f(d) = D geldt Conclusie Als f(v) in twee parallele stroken V doorsnijdt, en als l een lijn is in V en f(l) als een hoefijzer om l ligt, dan is er een Cantor achtige deelverzameling D van V met en f(d) = D het proces x n+ = f(x n ) is chaotisch op D

Modellen en Simulatie Recursies

Modellen en Simulatie Recursies Utrecht, 13 mei 2013 Modellen en Simulatie Recursies Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ N n : aantal individuen eind tijdvak n. Aanname [Malthus, 1798]:

Nadere informatie

Modellen en Simulatie Populatiegroei

Modellen en Simulatie Populatiegroei Utrecht, 26 april 213 Modellen en Simulatie Populatiegroei Program Populatie groei van één soort, recursies Evenwichtspunten Periodieke banen Bifurcatie Chaos Catastrofe Gerard Sleijpen Department of Mathematics

Nadere informatie

Modellen en Simulatie Stelsels Dvg

Modellen en Simulatie Stelsels Dvg Utrecht, juni 3 Modellen en Simulatie Stelsels Dvg Continu versus discreet: Lineaire modellen Continu model. x (t) = Ax(t). Als geen eigenwaarde van A: opl. x(t) in evenwicht x(t) = alle t stabiel evenwicht

Nadere informatie

Modellen en Simulatie Stelsels Dvg

Modellen en Simulatie Stelsels Dvg Utrecht, 10 juni 2013 Modellen en Simulatie Stelsels Dvg Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ Continu versus discreet: Lineaire modellen Continu model. x

Nadere informatie

Modellen en Simulatie Differentiaalvergelijkingen. Modellen en Simulatie. sleij101/ Program.

Modellen en Simulatie Differentiaalvergelijkingen. Modellen en Simulatie.   sleij101/ Program. Utrecht, 29 mei 2013 Utrecht, 29 mei 2013 Modellen en Simulatie Modellen en Simulatie Differentiaalvergelijkingen Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ Gerard

Nadere informatie

Modellen en Simulatie Lesliematrices Markovketens

Modellen en Simulatie Lesliematrices Markovketens Utrecht, 6 april 3 Modellen en Simulatie Lesliematrices Markovketens Program Meerdere leeftijdsklassen Leslie matrices Eigenwaarden en eigenvectoren Dominante eigenvector Irreducibele, a-periodieke matrices

Nadere informatie

Tentamen Modellen en Simulatie (WISB134)

Tentamen Modellen en Simulatie (WISB134) Tentamen Modellen en Simulatie (WISB4) Vrijdag, 7 april 5, :-6:, Educatorium Gamma Zaal Schrijf op elk vel dat je inlevert je naam en op het eerste vel je studentnummer en het totaal aantal ingeleverde

Nadere informatie

WISB134 Modellen & Simulatie. Lecture 11 - Dynamica van lineaire differentiaalvergelijkingen in twee dimensies

WISB134 Modellen & Simulatie. Lecture 11 - Dynamica van lineaire differentiaalvergelijkingen in twee dimensies WISB134 Modellen & Simulatie Lecture 11 - Dynamica van lineaire differentiaalvergelijkingen in twee dimensies Overzicht van ModSim Meeste aandacht (t/m 1 apr.) Basisbegrippen dynamische modellen Definities

Nadere informatie

WISB134 Modellen & Simulatie. Lecture 5 - Scalaire recursies (deel 2)

WISB134 Modellen & Simulatie. Lecture 5 - Scalaire recursies (deel 2) WISB134 Modellen & Simulatie Lecture 5 - Scalaire recursies (deel 2) Overzicht van ModSim Meeste aandacht (t/m 1 apr.) Basisbegrippen dynamische modellen Definities recursies, DVs, numerieke methoden Oplossingen

Nadere informatie

Tentamen Modellen en Simulatie (WISB134)

Tentamen Modellen en Simulatie (WISB134) Tentamen Modellen en Simulatie (WISB) Maandag, juli 0, 9:00-:00, Educatorium Gamma Zaal Schrijf op elk vel dat je inlevert je naam en op het eerste vel je studentnummer en het totaal aantal ingeleverde

Nadere informatie

f : z z 2 + c. x n = 1 2 z n dan krijgen we z n+1 = z 2 n + a 2 a2 4 De parameter c correspondeert dus met a middels c = a 2 a2 4

f : z z 2 + c. x n = 1 2 z n dan krijgen we z n+1 = z 2 n + a 2 a2 4 De parameter c correspondeert dus met a middels c = a 2 a2 4 Juliaverzamelingen en de Mandelbrotverzameling In de eerste twee colleges hebben we gezien hoe het itereren van een eenvoudige afbeelding tot ingewikkelde verschijnselen leidt. Nu gaan we dit soort afbeeldingen

Nadere informatie

extra sommen bij Numerieke lineaire algebra

extra sommen bij Numerieke lineaire algebra extra sommen bij Numerieke lineaire algebra 31 oktober 2012 1. Stel, we willen met een rekenapparaat (dat arithmetische bewerkingen uitvoert met een relatieve nauwkeurigheid ξ, ξ ξ) voor twee getallen

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Complexe functies 2019

Complexe functies 2019 Complexe functies 019 Extra opgaves Opgave A Laat zien dat R voorzien van de bewerkingen a + b := (a 1 +b 1,a +b ) a b := (a 1 b 1 a b,a 1 b +a b 1 ) isomorf is met C. Wat is i in deze representatie? Opgave

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een

Nadere informatie

maplev 2010/9/8 17:01 page 349 #351

maplev 2010/9/8 17:01 page 349 #351 maplev 00/9/8 7:0 page 49 5 Module Stabiliteit van evenwichten Onderwerp Voorkennis Expressies Bibliotheken Zie ook Stabiliteit van evenwichten van gewone differentiaalvergelijkingen. Gewone differentiaalvergelijkingen

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Tentamen Modellen en Simulatie (WISB134)

Tentamen Modellen en Simulatie (WISB134) Tentamen Modellen en Simulatie (WISB34) Woensdag, 7 juni 0, 3:30-6:30, Educatorium, Beta Zaal Schrijf op elk vel dat je inlevert je naam en op het eerste vel je studentnummer en het totaal aantal ingeleverde

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

Tentamen Modellen en Simulatie (WISB134)

Tentamen Modellen en Simulatie (WISB134) Tentamen Modellen en Simulatie (WISB) Vrijdag, 7 april 9, 9:-:, Ruppert Gebouw, Blauwe Zaal Schrijf op elk vel dat je inlevert je naam en op het eerste vel je studentnummer en het totaal aantal ingeleverde

Nadere informatie

Iterative methoden voor lineaire vergelijkingen. Scientific Computing. sleij101/ Program

Iterative methoden voor lineaire vergelijkingen. Scientific Computing.   sleij101/ Program WISB356, Utrecht, 2 otober 2012 Scientific Computing WISB356, Utrecht, 2 otober 2012 Iterative methoden voor lineaire vergelijingen Gerard Sleijpen Rob Bisseling Alessandro Sbrizzi Department of Mathematics

Nadere informatie

Beeldverwerking. Scientific Computing. sleij101/ Program. WISB356, Utrecht, najaar WISB356, Utrecht, najaar 2010

Beeldverwerking. Scientific Computing.   sleij101/ Program. WISB356, Utrecht, najaar WISB356, Utrecht, najaar 2010 WISB36, Utrecht, najaar Scientific Computing WISB36, Utrecht, najaar Beeldverwerking Gerard Sleijpen Rob Bisseling Department of Mathematics Gerard Sleijpen Rob Bisseling Department of Mathematics http://wwwstaffscienceuunl/

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur Examen GO7D Wiskunde II (6sp maandag juni 3, 8:3-:3 uur Bachelor Biochemie & Biotechnologie Bachelor hemie, Bachelor Geologie Schakelprogramma Master Biochemie & Biotechnologie en Schakelprogramma Master

Nadere informatie

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B = Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 215 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan. Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Eigenwaarden en Diagonaliseerbaarheid

Eigenwaarden en Diagonaliseerbaarheid Hoofdstuk 3 Eigenwaarden en Diagonaliseerbaarheid 31 Diagonaliseerbaarheid Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L Habets HG 809, Tel: 040-2474230, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y650 1 Herhaling: Oplossing homogene DV ẋ = Ax Aanname: A is diagonaliseerbaar

Nadere informatie

Examen Complexe Analyse (September 2008)

Examen Complexe Analyse (September 2008) Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst

Nadere informatie

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica Examen GO7E Wiskunde II (3sp maandag juni 3, 8:3-:3 uur Bachelor Geografie en Bachelor Informatica Auditorium De Molen: A D Auditorium MTM3: E-Se Auditorium MTM39: Sh-Z Naam: Studierichting: Naam assistent:

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, maandag K. P. Hart Faculteit EWI TU Delft Delft, 30 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 33 Outline 1 2 Algemeenheden Gedrag op de rand Machtreeksen

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Computerized Tomography: The ART of inspection

Computerized Tomography: The ART of inspection Utrecht, caleidoscoop, 24 april, 212 Computerized Tomography: The ART of inspection Program Wat is tomografie? Zuiver wiskundige aanpak Praktische aanpak Praktische complicaties Gerard Sleijpen Department

Nadere informatie

n=0 en ( f(y n ) ) ) n=0 equivalente rijen zijn.

n=0 en ( f(y n ) ) ) n=0 equivalente rijen zijn. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 8 juli 2011, 14.00 17.00 Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek Analysis I. Geef

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.4, maandag K. P. Hart Faculteit EWI TU Delft Delft, 9 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 40 Outline 1 f : [a, b] C f : C C Primitieven 2 K.

Nadere informatie

Examen Complexe Analyse vrijdag 20 juni 2014, 14:00 18:00 uur Auditorium De Molen. Het examen bestaat uit 4 schriftelijke vragen.

Examen Complexe Analyse vrijdag 20 juni 2014, 14:00 18:00 uur Auditorium De Molen. Het examen bestaat uit 4 schriftelijke vragen. Examen Complexe Analyse vrijdag 0 juni 04, 4:00 8:00 uur Auditorium De Molen Naam: Studierichting: Het examen bestaat uit 4 schriftelijke vragen. Elke vraag telt even zwaar mee. Het boek Visual Complex

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B = Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 2015 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt

Nadere informatie

Routh s stabiliteitscriterium voor convexe stabiliteitsgebieden (Engelse titel: Routh s stability criterion for convex stability regions)

Routh s stabiliteitscriterium voor convexe stabiliteitsgebieden (Engelse titel: Routh s stability criterion for convex stability regions) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Routh s stabiliteitscriterium voor convexe stabiliteitsgebieden (Engelse titel: Routh

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van

Nadere informatie

b) Niet geldig. Zij π(n)(p) = 1 als n is even, anders π(n)(p) = 0. Schrijf

b) Niet geldig. Zij π(n)(p) = 1 als n is even, anders π(n)(p) = 0. Schrijf opgave 2.1 a) Geldig. Zij n N en π een willekeurige valuatie. Schrijf T = (N, π). Stel, T, n p. Dan bestaat m > n zodat T, m p. Dus voor k > m geldt altijd T, k p. Nu geldt T, n p, want voor alle x > n

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi2030wbmt 1 / 14 Niet-lineaire diff. vgl. en stabiliteit Niet-lineaire

Nadere informatie

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a

Nadere informatie

boek Getallen 2009, errata (8 oktober 2011)

boek Getallen 2009, errata (8 oktober 2011) boek Getallen 009, errata (8 oktober 0) De toren van Hanoi 6 0 van a naar b } van a naar b }. 8 6 en x / B } en x / B }. - zonodig zo nodig De natuurlijke getallen 3 - vermenigvuldigeing vermenigvuldiging

Nadere informatie

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 2 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 38 Outline 1 Rekenregels 2 K. P. Hart TW2040: Complexe

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002

Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002 Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002 1. We vatten {0, 1} op als het lichaam F 2. Een schuifregisterrij is een rij {s n } n=0 in F 2 gegeven door r startwaarden s

Nadere informatie

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

Toegepaste Wiskunde 2: Het Kalman-filter

Toegepaste Wiskunde 2: Het Kalman-filter Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer

Nadere informatie

Samenvatting. k 1 I = c i N i = c N, (1)

Samenvatting. k 1 I = c i N i = c N, (1) Samenvatting Dit proefschrift gaat over soorten waarvan de individuen zich slechts eenmaal in hun leven voortplanten en daarna sterven. Voorbeelden van zulke soorten zijn éénjarige en tweejarige planten,

Nadere informatie

Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door

Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.3, maandag K. P. Hart Faculteit EWI TU Delft Delft, 2 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 34 Outline 1 Conforme afbeeldingen 2 K. P. Hart TW2040:

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal

Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, 14.00 17.00, Examenzaal Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters

Nadere informatie

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Bij het vak Lineaire Algebra hebben we reeds kennis gemaakt met stelsels eerste orde lineaire differentiaalvergelijkingen We hebben

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Lebesgues overdekkingslemma en Cantors intersectiestelling voor Atsuji metrische ruimten

Lebesgues overdekkingslemma en Cantors intersectiestelling voor Atsuji metrische ruimten Faculteit Wetenschappen en Bio-Ingenieurswetenschappen Departement Wiskunde Lebesgues overdekkingslemma en Cantors intersectiestelling voor Atsuji metrische ruimten Proefschrift voor het behalen van de

Nadere informatie

Modellen en Simulatie Speltheorie

Modellen en Simulatie Speltheorie Utrecht, 20 juni 2012 Modellen en Simulatie Speltheorie Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ Program Optimaliseren Nul-som matrix spel Spel strategie Gemengde

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

Huiswerk Hints&Tips Analyse 2, College 26

Huiswerk Hints&Tips Analyse 2, College 26 Huiswerk Hints&Tips Analyse, College 6 [K..]. Tip : Toon aan dat er punten (x, y ) en (x, y ) en scalars m, M R bestaan zo dat m = f(x, y ) f(x, y) f(x, y ) = M. Laat dan zien dat m(b a)(d c) = m f M =

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.9, maandag K. P. Hart Faculteit EWI TU Delft Delft, 13 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 41 Outline III.6 The Residue Theorem 1 III.6 The

Nadere informatie

De vragen van vandaag. Hoeveel elementen? Hoeveel provincies? Hoeveel natuurlijke getallen? Non impeditus ab ulla scientia

De vragen van vandaag. Hoeveel elementen? Hoeveel provincies? Hoeveel natuurlijke getallen? Non impeditus ab ulla scientia De vragen van vandaag Hoeveel elementen? Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Hoeveel provincies heeft Nederland? Hoeveel natuurlijke getallen zijn er? Hoeveel reële getallen

Nadere informatie

WISB134. Modellen & Simulatie. Lecture 0 - Introductie & Voorkennis

WISB134. Modellen & Simulatie. Lecture 0 - Introductie & Voorkennis WISB134 Modellen & Simulatie Lecture 0 - Introductie & Voorkennis Praktijk Wiskundige Wat doet een wiskundige na de studie? Stellingen bewijzen? Boekhouden? Sudoku s oplossen? U.S. Bureau of Labor Statistics:

Nadere informatie

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer)

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

De Dekpuntstelling van Brouwer

De Dekpuntstelling van Brouwer De Dekpuntstelling van Brouwer Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Twente, 19 oktober 2009: 18:00 20:00 Outline 1 2 3 4 De formulering Dekpuntstelling van Brouwer Zij n een

Nadere informatie

Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30)

Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30) Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 016, 1:30 15:30 (16:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van aantekeningen

Nadere informatie

Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)!

Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)! Tentamen Analyse II. Najaar 6 (.1.7) Toelicting: Je mag Zoric deel I en II gebruiken, maar geen ander ulpmiddelen (zoals andere boeken, aantekeningen, rekenmacine etc.)! Als je bekende stellingen gebruikt

Nadere informatie

De stelling van Hahn en Mazurkiewicz

De stelling van Hahn en Mazurkiewicz Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica De stelling van Hahn en Mazurkiewicz Naam: Studentnummer: Studie: Begeleider: Datum: Lennaert Stronks 4062175 Wiskunde

Nadere informatie

Tentamen Modellen en Simulatie (WISB134)

Tentamen Modellen en Simulatie (WISB134) Tentamen Modellen en Simulatie (WISB4) Woensdag, april 24, :-:, Educatorium Gamma Zaal Schrijf op elk vel dat je inlevert je naam en op het eerste vel je studentnummer en het totaal aantal ingeleverde

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren

Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren a = (a 1,..., a s ) en b = (b 1,..., b s ). Toepassing van deze Cauchy Schwarz-ongelijkheid levert

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D2. Datum: dinsdag 29 april 28. Tijd: 14: 17:. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

De dynamica van een hertenpopulatie. Verslag 1 Modellen en Simulatie

De dynamica van een hertenpopulatie. Verslag 1 Modellen en Simulatie De dynamica van een hertenpopulatie Verslag Modellen en Simulatie 8 februari 04 Inleiding Om de groei van een populatie te beschrijven, kunnen vele verschillende modellen worden gebruikt, en welke meer

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D00. Datum: vrijdag 3 juni 008. Tijd: 09:00-:00. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie week 4.8, maandag Faculteit EWI TU Delft Delft, 6 juni, 2016 1 / 33 Outline 1 Maximum-modulusprincipe Lemma van Schwarz 2 2 / 33 Maximum-modulusprincipe Lemma van Schwarz Maximum-modulusprincipe Stelling

Nadere informatie

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n. Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Hoeveel elementen? Non impeditus ab ulla scientia. K. P. Hart. Faculteit EWI TU Delft. Leiden, 18 november 2009: 13:15 14:15

Hoeveel elementen? Non impeditus ab ulla scientia. K. P. Hart. Faculteit EWI TU Delft. Leiden, 18 november 2009: 13:15 14:15 Hoeveel elementen? Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Leiden, 18 november 2009: 13:15 14:15 De vragen van vandaag Hoeveel provincies heeft Nederland? Hoeveel natuurlijke getallen

Nadere informatie

Tentamen Numerieke Wiskunde (WISB251)

Tentamen Numerieke Wiskunde (WISB251) 1 Tentamen Numeriee Wisunde WISB51 Maa één opgave per vel en schrijf op ieder vel duidelij je naam en studentnummer. Laat duidelij zien hoe je aan de antwoorden omt. Onderstaande formules mag je zonder

Nadere informatie

VU University Amsterdam 2018, Maart 27

VU University Amsterdam 2018, Maart 27 Department of Mathematics Exam: Voortgezette biostatistiek VU University Amsterdam 2018, Maart 27 c Dept. of Mathematics, VU University Amsterdam NB. Geef een duidelijke toelichting bij de antwoorden.

Nadere informatie

Theoretische Biologie: 13 april Vraag 1: Dit zijn multiple choice vragen. Om-cirkel het meest correcte antwoord.

Theoretische Biologie: 13 april Vraag 1: Dit zijn multiple choice vragen. Om-cirkel het meest correcte antwoord. Theoretische Biologie: 13 april 2012 1 Naam: Collegekaartnummer: Vraag 1: Dit zijn multiple choice vragen. Om-cirkel het meest correcte antwoord. 1.1 Beschouw de functie: y = (a x 2 )(x b), a < b; Welke

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

3 Rijen en reeksen van functies

3 Rijen en reeksen van functies 3 Rijen en reeksen van functies 3.1 Uniforme convergentie van een rij functies Met het oog op latere toepassingen op machtreeksen en Fourierreeksen werken we in het vervolg steeds met complexwaardige functies.

Nadere informatie

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt).

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt). 76 Complexe eigenwaarden Ook dit hebben we reeds gezien bij Lineaire Algebra Zie: Lay, 57 Als xt ve rt een oplossing is van de homogene differentiaalvergelijking x t Axt, dan moet r een eigenwaarde van

Nadere informatie

Eigenwaarden en eigenvectoren in R n

Eigenwaarden en eigenvectoren in R n Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

(vi) Als u een stelling, eigenschap,... gebruikt, formuleer die dan, toon aan dat de voorwaarden vervuld zijn, maar bewijs die niet.

(vi) Als u een stelling, eigenschap,... gebruikt, formuleer die dan, toon aan dat de voorwaarden vervuld zijn, maar bewijs die niet. Examen Functieruimten - Deel theorie 15 januari 2016, 08:30 uur Naam en Voornaam: Lees eerst dit: (i) Naam en voornaam hierboven invullen. (ii) Nietje niet losmaken. (iii) Enkel deze bundel afgeven; geen

Nadere informatie