Formularium Wiskunde 1 ste graad
|
|
|
- Lodewijk Jacobs
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Kls: Nm: Formulrium Wiskunde 1 ste grd Vkwerkgroep Wiskunde T. I. SINT-LAURENS MARIA MIDDELARES Ptrongestrt Zelzte Tel. (09) Fx (09) Internet: E-mil: [email protected]
2 INHOUDSOPGAVE 1. GETALLENLEER Getllenverzmelingen De verzmeling vn de ntuurlijke getllen De verzmeling vn de gehele getllen De verzmeling vn de rtionle getllen Decimle vormen Deelverzmelingen Definitie vn een mcht Rekenregels Evenredigheid Vergelijkingen Vergelijkingen oplossen Oplossingsverzmeling vn een vergelijking noteren Merkwrdige producten MEETKUNDE Omtrek en oppervlkte vn vlkke figuren Oppervlkte vn ruimtefiguren Inhoud vn ruimtefiguren Lichmen met grond- en bovenvlk Lichmen met een grondvlk en eindigend op een spits Driehoeken Congruente driehoeken Congruentiekenmerken voor driehoeken Gelijkvormige driehoeken Gelijkvormigheidskenmerken voor driehoeken De stelling vn de middenprllel... 8
3 1. Getllenleer 1.1 Getllenverzmelingen De verzmeling vn de ntuurlijke getllen IN = { 0,1,,, 4,... } 1.1. De verzmeling vn de gehele getllen Een geheel getl is een ntuurlijk getl of zijn tegengestelde. = 0,1, 1,,,,,......, 4,,, 1,0,1,,,4,... Z { } = { } 1.1. De verzmeling vn de rtionle getllen Een rtionl getl is het quotiënt vn een geheel getl en een vn nul verschillend geheel getl. enb 0 b Elk rtionl getl kn geschreven worden ls een repeterende decimle vorm en omgekeerd. 1. Decimle vormen Vb: 0,75 0, , = = = = 0,15 8 Deciml getl 40 = 1, = 0, Zuiver repeterende decimle vorm (periode = 6) Gemengd repeterende decimle vorm (periode =, nietperiode = 1) 1. Deelverzmelingen IN 0 = { 1,,, 4,5,... } Z 0 = {...,,, 1,1,,,... } + Z = { 0,1,,, 4,5,6,... } - Z = { 0, 1,,, 4,... }
4 1.4 Definitie vn een mcht 1.5 Rekenregels en n IN \{ 0,1 }: n =.... metn fctoren n = = 1 b 1 = 1 = n n b = n n 1.6 Evenredigheid b, en xy, :. 0 = x y x+ y x : = = y x x x ( b. ) =. b x y x y x = b b x x c, : bd, 0 : = c d= bc b d Deze regel noemt men ook wel eens het kruisproduct. 4
5 1.7 Vergelijkingen Vergelijkingen oplossen 7 5( x ) = ( x+ 4) werk de hkjes weg 7 8 5x 15= x+ breng lle termen op de zelfde noemer 15x = x + lt de noemers weg 15x 45 = 7x+ 8 breng lle termen in x in het zelfde lid 15x 45 7x= 8 breng de termen zonder x in het ndere lid 15x 7x= x = 7 x = V = 8 werk beide leden uit deel beide leden door de coëfficiënt vn x schrijf de oplossingsverzmeling 1.7. Oplossingsverzmeling vn een vergelijking noteren x = V = { } 0x = 0 V = x x { } Identieke vergelijking 0x = 5 V = { } Vlse vergelijking 1.8 Merkwrdige producten Product vn toegevoegde tweetermen (+b).(-b) = ² - b² Het kwdrt vn de gelijke term min het kwdrt vn de verschillende term. Kwdrt vn een tweeterm (+b)² = ²+b+b² (-b)² = ²-b+b² Het kwdrt vn de eerste term vermeerderd met het dubbel product plus het kwdrt vn de tweede term. 5
6 . Meetkunde.1 Omtrek en oppervlkte vn vlkke figuren figuur Omtrek (p) Oppervlkte (A) Vierknt 4.z z.z=z² Rechthoek.(l+b) l.b Driehoek Som vn de zijden bh Prllellogrm.(b+sz) b.h Ruit 4.z Dd. Trpezium Som vn de zijden ( B + b) Regelmtige n-hoek z.n nz.. : pothem z: zijde n: ntl hoeken of zijden Cirkel.r.π = d.π π d π r = 4. Oppervlkte vn ruimtefiguren Mk de ontvouwing en bereken met de formule vn de oppervlkte vn de vlkke figuren de totle oppervlkte. Bijzondere gevllen: r : de strl s : de schuine hoogte Kegel: A = π..( r r+ s) Bol : A = 4π r 6
7 . Inhoud vn ruimtefiguren A : de oppervlkte vn het grondvlk h : de hoogte..1 Lichmen met grond- en bovenvlk Kubus, Blk, Cilinder en Prism: V = Ah... Lichmen met een grondvlk en eindigend op een spits Pirmide en Kegel: Bol V = A. h 4π r V =.4 Driehoeken.4.1 Congruente driehoeken Twee driehoeken zijn congruent ls de overeenkomstige hoeken even groot zijn en de overeenkomstige zijden even lng. ABC XYZ Aˆ = Xˆ en AB = XY Bˆ = Yˆ en BC = YZ Cˆ = Zˆ en AC = XZ.4. Congruentiekenmerken voor driehoeken ZZZ Twee driehoeken zijn congruent ls ze zijden gelijk hebben ZHZ Twee driehoeken zijn congruent ls ze zijden en de ingesloten hoek gelijk hebben HZH Twee driehoeken zijn congruent ls ze hoeken en de zijde die ertussen ligt, gelijk hebben RS90 Twee rechthoekige driehoeken zijn congruent ls ze de schuine zijde, één rechthoekszijde en de rechte hoek gelijk hebben. 7
8 .4. Gelijkvormige driehoeken Twee driehoeken zijn gelijkvormig ls de overeenkomstige zijden evenredig zijn en de overeenkomstige hoeken even groot. Aˆ = Xˆ ABC XYZ ˆ ˆ AB BC AC B= Y en = = = k XY YZ XZ Cˆ = Zˆ k is de gelijkvormigheidsfctor vn ABC tegenover XYZ.4.4. Gelijkvormigheidskenmerken voor driehoeken Z ZZ Z ZZ Z Z H Z Z HH Twee driehoeken zijn gelijkvormig ls de zijden vn de ene driehoek evenredig zijn met de zijden vn de tweede driehoek Twee driehoeken zijn gelijkvormig ls twee zijden vn de ene driehoek evenredig zijn met twee zijden vn de tweede driehoek en ls de ingesloten hoek gelijk is. Twee driehoeken zijn gelijkvormig ls hoeken vn de ene driehoek even groot zijn ls hoeken vn de tweede driehoek.4.5 De stelling vn de middenprllel Definitie: Een middenprllel is een lijnstuk dt de middens vn twee zijden vn de driehoek verbindt. Eigenschppen vn een middenprllel: - elke middenprllel is evenwijdig met de derde zijde - elke middenprllel is hlf zo lng ls de derde zijde versie 01/06/005 8
Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad
Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling
Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad
Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symbool optelling + ftrekking vermenigvuldiging deling
Overzicht eigenschappen en formules meetkunde
Overziht eigenshppen en formules meetkunde 1 iom s Rehten en hoeken 3 riehoeken 4 Vierhoeken Op de volgende ldzijden vind je de eigenshppen en formules die je in de eerste grd geleerd het en deze die in
INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5
INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE
Toetsopgaven vwo B deel 3 hoofdstuk 10
Toetsopgven vwo deel 3 hoofdstuk 10 Opgve 1 In de figuur hiernst zie je 15 kubusjes met ribbe. e punten,, en zijn hoekpunten vn een kubusje, punt is het midden vn een ribbe en de punten en delen een ribbe
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
Vlmse Wiskunde Olympide 99 993 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord
Hoofdstuk 2: Bewerkingen in R
Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen
INHOUDSTABEL. 1. TRANSFORMATIES (fiche 1) SYMMETRIE (fiche 2) MERKWAARDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6
INHOUDSTBEL 1. TRNSFORMTIES (fiche 1)...3 2. SYMMETRIE (fiche 2)...4 3. MERKWRDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6 4. VLKKE FIGUREN: DRIEHOEKEN (fiche 4)...7 5. VLKKE FIGUREN: BIJZONDERE VIERHOEKEN
Merkwaardige producten en ontbinden in factoren
6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm
Overzicht eigenschappen en formules meetkunde
Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules
Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I
Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,
1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.
Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord
Rekenregels van machten
4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf
Voorkennis meetkunde (tweede graad)
Voorkennis meetkunde (tweede graad) 1. Vlakke meetkunde Lengten van de zijden en grootte van de hoeken van driehoeken en vierhoeken - De som van de hoeken van een driehoek is 180 - Bij een rechthoekige
Cirkels en cilinders
5 irkels en cilinders it kun je l 1 middelpunt en strl in een cirkel nduiden 2 de oppervlkte vn vlkke figuren berekenen 3 het volume vn een prism berekenen Test jezelf Elke vrg heeft mr één juist ntwoord.
RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30
Breuken en hun decimle schrijfwijze Benmingen in een breuk Teller Noemer 3 TELLER (dit geeft het ntl gekleurde delen n) BREUKSTREEP NOEMER (dit geeft het totl ntl delen n) Breuk omzetten in deciml getl
Resultatenoverzicht wiskunde B
Resulttenoverzicht wiskunde B In dit document zijn door dpt Wiskunde lle resultten vn het VWO-eindexmenprogrmm beknopt smengevt m.u.v. het domein Voortgezette Meetkunde. Kijk voor meer informtie op: www.dptwiskunde.nl.
1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.
1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4
Rekenen in Ê. Module De optelling. Definitie
Module 1 Rekenen in Ê 1.1 De optelling Definitie Het resultt vn de optelling vn reële getllen en b noemen we de som vn en b en noteren we met +b. De getllen en b zelf noemen we de termen vn de som. Voorbeelden
Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig
Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.
Hoofdstuk 2 : Som Hoekgrootten van een veelhoek (boek pag 34)
- 39- Hoofdstuk 2 : Som Hoekgrootten van een veelhoek (boek pag 34) Som hoekgrootten van een driehoek ( boek pag 35) Stelling: Voor ABC geldt: A ˆ + Bˆ + Cˆ = 180 o Bewijs: Trek door het punt A een rechte
KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN
KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden
Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht
Hoofdstuk 1 : Hoeken -1 - Complementaire hoeken ( boek pag 7) Twee hoeken zijn complementair als... van hun hoekgrootten... is. Supplementaire hoeken ( boek pag 7) Twee hoeken noemen we supplementair als...
Parate kennis wiskunde
Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr
Hoofdstuk 5: Vergelijkingen van de
Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek
Eindexamen vwo wiskunde B II
Formules Vlkke meetkunde Verwijzingen nr definities en stellingen die bij een bewijs mogen worden gebruikt zonder ndere toelichting. Hoeken, lijnen en fstnden: gestrekte hoek, rechte hoek, overstnde hoeken,
Formulekaart VWO wiskunde B1 en B2
Formulekrt VWO wiskunde B en B2 De Formulekrt Wiskunde hvo/vwo is gepubliceerd in Uitleg, Gele Ktern nr. 2, CEVO- 98/257. Deze versie vn de Formulekrt is die officiële versie. Vierkntsvergelijking Als
de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1
H GONIOMETRIE VWO.0 INTRO 6 km : 0.000 = cm b b Driehoek PQB is gelijkvormig met driehoek VHB, de 00 vergrotingsfctor is 0 = 7. Dus PQ = 680 = 0, dus zeilt ze 0 meter 7 in minuten. Dt is,8 km/u.. HOOGTE
Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen
Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden
Voorbereidende opgaven Kerstvakantiecursus
Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt
Vlakke meetkunde. Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting.
Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande hoeken,
Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2
Lijnen en vlkken in Kls N en N Wiskunde perioden Kees Temme Versie . Coördinten in R³.... De vergelijking vn een vlk ().... De vectorvoorstelling vn een lijn.... De vectorvoorstelling vn een vlk... 8.
Parate kennis wiskunde
Prte kennis wiskunde (bij nvng vn het vierde middelbr) Sven Mettepenningen Dit document is bedoeld ls smenvtting vn wt ls prte kennis wordt ngenomen bij nvng vn het tweede jr vn de tweede grd ASO voor
2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c.
Wiskunde voor bchelor en mster Deel Bsiskennis en bsisvrdigheden c 05, Syntx Medi, Utrecht www.syntxmedi.nl Uitwerkingen hoofdstuk 0 0... Voor scherpe hoek α geldt:. sin α = 0,8 α = sin 0,8 = 5, d. cos
Hoofdstuk 3: De stelling van Pythagoras
Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We
Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.
Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:
is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b
1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls
Analyse. Lieve Houwaer Dany Vanbeveren
Anlyse Lieve Houwer Dny Vnbeveren . Relties, functies, fbeeldingen, bijecties Voor niet-ledige verzmelingen A en B noemen we elke deelverzmeling vn de productverzmeling A x B een reltie vn A nr B. We noemen
STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie
STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie Euclides van Alexandrië (ca. 265-200 v.chr.) Thales van Milete (ca. 624 v.chr. - 547 v.chr.) INHOUDSOPGAVE Algemene begrippen..blz. 1-3 - Stelling en bewijs
1 Vlaamse Wiskunde Olympiade : Tweede ronde
1 Vlmse Wiskunde Olympide 000-001: Tweede ronde De eerste ronde estt uit 0 meerkeuzevrgen Het quoteringssysteem werkt ls volgt: per goed ntwoord krijgt de deelnemer 5 punten, een lnco ntwoord ezorgt hem
Hoofdstuk 7 : Gelijkvormige figuren
Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor
1 Junior Wiskunde Olympiade : tweede ronde
Junior Wiskunde Olympiade 008-009: tweede ronde ( 7) = (A) 7 (B) 7 (C) 7 of + 7 (D) 7 (E) onbepaald Beschouw de rij opeenvolgende natuurlijke getallen beginnend met en eindigend met Wat is het middelste
3 Snijpunten. Verkennen. Uitleg
3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls
Voorbereiding : examen meetkunde juni - oplossingen Naam:. Klas:...
- 1 - Opmerking: Maak ook steeds oefeningen uit toets jezelf! uit je boek. Hermaak ook de oefeningen uit je map Etra opgaven: Nr. Opgave Wegens welk congruentiekenmerk zijn volgende driehoeken congruent?
PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ...
PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE a) Begrippen uit de getallenleer Bewerking optelling aftrekking vermenigvuldiging Symbool deling : kwadratering... machtsverheffing...
Hoofdstuk 5 : De driehoek
Hoofdstuk 5 : De driehoek - 89 1. Congruente figuren Figuren die elkaar volkomen kunnen bedekken noemen we congruente figuren. Congruente figuren hebben dezelfde vorm (~ ) en dezelfde grootte (=). Als
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml
1.0 Voorkennis. Voorbeeld 1:
1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24
Toepassingen op Integraalrekening
Toepssingen op Integrlrekening ) Oppervlktes vn vlkke figuren erekenen De meest voor de hnd liggende toepssing vn integrlrekening is uiterrd de reden wrom ze is ingevoerd, nmelijk het erekenen vn oppervlktes
Hoofdstuk 0: algebraïsche formules
Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html
E = mc². E = mc² E = mc² E = mc². E = mc² E = mc² E = mc²
E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² De boom en het stokje staan loodrecht op de grond in het park. De boom is 3 en het stokje 1. Hoe lang is de schaduw van het stokje
element (of de rol van nul bij opt)
Atheneum Wispelerg - Wispelergstrt - 9000 Gent Bijlge - Leerfihes (3 e jr 5uur wiskunde) Eigenshppen vn de ewerkingen in R Nm Kls. - 1 - Leerfihe 1 Eigenshppen vn de optelling in R Nm vn de eigenshp Eigenshp
De cirkel M22. het middelpunt een koorde de straal de diameter een middelpuntshoek een middellijn. 2 cm 4 cm. Cirkel en elementen van een cirkel
M De irkel Cirkel en elementen vn een irkel 781 E Geef de nm vn de ngeduide delen in de irkel. Y X O T S het middelpunt een koorde de strl de dimeter een middelpuntshoek een middellijn O:... [XY]:... OS
Voorbereiding : examen meetkunde juni - 1 -
Voorbereiding : examen meetkunde juni - 1 - De driehoek : Congruentiekenmerken van een driehoek kennen Soorten lijnen in een driehoek kennen Bissectricestelling kennen Stelling van het zwaartelijnstuk
Exact periode 2.2. Gemiddelde en standaarddeviatie Betrouwbaarheidsinterval Logaritme ph lettersommen balansmethode
Exct periode. Gemiddelde en stndrddevitie Betrouwbrheidsintervl Logritme ph lettersommen blnsmethode 1 gemiddelde en stndrddevitie vn meetwrden. x en s Hieronder zie je twee getllenseries die hetzelfde
Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h
Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur
Noordhoff Uitgevers bv
Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p
1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde.
Vlmse Wiskunde Olympide 987-988 : Eerste Ronde De eerste ronde estt steeds uit 0 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt: een deelnemer strt met 0 punten, per goed
Toepassingen op Integraalrekening
Toepssingen op Integrlrekening ) Oppervlktes vn vlkke figuren erekenen De meest voor de hnd liggende toepssing vn integrlrekening is uiterrd de reden wrom ze is ingevoerd, nmelijk het erekenen vn oppervlktes
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een
4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden
4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In
8.1 Gelijkvormige en congruente driehoeken [1] Willem-Jan van der Zanden
8.1 Gelijkvormige en congruente driehoeken [1] 1 8.1 Gelijkvormige en congruente driehoeken [1] Twee evenwijdige lijnen worden gesneden door een derde lijn. De twee rode hoeken (F-hoeken) zijn gelijk.
4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES
4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:
Getallenverzamelingen
Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.
4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden
4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In
Toets jezelf: herhalingsoefeningen voor examen I
- 1-1. Bewerkingen met hoeken kunnen uitvoeren met een ZRM: vb : 45 o 15 17 + 65 o 65 39 = 110 80 56 = 111 20 56 75 o 15 17-65 o 65 39 = 74 74 77 65 65 39 = 9 9 38 45 o 15 17 : 15 o 01 39 = = (162000 +
Zwaartepunt en traagheid
Nslgwerk deel 8 wrtepunt en trgheid Uitgve 2016-1 uteur HC [email protected] Inhoudsopgve 1 wrtepunt 4 1.1 Inleiding wrtepunt vn een lichm....................... 4 1.2 Momentenstelling..................................
Verzamelingen. De natuurlijke getallen. = 0 verzameling van de strikt natuurlijke getallen. De gehele getallen
Verzmelingen De ntuurlijke getllen = {,1,2,3,4,... } = verzmeling vn de strikt ntuurlijke getllen De gehele getllen = {..., 3, 2, 1,,1,2,3,... } = verzmeling vn de strikt gehele getllen + = verzmeling
4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES
4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:
Voorbereidende opgaven Examencursus
Voorbereidende opgven Exmencursus Tips: Mk de voorbereidende opgven voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een opdrcht niet lukt, werk hem dn uit tot wr je kunt en
Hoofdstuk 1 : Hoeken ( Zie ook : boek pag 1 tot en met pag 33)
- 1- Hoofdstuk 1 : Hoeken ( Zie ook : boek pag 1 tot en met pag 33) Hoekeenheden (boek pag 1) Hoofdeenheid om hoeken te meten is de grootte van de rechte hoek de graad :...... notatie :... de minuut :...
Diagnostische toets. AMB stelling van de omtrekshoek AMB ˆ ANB. AQB ARB ˆ 180 koordenvierhoekstelling =
P Q M N R l M ˆ N M ˆ N 4M ˆ 4N ZZZ dus M ˆ N ˆ QP ˆ P ˆ M stelling van de omtrekshoek M ˆ N Q R ˆ 80 koordenvierhoekstelling R ˆ N stelling van de omtrekshoek Q PQ ˆ 80 gestrekte hoek Hieruit volgt dat
d = 8 cm 2 6 A: = 26 m 2 B: = 20 m 2 C: = 18 m 2 D: 20 m 2 E: 26 m 2
H17 PYTHAGORAS 17.1 INTRO 1 b c d 1 4 4 = 8 cm 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine
4.1 Rekenen met wortels [1]
4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:
Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Eamen VWO 018 tijdvak 1ti maandag 14 mei 13.30-16.30 uur oud programma wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Wiskunde 1b Oppervlakte
PROFESSIONELE BACHELOR IN HET ONDERWIJS SECUNDAIR ONDERWIJS Auteur: Greet Verhelst, Eddy Greunlinx Lector: Academiejaar 2016-2017 Inhoudsopgave 1 Veelhoekig gebied... 4 2 van een veelhoekig gebied...
Meetkundige ongelijkheden Groep A
Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor
Vlakke Analytische Meetkunde
Vlakke Analytische Meetkunde L. Van Maldeghem L. Van Hyfte Handleiding voor 3 Latijn-Wiskunde, 3 Grieks-Latijn 5 3 Moderne Talen-Wiskunde, 3 Economie-Wiskunde 2 Hoofdstuk 1 Vectoren en transformaties 1.1
1.0 Voorkennis. Voorbeeld 1:
1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4
Voorbereiding : examen meetkunde juni - oplossingen =
Voorbereiding : eamen meetkunde juni - oplossingen - - Opmerking: Maak ook steeds oefeningen uit toets jezelf! uit je boek. Hermaak ook de oefeningen uit je map Etra opgaven: Nr. Opgave. Wegens welk congruentiekenmerk
Voorbeeld paasexamen wiskunde (oefeningen)
Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,
Hoofdstuk 4: Meetkunde
Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair
Vraag Antwoord Scores. (en dit is gelijk aan fa. is een primitieve functie van f a ) 1
Beoordelingsmodel Vrg Antwoord Scores Onfhnkelijk vn mximumscore x x F'x ( ) = e + x e Dit geeft F ( ) ( ) e x ' x = x (en dit is gelijk n f ( x ), dus F is een primitieve functie vn f ) mximumscore 5
Bijlage 2 Gelijkvormigheid
ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf
Over de tritangent stralen van een driehoek
Over de tritngent strlen vn een driehoek Dick Klingens mrt 004 Inleiding. Het bijvoeglijk nmwoord 'tritngent' gebruiken we ls we spreken over de incirkel (ingeschreven cirkel) en de uitcirkels (ngeschreven
Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 16 januari 2015 Tijd: 13.30 16.30 uur Aantal opgaven: 5 Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.
UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008
MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM HEREXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : TIJ : ------------------------------------------------------------------------------------------------------------------------
Hoofdstuk 2 Oppervlakte en inhoud
Hoofdstuk 2 Oppervlakte en inhoud Les 1 Aant. 2.1 Oppervlakte van vlakke figuren Theorie A: Oppervlakte van vlakke figuren Oppervlakte driehoek = ½ zijde bijbehorende hoogte Oppervlakte parallellogram
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening
Boek 2, hoofdstuk 7, allerlei formules..
Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.
Breuken. Breuken. Wiskunde voor de brugklas. 1 De cd-roms van Wiskunde Interactief
De d-roms vn Wiskunde Intertief Breuk voor de Bsisshool het hoe wrom vn reuk verevoudig 8 4 4 optell 4 + 7 ftrekk 3 4 7 3 vermigvuldig 4 3 del 7 : 3 4 Breuk voor de Bsisshool,Vmo, Hvo/VWO Po het hoe wrom
6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2
Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine
Continuïteit en Nulpunten
Continuïteit en Nulpunten 1 1 Inleiding Continuïteit en Nulpunten In de wiskunde wordt heel vk gebruik gemkt vn begrippen ls functie, functievoorschrift, grfiek, Voor een gedetilleerde inleiding vn deze
