TW2020 Optimalisering

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "TW2020 Optimalisering"

Transcriptie

1 TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

2 Definitie Een boom is een samenhangende graaf zonder circuits. Een bos is een verzameling bomen. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

3 Definitie Een boom is een samenhangende graaf zonder circuits. Een bos is een verzameling bomen. Of: een bos is een graaf zonder circuits. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

4 Definitie Een boom is een samenhangende graaf zonder circuits. Definitie Een bos is een verzameling bomen. Of: een bos is een graaf zonder circuits. Laat G = (V, E) een graaf zijn. Een opspannende boom (spanning tree) van G is een boom T = (V, F ) met F E. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

5 Definitie Een boom is een samenhangende graaf zonder circuits. Definitie Een bos is een verzameling bomen. Of: een bos is een graaf zonder circuits. Laat G = (V, E) een graaf zijn. Een opspannende boom (spanning tree) van G is een boom T = (V, F ) met F E. Anders gezegd, een opspannende boom van G is een deelgraaf van G die alle punten van G verbindt en geen circuits bevat. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

6 Voorbeeld Een opspannende boom van de Petersen graaf (in zwart): Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

7 Voorbeeld Een andere opspannende boom van de Petersen graaf (in zwart): Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

8 Probleem Minimum Opspannende Boom (Minimum Spanning Tree) Gegeven: samenhangende graaf G = (V, E) en lengtefunctie l : E R Vind: een opspannende boom T = (V, F ) van G met minimale lengte l(t ) = l(e) e F Elke samenhangende graaf heeft tenminste één opspannende boom. Toepassing: netwerk ontwerp. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

9 Prim-Dijkstra methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) en lengtefunctie l : E R Definitie δ(u) is de verzameling lijnen die precies één eindpunt in U hebben Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

10 Prim-Dijkstra methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) en lengtefunctie l : E R Definitie δ(u) is de verzameling lijnen die precies één eindpunt in U hebben Algoritme Kies willekeurig punt v 1 U 1 := {v 1 } F 1 := Voor k = 1, 2,..., V 1 Kies een lijn ek δ(u k ) met minimale lengte Uk+1 := U k e k Fk+1 := F k {e k } Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

11 Prim-Dijkstra methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) en lengtefunctie l : E R Definitie δ(u) is de verzameling lijnen die precies één eindpunt in U hebben Algoritme Kies willekeurig punt v 1 U 1 := {v 1 } F 1 := Voor k = 1, 2,..., V 1 Kies een lijn ek δ(u k ) met minimale lengte Stelling Uk+1 := U k e k Fk+1 := F k {e k } (V, F V ) is een minimum opspannende boom van G Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

12 Voorbeeld Vind een minimum opspannende boom in de volgende graaf m.b.v. de Prim-Dijkstra methode: Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

13 Lemma (1) De volgende uitspraken zijn equivalent voor een graaf G = (V, E): 1 G is een boom (is samenhangend en bevat geen circuit) 2 G is samenhangend en E = V 1 3 G bevat geen circuit en E = V 1 4 G bevat een uniek pad tussen elk tweetal punten Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

14 Lemma (2) Als G = (V, E) samenhangend is, (V, F ) een opspannende boom van G en e E \ F dan zijn de volgende twee uitspraken waar: 1 (V, F {e}) heeft een uniek circuit C Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

15 Lemma (2) Als G = (V, E) samenhangend is, (V, F ) een opspannende boom van G en e E \ F dan zijn de volgende twee uitspraken waar: 1 (V, F {e}) heeft een uniek circuit C 2 voor elke lijn f van C is (V, F \ {f } {e}) ook een opspannende boom van G e Voorbeeld: lijn e toevoegen geeft een uniek circuit; lijn f weglaten geeft weer een opspannende boom. f Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

16 Definitie Een bos (V, F ) is een bos van G = (V, E) als F E. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

17 Definitie Een bos (V, F ) is een bos van G = (V, E) als F E. Stelling (12.1) Laat (V, F ) een bos van G = (V, E) zijn, U een samenhangende component van (V, F ) en e δ(u) een lijn met minimale lengte over alle lijnen in δ(u), dan bestaat er een opspannende boom van G die de lijnen in F {e} bevat en die minimaal is over alle opspannende bomen van G die de lijnen in F bevatten. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

18 Definitie Een bos (V, F ) is een bos van G = (V, E) als F E. Stelling (12.1) Laat (V, F ) een bos van G = (V, E) zijn, U een samenhangende component van (V, F ) en e δ(u) een lijn met minimale lengte over alle lijnen in δ(u), dan bestaat er een opspannende boom van G die de lijnen in F {e} bevat en die minimaal is over alle opspannende bomen van G die de lijnen in F bevatten. Stelling Het algoritme van Prim-Dijkstra vindt een minimum opspannende boom. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

19 Stelling Het algoritme van Prim-Dijkstra heeft een looptijd van O( V 2 ). Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

20 Stelling Het algoritme van Prim-Dijkstra heeft een looptijd van O( V 2 ). Bewijs Houd voor elk punt v V \ U k de lengte f (v) bij van een kortste lijn {u, v} met u U k. Er zijn V iteraties. In elke iteratie is er O( V ) tijd nodig om een punt v V \ U k met minimale f (v) te vinden. In elke iteratie is er O( V ) tijd nodig om de labels van de buren van dit punt v aan te passen. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

21 Stelling Het algoritme van Prim-Dijkstra heeft een looptijd van O( V 2 ). Bewijs Stelling Houd voor elk punt v V \ U k de lengte f (v) bij van een kortste lijn {u, v} met u U k. Er zijn V iteraties. In elke iteratie is er O( V ) tijd nodig om een punt v V \ U k met minimale f (v) te vinden. In elke iteratie is er O( V ) tijd nodig om de labels van de buren van dit punt v aan te passen. Het algoritme van Prim-Dijkstra geïmplementeerd met Fibonacci Heaps lost het minimum opspannende boom probleem op in tijd O( E + V log( V )). Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

22 Borůvka s methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) met lengtefunctie l : E R. Neem voor het gemak aan dat alle lijnen verschillende lengtes hebben. Algoritme F := while F < V 1 laat U 1,..., U k de componenten van (V, F ) zijn for i = 1,..., k kies een lijn e i δ(u i ) van minimum lengte F := F {e1,..., e k } Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

23 Borůvka s methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) met lengtefunctie l : E R. Neem voor het gemak aan dat alle lijnen verschillende lengtes hebben. Algoritme F := while F < V 1 laat U 1,..., U k de componenten van (V, F ) zijn for i = 1,..., k kies een lijn e i δ(u i ) van minimum lengte F := F {e1,..., e k } Stelling Borůvka s algoritme vindt een minimum opspannende boom (V, F ) van G. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

24 Borůvka s methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) met lengtefunctie l : E R. Neem voor het gemak aan dat alle lijnen verschillende lengtes hebben. Algoritme F := while F < V 1 laat U 1,..., U k de componenten van (V, F ) zijn for i = 1,..., k kies een lijn e i δ(u i ) van minimum lengte F := F {e1,..., e k } Stelling Borůvka s algoritme vindt een minimum opspannende boom (V, F ) van G. Stelling De looptijd van Borůvka s algoritme is O( E log( V )). Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

25 Voorbeeld Vind een minimum opspannende boom in de volgende graaf m.b.v. Borůvka s methode: Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

26 Kruskals methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) met lengtefunctie l : E R. Algoritme F := for k = 1, 2,..., V 1 Kies een lijn e k E \ F met minimale lengte waarvoor (V, F {e k }) een bos is F := F {ek } Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

27 Kruskals methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) met lengtefunctie l : E R. Algoritme Stelling F := for k = 1, 2,..., V 1 Kies een lijn e k E \ F met minimale lengte waarvoor (V, F {e k }) een bos is F := F {ek } Kruskals algoritme vindt een minimum opspannende boom (V, F ) van G. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

28 Kruskals methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) met lengtefunctie l : E R. Algoritme Stelling F := for k = 1, 2,..., V 1 Kies een lijn e k E \ F met minimale lengte waarvoor (V, F {e k }) een bos is F := F {ek } Kruskals algoritme vindt een minimum opspannende boom (V, F ) van G. Stelling Kruskals algoritme kan geïmplementeerd worden zodat de looptijd O( E log( V )) is. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

29 Voorbeeld Vind een minimum opspannende boom in de volgende graaf m.b.v. Kruskals algoritme: Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

30 Probleem Maximum Gewicht Bos (Maximum Weight Forest) Gegeven: graaf G = (V, E) en gewichtsfunctie w : E R + Vind: een bos B = (V, F ) van G met maximum gewicht w(e) e F Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

31 Probleem Maximum Gewicht Bos (Maximum Weight Forest) Gegeven: graaf G = (V, E) en gewichtsfunctie w : E R + Vind: een bos B = (V, F ) van G met maximum gewicht w(e) e F Definieer een lengtefunctie l : E R + met l(e) = W w(e) waar W = max e E w(e). Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

32 Probleem Maximum Gewicht Bos (Maximum Weight Forest) Gegeven: graaf G = (V, E) en gewichtsfunctie w : E R + Vind: een bos B = (V, F ) van G met maximum gewicht w(e) e F Definieer een lengtefunctie l : E R + met l(e) = W w(e) waar W = max e E w(e). Voor een samenhangende graaf G = (V, E) is (V, F ) een maximum gewicht bos m.b.t. w dan en slechts dan als (V, F ) een minimum opspannende boom is m.b.t. l. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

33 Probleem Maximum Gewicht Bos (Maximum Weight Forest) Gegeven: graaf G = (V, E) en gewichtsfunctie w : E R + Vind: een bos B = (V, F ) van G met maximum gewicht w(e) e F Definieer een lengtefunctie l : E R + met l(e) = W w(e) waar W = max e E w(e). Voor een samenhangende graaf G = (V, E) is (V, F ) een maximum gewicht bos m.b.t. w dan en slechts dan als (V, F ) een minimum opspannende boom is m.b.t. l. Voor een niet-samenhangende graaf G = (V, E) vormen de minimum opspannende bomen van de samenhangende componenten van G m.b.t. l een maximum gewicht bos m.b.t. w. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

34 Kruskals methode voor het vinden van een maximum gewicht bos van een graaf G = (V, E) met gewichtsfunctie w : E R. Algoritme F := while er een lijn bestaat die aan F toegevoegd kan worden zonder een circuit te creëren Vind zo n lijn van maximum gewicht en voeg die lijn toe aan F Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

35 Kruskals methode voor het vinden van een maximum gewicht bos van een graaf G = (V, E) met gewichtsfunctie w : E R. Algoritme F := while er een lijn bestaat die aan F toegevoegd kan worden zonder een circuit te creëren Vind zo n lijn van maximum gewicht en voeg die lijn toe aan F Kruskals algoritme is een voorbeeld van een greedy algoritme: het maakt in elke iteratie de keuze die direkt het meeste profijt oplevert. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

36 Kruskals methode voor het vinden van een maximum gewicht bos van een graaf G = (V, E) met gewichtsfunctie w : E R. Algoritme F := while er een lijn bestaat die aan F toegevoegd kan worden zonder een circuit te creëren Vind zo n lijn van maximum gewicht en voeg die lijn toe aan F Kruskals algoritme is een voorbeeld van een greedy algoritme: het maakt in elke iteratie de keuze die direkt het meeste profijt oplevert. Het Maximum Gewicht Bos probleem is een voorbeeld van een matroïde probleem. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

37 Kruskals methode voor het vinden van een maximum gewicht bos van een graaf G = (V, E) met gewichtsfunctie w : E R. Algoritme F := while er een lijn bestaat die aan F toegevoegd kan worden zonder een circuit te creëren Vind zo n lijn van maximum gewicht en voeg die lijn toe aan F Kruskals algoritme is een voorbeeld van een greedy algoritme: het maakt in elke iteratie de keuze die direkt het meeste profijt oplevert. Het Maximum Gewicht Bos probleem is een voorbeeld van een matroïde probleem. Alle matroïde problemen kunnen opgelost worden met een greedy algoritme. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

38 Een matroïde bestaat uit een eindige verzameling E en een verzameling I van deelverzamelingen van E die independent sets worden genoemd. Definitie Een matroïde (matroid) is een paar (E, I) met E een eindige verzameling en I een verzameling van deelverzamelingen van E, zodanig dat: (i) Als A I en B A dan is B I. (ii) Als A, B I en A < B dan is er een element e E zodanig dat A {e} I. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

39 Voorbeeld Als G = (V, E) een graaf is en I = {F E (V, F ) bevat geen circuit} dan is (E, I) een matroïde (een graphic matroid). Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

40 Voorbeeld Als G = (V, E) een graaf is en I = {F E (V, F ) bevat geen circuit} dan is (E, I) een matroïde (een graphic matroid). Voorbeeld Als A een m n matrix is met: S de verzameling van kolommen van A; F = {F S de kolommen in F zijn lineair onafhankelijk} dan is (S, F) een matroïde (een matric matroid). Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

41 Elke matroïde (E, I) heeft een bijbehorend probleem: gegeven een gewichtsfunctie w : E R, vind een independent set van maximum gewicht. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

42 Elke matroïde (E, I) heeft een bijbehorend probleem: gegeven een gewichtsfunctie w : E R, vind een independent set van maximum gewicht. Deze problemen kunnen allemaal opgelost worden met het greedy algoritme. Algoritme F := while E Kies e E met maximum gewicht w(e) Verwijder e uit E. if F {e} I Voeg e toe aan F Uitvoer: F De uitvoer F is een independent set van maximum gewicht. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

43 Vraag Hoeveel opspannende bomen heeft een volledige graaf met n punten? Stelling (Formule van Cayley) Het aantal verschillende bomen met n gelabelde punten is n n 2. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

44 Vraag Hoeveel opspannende bomen heeft een volledige graaf met n punten? Stelling (Formule van Cayley) Het aantal verschillende bomen met n gelabelde punten is n n 2. Leo 2 2 van Iersel (TUD) TW2020 Optimalisering oktober / 25

45 Definitie Een Prüfer rij is een rij van lengte n 2 bestaande uit getallen uit {1,..., n} Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

46 Definitie Een Prüfer rij is een rij van lengte n 2 bestaande uit getallen uit {1,..., n} Gegeven een gelabelde boom T, kun je als volgt een unieke Prüfer rij bepalen: Laat 1, 2,..., n de labels van de punten van T zijn. Een blad is een punt met graad één. Algoritme Vind het blad b met kleinste label; voeg de buur van b toe aan de Prüfer rij; verwijder b uit de boom; herhaal de voorgaande stappen totdat er twee punten over zijn. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

47 Algoritme Vind het blad b met kleinste label; voeg de buur van b toe aan de Prüfer rij; verwijder b uit de boom; herhaal de voorgaande stappen totdat er twee punten over zijn. Voorbeeld Vind de Prüfer rij van de onderstaande boom Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25 7

48 Algoritme Vind het blad b met kleinste label; voeg de buur van b toe aan de Prüfer rij; verwijder b uit de boom; herhaal de voorgaande stappen totdat er twee punten over zijn. Voorbeeld Vind de Prüfer rij van de onderstaande boom Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25 7

49 Gegeven een Prüfer rij a = (a 1, a 2,..., a n 2 ), kun je als volgt een unieke gelabelde boom bepalen: Algoritme L := (1, 2,..., n) Creëer punten met labels 1, 2,..., n Herhaal de volgende stappen totdat L = 2 Laat l het eerste label in L zijn dat niet in a voor komt Laat a1 het eerste element van a zijn Verbind het punt met label l met het punt met label a1 Verwijder l uit L en a1 uit a Laat L = {l 1, l 2 } Verbind het punt met label l 1 met het punt met label l 2 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

50 Stelling Er is een bijectie tussen bomen met puntlabels 1,..., n en Prüfer rijen van lengte n 2. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

51 Stelling Er is een bijectie tussen bomen met puntlabels 1,..., n en Prüfer rijen van lengte n 2. Stelling (Formule van Cayley) Het aantal verschillende bomen met n gelabelde punten is n n 2. Dus een volledige graaf heeft n n 2 opspannende bomen. Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober / 25

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 maart 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 11 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 11 november 2015 1 / 22 Mededelingen Huiswerk 2 nagekeken Terug

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 21 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 21 oktober 2015 1 / 20 Deze week: algoritmes en complexiteit

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december 2015 1 / 13 Vraag Wat moet ik kennen en kunnen voor

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 1 Leo van Iersel Technische Universiteit Delft 7 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 september 2016 1 / 40 Opzet vak Woensdag: hoorcollege 13:45-15:30

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Netwerkstroming Toepassingen in Logistiek Video-streaming Subroutine in algoritmen 2 Vandaag Netwerkstroming: wat was dat ook alweer? Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp

Nadere informatie

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden.

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden. Antwoorden Doeboek 4 Grafen.. De middelste en de rechtergraaf.. Een onsamenhangende graaf met vijf punten en vijf lijnen: Teken een vierhoek met één diagonaal. Het vijfde punt is niet verbonden met een

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

1.2 Bomen Algemeen 1.2. BOMEN 7

1.2 Bomen Algemeen 1.2. BOMEN 7 1.2. BOMEN 7 1.2 Bomen 1.2.1 Algemeen Beschouw eerst een niet-gerichte graaf. Een boom is een samenhangende graaf die geen kringen bevat. Een boom wordt meestal genoteerd met de letter T (tree). Een bos

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

Tiende college algoritmiek. 26 april Gretige algoritmen

Tiende college algoritmiek. 26 april Gretige algoritmen Algoritmiek 01/10 College 10 Tiende college algoritmiek april 01 Gretige algoritmen 1 Algoritmiek 01/10 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 9 september 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 september 2015 1 / 23 Huiswerk Huiswerk 1 is beschikbaar op

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet

Nadere informatie

1 Vervangingsstrategie auto

1 Vervangingsstrategie auto Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2002 1 Vervangingsstrategie auto Onderdeel a Zij V = {0, 1, 2, 3, 4, 5, 6}, waarbij knoop i staat voor het einde

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

Grafen deel 2 8/9. Zesde college

Grafen deel 2 8/9. Zesde college Grafen deel 2 8/9 Zesde college 1 Een Eulercircuit is een gesloten wandeling die elke lijn precies één keer bevat. traversable trail all edges distinct 8.5 rondwandeling zeven bruggenprobleem van Köningsbergen

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde II op donderdag 6 juli 2017, 13.30-16.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde op donderdag 13 april 2017, 14.30-17.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

Hoofdstuk!7!Kortste!paden!

Hoofdstuk!7!Kortste!paden! oofdstukkortstepaden oofdstukkortstepaden In een gewogen graaf is men soms geïnteresseerd in het kortste pad tussen twee punten: dat is een pad, waarbij de som van de gewichten zo klein mogelijk is..inleiding

Nadere informatie

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6.

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6. Overzicht 1. Definities 2. Basisalgoritme 3. Label setting methoden 4. Label correcting methoden 5. Ondergrenzen 6. Resultaten Kortste Pad Probleem 1 Definities Een graaf G = (V, E) bestaat uit een verzameling

Nadere informatie

Uitwerkingen Sum of Us

Uitwerkingen Sum of Us Instant Insanity Uitwerkingen Sum of Us Opgave A: - Opgave B: Voor elk van de vier kubussen kun je een graaf maken die correspondeert met de desbetreffende kubus. Elk van deze grafen bevat drie lijnen.

Nadere informatie

definities recursieve datastructuren college 13 plaatjes soorten Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten

definities recursieve datastructuren college 13 plaatjes soorten Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten recursieve datastructuren college graphs definities Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten E edges, arcs, kanten, pijlen, lijnen verbinding tussen knopen Voorbeelden steden en verbindingswegen

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen.

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen. Discrete modellen in de toegepaste wiskunde (WISB6) Uitwerkingen proeftentamen. Docent: Rob H. Bisseling april 202. Begin met een matching M = {x y, x y, x 6 y 6 } aangegeven door de vette lijnen. x De

Nadere informatie

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 1 Inhoudsopgave 1 Transport problemen 3 2 Definities en stellingen

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

Minimaal opspannende bomen

Minimaal opspannende bomen Dit studiemateriaal is ontwikkeld door de kerngroep wiskunde D Delft en mag gratis gebruikt worden in het wiskundeonderwijs in het vo. Kerngroep wiskunde D Delft Liesbeth Bos Scala College Wim Caspers

Nadere informatie

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden.

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden. . a) Een Fibonacci boom (niet te verwarren met een Fibonacci queue) van hoogte h is een AVL-boom van hoogte h met zo weinig mogelijk knopen. i. Geefvoorh =,,,,eenfibonacciboomvanhoogteh(eenboombestaande

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

Hoofdstuk 13: Integer Lineair Programmeren

Hoofdstuk 13: Integer Lineair Programmeren Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

Activiteit 9. Modderstad Minimaal Opspannende Bomen. Samenvatting. Kerndoelen. Leeftijd. Vaardigheden. Materialen

Activiteit 9. Modderstad Minimaal Opspannende Bomen. Samenvatting. Kerndoelen. Leeftijd. Vaardigheden. Materialen Activiteit 9 Modderstad Minimaal Opspannende Bomen Samenvatting Onze maatschappij is verbonden middels heel veel netwerken: telefoonnet, elektriciteitsnet, de riolering, computernetwerk, en het wegennet.

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument Complexiteit 2017/05 College 5 Vijfde college complexiteit 21 februari 2017 Selectie Toernooimethode Adversary argument 1 Complexiteit 2017/05 Opgave 28 Gegeven twee oplopend gesorteerde even lange rijen

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

2 beslissen in netwerken. Wiskunde D. Keuzevak beslissen onderdeel: beslissen in netwerken. versie 4 vrijdag 16 november 2007

2 beslissen in netwerken. Wiskunde D. Keuzevak beslissen onderdeel: beslissen in netwerken. versie 4 vrijdag 16 november 2007 eslissen beslissen in netwerken Wiskunde Keuzevak beslissen onderdeel: beslissen in netwerken versie vrijdag november 00 Samenstelling Jan ssers ism Kerngroep Wiskunde indhoven ontys voorkennis: optimaliseren.

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

Het minimale aantal sleutels op niveau h is derhalve

Het minimale aantal sleutels op niveau h is derhalve 1 (a) In een B-boom van orde m bevat de wortel minimaal 1 sleutel en maximaal m 1 sleutels De andere knopen bevatten minimaal m 1 sleutels en maximaal m 1 sleutels (b) In een B-boom van orde 5 bevat elke

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Optimalisering/Besliskunde 1. College 1 2 september, 2015

Optimalisering/Besliskunde 1. College 1 2 september, 2015 Optimalisering/Besliskunde 1 College 1 2 september, 2015 Algemene informatie College: woensdag 13:45-15:30: Leiden C1 en C2: Gorlaeus gebouw Zaal DS: De Sitterzaal, Oort gebouw Werkcollege: vrijdag: Leiden

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 20 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Grafen. Grafen, toppen en bogen

Grafen. Grafen, toppen en bogen Grafen Het zijn configuraties van knoppen en verbindingen, waar we de knoppen toppen noemen en de verbindingen tussen 2 toppen noemen we een boog. Toppen en bogen kunnen bijkomende attributen hebben, zoals

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Samenvatting college 1-12

Samenvatting college 1-12 Samenvatting college 1-12 Probleemformulering Duidelijk definiëren van beslissingsvariabelen Zinvolle namen voor variabelen bv x ij voor ingrediënt i voor product j, niet x 1,..., x 20 Beschrijving van

Nadere informatie

Lijst-kleuringen in de grafentheorie

Lijst-kleuringen in de grafentheorie Lijst-kleuringen in de grafentheorie Berrie Bottelier 16 juli 2014 Bachelorscriptie Begeleiding: dr. Guus Regts 4 5 6 1 2 3 Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen,

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Lijstkleuring van grafen

Lijstkleuring van grafen C.J. Meerman Lijstkleuring van grafen Bachelorscriptie 10 juni 2010 Email: cjmeerman@gmail.com Scriptiebegeleider: Dr. D. C. Gijswijt Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding

Nadere informatie

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur. Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf

Nadere informatie

Snelle algoritmen voor Min en Max filters

Snelle algoritmen voor Min en Max filters Snelle algoritmen voor Min en Max filters Michael H.F. Wilkinson Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen 27 augustus 2007 Morfologie: Dilatie en Erosie 1 of 18 Links beeld X.

Nadere informatie

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi NP-Volledigheid Wil zo snel mogelijke algoritmes om problemen op te lossen Gezien: selectie [O(n)], DFS [O(n + m)], MaxFlow [O nm n + m ], MST [O(n + m)], etc De looptijd is polynomiaal: O n k - dat is

Nadere informatie

Radboud Universiteit Nijmegen

Radboud Universiteit Nijmegen Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica Kubische grafen met integraal spectrum Naam: Studentnummer: Studie: Begeleider: Tweede lezer: Daan van Rozendaal

Nadere informatie

Stabiele koppelingen (Engelse titel: Stable Matchings)

Stabiele koppelingen (Engelse titel: Stable Matchings) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Stabiele koppelingen (Engelse titel: Stable Matchings) Verslag ten behoeve van het

Nadere informatie

Chinese postbodeprobleem

Chinese postbodeprobleem Chinese postbodeprobleem Dorthe Van Waarden 9 juli 2010 Eindverslag Bachelorproject Begeleiding: dr. Marcel van de Vel KdV Instituut voor wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Nadere informatie

Het duivenhokprincipe

Het duivenhokprincipe Tijdens de sneeuwstormen van 5 november j.l. hebben duizenden leerlingen zich gebogen over de opdracht in het kader van de wiskunde B-dag. Op het Jac P Thijsse College worden de werkstukken beoordeeld

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? me:

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes?  me: Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? Email me: peter.vdd@telenet.be 1. Het aantal knoop-tak overgangen is altijd even. De totaalsom

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

Transport, Routing- en Schedulingproblemen. ir. H.N. Post

Transport, Routing- en Schedulingproblemen. ir. H.N. Post Transport, Routing- en Schedulingproblemen ir. H.N. Post 1 mei 2006 Inhoudsopgave 1 Kortste pad probleem 7 1.1 Definities...................................... 7 1.2 Basisalgoritme...................................

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

De huwelijksstelling van Hall

De huwelijksstelling van Hall Thema Discrete wiskunde In de vorige twee afleveringen heb je al kennis kunnen maken met het begrip graaf en hoe grafen worden gebruikt door Google s zoekmachine en door de NS bij het maken van een optimale

Nadere informatie

9. Strategieën en oplossingsmethoden

9. Strategieën en oplossingsmethoden 9. Strategieën en oplossingsmethoden In dit hoofdstuk wordt nog even terug gekeken naar alle voorgaande hoofdstukken. We herhalen globaal de structuren en geven enkele richtlijnen voor het ontwerpen van

Nadere informatie

1 Rekenen in eindige precisie

1 Rekenen in eindige precisie Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie