Gerichte Grafen Boolese Algebra s &. Logische Netwerken

Maat: px
Weergave met pagina beginnen:

Download "Gerichte Grafen Boolese Algebra s &. Logische Netwerken"

Transcriptie

1 Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie 10 maart 2009 Gerichte Grafen Boolese Algebra s &. Logische Netwerken. Paragrafen 8.1,8.2, ,10.5 Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken

2 Onderwerpen Toets Kruskal s en Prim s algoritme Gerichte Grafen Boolese Algebra s Logische Netwerken Isomorfie Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 1

3 Kruskal s Algoritme 1. kleur alle knopen geel 2. doorloop alle ribben in de volgorde van oplopend gewicht: als de betrokken ribbe samengevoegd met de rode boom, de boom acyclisch houdt: aaaaa kleur de ribbe rood en de kno(o)p(en) zwart Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 2

4 Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 3

5 Kruskal s Algoritme 2 {Input: een eindige gewogen graaf G met ribben gesorteerd in oplopende volgorde} {Output: een verzameling ribben E van een minimale opgespannen boom} E ; for j = 1 to E (G) do if E {e j }is acyclisch then E E {e j } return E Theorem 1. Kruskal s algoritme levert een minimale opgespannen boom. Bewijs: E is bevat in een opgespannen boom van de graaf is een invariant van de for-lus. Na afloop is E een opgespannen boom. E is minimaal Theorem 2. Kruskal s algoritme heeft een executietijd van O(n log 2 n) met (n = E(G) ) Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 4

6 Prim s Algoritme 1. kleur alle knopen geel 2. kleur een willekeurig punt zwart 3. zolang er nog gele knopen zijn: (a) zij e een ribbe van minimaal gewicht die een zwart punt met een wit punt verbindt (b) kleur e rood en zijn gele eindknoop zwart {Input: een eindige gewogen graaf G met ribben willekeurige volgorde} {Output: een verzameling ribben E van een minimale opgespannen boom} E ; kies w V (G) ; V {w} ; while V = V (G) do kies een ribbe{u,v} E (G) met laagste gewicht zodat u V en v V (G) \V return E Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 5

7 Theorem 3. Prim s algoritme heeft een executietijd van O(n 2 ), met (n = V(G) ) Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 6

8 Gerichte Grafen Theorem 4. Als u en v verschillende knopen zijn in een gerichte graaf G en er is een pad van u naar v, dan is er een acyclisch pad van u naar v. Corollary 1. Als er een gesloten pad van u naar v is dan is er een cykel van u naar v. Corollary 2. Een pad is acyclisch als alle knopen verschillend zijn. Theorem 5. Elke eindige gerichte acyclische graaf heeft tenminste één bron (source) en tenminste één afvoer (sink). {Input: een eindige acyclische gerichte graaf G} {Output:een afvoer S van G} kies een knoop v in V (G) ; S v ; while SUCC (v) = do kies een u SUCC (v) ; S u ; v u return S Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 7

9 Gelabelde knopen Theorem 6. Elke eindige gerichte acyclische graaf heeft een gesorteerde labeling. {Input: een eindige DAG G met n knopen} {Output:een labeling voor V (G)} V V (G) ; E E (G) ; while V = do H wordt de DAG met knopen V en ribben E ; pas Sink op H toe ; label Sink (H) met n V +1 ; verwijder Sink (H) uit V en alle ribben verbonden met Sink (H) uit E return E Theorem 7. [De stelling van Euler]. Als G een eindige samengangende gerichte graaf is, dan is er een gericht gesloten pad in G over alle ribben desda indeg(v) = outdeg(v) Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 8

10 de Bruijn-rij Theorem 8. [De Bruijn]. Voor elke n N geldt dat er een circulaire schikking C met lengte 2 n is, zodat alle strings, waarin slechts de symbolen 0 en 1 voorkomen en met lengte n, een substring vormen van C. Voor alle strings met lengte 4 voldoet de volgende rij: e 2,e 5,e 8,e 11,e 14,e 16,e 15,e 12,e 9,e 6,e 4,e 7,e 13,e 10,e 3,e 1 Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 9

11 Scheduling netwerken Definition 1. [Gewicht] In een gewogen graaf is met elke ribbe e = (u,v) een getal geassocieerd: het gewicht W(e) (of ook W(u,v)). Het gewicht van een pad e 1 e 2...e m tussen u en v: W(u,v) = m W(e i ) i=1 Definition 2. [Minimaal/Maximaal pad]. W (u,v)/m(u,v) is van alle paden van u naar v het pad waarvan het gewicht het kleinst/grootst is. M(s, f) heet het kritieke pad. Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 10

12 Bamboescheuten met rijst en aardappelen 1. Snij de bamboescheuten - ± 10 min.. 2. Fruit een ui - ± 2 min.. 3. Schil en een halve kilo aardappelen - ± 5 min.. 4. Marineer bamboescheuten uien en kruiden - ± 30 min.. 5. Bak de aardappelen - ± 21 min.. Rooster komijnzaden - ± 4 min.. 6. Braad het gebakken mengsel - ± 60 min.. 7. Kook de rijst - ± 20 min.. Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 11

13 Definition 3. [(Vroegste)Aankomsttijd]. A(v) is de kortste tijd nodig om van de bron in v aan te komen: A(v) = def M(s,v). M(s, f) is de minimale tijd waarin het hele proces kan worden afgerond. Definition 4. [Laatste aankomsttijd]. L(v) is het laatste tijdstip waarop je uit v nog kunt vertrekken om de finish fnog steeds in de kortste tijd te bereiken: L(v) = def M(s, f) M(v, f) Definition 5. [Slack-tijd]. S(v) is de tijd die de taken voor v nog uitgesteld kunnen worden, waarbij de gehele taak nog in de kortste tijd uitgevoerd kan worden, als alle andere taken efficient worden uitgevoerd. S(v) = def L(v) A(v) = M(s, f) M(v, f) M(s,v) Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 12

14 s t u v w x y z f A L S Definition 6. [Float-tijd]. F(u,v) is tijd die de taak tussen u en v nog kan worden uitgesteld, zonder de minimale tijd voor de gehele taak te overschrijden. F(u,v) = def L(v) A(u) W(u,v) F(s,v) = = 8 F(v,w) = = 9 F(s,y) = = 5 F(y,v) = = 5 Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 13

15 Theorem 9. Voor elk scheduling netwerk geldt: 1. De floattijd F(u, v) = 0 desda (u, v) is een kritisch pad. 2. F(u,v) max[s(u),s(v)] voor alle ribben van het netwerk. Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 14

16 Boolese Algebra s 1 Voorbeeld 1: Verzamelingenalgebra Beschouw een niet-lege verzameling S. De machtsverzameling P(S) met operaties en c op de elementen van P(S) A c = S \ A S en hebben bepaalde eigenschappen: A S = A en A = Voorbeeld 2: Boolese algebra Stel B = {0,1} met operaties en en gedefinieerd als: a b = min{a,b} en a b = max{a,b} 0 = 1 en 1 = 0 Voorbeeld 3: Algebra op B n Stel B n = B... B (n keer) van n-tupels nullen en enen. we definiëren: (a 1,...,a n ) (b 1,...,b n ) = (a 1 b 1,...,a n b n ) (a 1,...,a n ) (b 1,...,b n ) = (a 1 b 1,...,a n b n ) (a 1,...,a n ) = (a 1,...,a n) Bijvoorbeeld: (1,0,0,1) (1,1,0,0) = (1,1,0,1) (1,0,0,1) (1,1,0,0) = (1,0,0,0) (1,0,0,1) = (0,1,1,0) Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 15

17 Boolese Algebra s 2 Voorbeeld 4: Algebra van functies van S naar B Stel S is een niet-lege verzameling. FUN(S, B) is de verzameling van alle functies van S naar B. We definiëren, en door de regels: (f g)(x) = f(x) g(x) voor alle x S (f g)(x) = f(x) g(x) voor alle x S f (x) = f(x) voor alle x S Stel S = {a,b,c,d} x f(x) g(x) (f g)(x) (f g)(x) f (x) a b c d Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 16

18 Boolese Algebra s 3 Definition 7. Een Boolese algebra bestaat een verzameling V, met tenminste twee speciale elementen 0 en 1 en met op V twee binaire operaties, en gedefinieerd en een unaire operatie, zodanig dat aan de volgende voorwaarden wordt voldaan:. 1a x y = y x 1b x y = y x 2a (x y) z = x (y z) 2b (x y) z = x (y z) 3a x (y z) = (x y) (x z) 3b x (y z) = (x y) (x z) 4a x 0 = x 4b x 1 = x 5a x x = 1 5b x x = 0 commut. assoc. distrib. ident. compl. Boolese 0 1 join meet Algebra P(S) S c B 0 1 B n (0,...,0) (1,...,1) p. coord. p.coord. FUN(S, B) χ χ S p. elem. (χ A ) = χ A c Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 17

19 Proposition 1. [Dualiteitsprincipe]. Als in een Boolese formule en met elkaar worden verwisseld en ook 0 en 1, dan ontstaat een equivalente formule. Theorem 10. Meer eigenschappen voor Boolese algebra s: Bewijs 6a: 6a x x = x idempot. 6b x x = x 7a x 1 = 1 ook ident. 7b x 0 = 0 8a (x y) x = x absorptie. 8b (x y) x = x x x = (x x) 1 ident. = (x x) (x x ) compl. = x (x x ) distr. = x 0 compl. = x ident. Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 18

20 Lemma 1. Als in een Boolese algebra geldt: w z = 1 en w z = 0 dan: z = w Bewijs 6b: z = z 0 ident. = z (w w ) compl. = (z w) (z w ) compl. = (w z) (w z) comm.2 = 1 (w z) hypothese 1 = (w w ) (w z) compl. = (w w) (w z) commut. = w (w z) distrib. = w 0 hypothese. 2 = w ident. Corollary 3. In een Boolese algebra geldt: (z ) = z voor alle z. Theorem 11. Elke boolse algebra voldoet aan de wetten van De Morgan: 9a (x y) = x y 9b (x y) = x y Bewijs: Met lemma 1 volstaat het te bewijzen dat: (x y) (x y ) = 1 en (x y) (x y ) = 0 Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 19

21 De relaties, = en < Lemma 2. In een Boolese algebra geldt: x y = y desda x y = x Lemma 3. In een Boolese algebra geldt: 1. Als x y en y z dan: x z; 2. Als x y en y x dan: x = y; 3. Als x < y en y < z dan: x < z; Bewijs (1): Als x y en y z dan: Dus: x z. z = y z vanwege y z = (x y) z vanwege x y = x (y z) assoc. = x z vanwege y z Lemma 4. In een Boolese algebra geldt: 1. x y x x y voor alle x en y x 1 voor alle x. Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 20

22 Atomen Definition 8. a is een atoom van een Boolese algebra als a = en a kan niet geschreven worden als de join van twee elementen, beide verschillend van a:. Dus niet: a = v c met a = b en a = c. Proposition 2. Een niet-nul element a van een Boolese algebra is een atoom desda er geen element x is met0 < x < a. Corollary 4. Als a en b atomen zijn van een Boolese algebra en a b = 0 dan a = b. Dus als a = b dan a b = 0 Theorem 12. Stel B is een eindige Boolese algebra met atomen A = {a 1,...,a n }. Elk nietnul element x van B kan (uniek) geschreven worden als de join van verschillende atomen: x = a i1... a ik Corollary 5. In elke eindige Boolese algebra B is 1 de join van alle atomen van B. Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 21

23 Boolese expressies Definition 9. [Boolese expressie in n variabelen]. Als E een Boolese expressie in n variabelen is dan definieert E een (Boolese) functie van B n naar B. Twee Boolese expressies zijn equivalent, als hun corresponderende Boolese functies equivalent zijn. Een literal is een Boolese expressie bestaande uit alleen een variabele of zijn complement. Een minterm in n variabelen is de meet van precies n literals met allemaal verschillende variabelen. Een Boolese expressie E staat in minterm kanonieke vorm als het de join is van een aantal mintermen (Vgl disjunctieve normaalvorm DNF). Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 22

24 Als E de join van meets van literals is, dan is E optimaal als er geen equivalente join met minder meets is, en voor het geval er evenveel meets zijn, is er geen equivalente formule waarbij de meets uit minder literals bestaan. Voorbeeld: Is E = x z x y xy xz optimaal? E = x yz x y z x yz x yz xy z xy z xyz xy z = x yz x y z x yz xy z xy z xyz Omdat: x yz x y z = x (y y )z = x z hebben we: E = x z yz xy Een andere groepering geeft: met: E = x y y z xz Beide zijn optimaal. x yz xyz = yz xy z xy z = xy x yz x yz = x y x y z xy z = y z xy z xyz = xz Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 23

25 Netwerksymbolen Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 24

26 Equivalente Netwerken A = (x y ) ; B = x z; C = (A B) = ((x y ) (x z)) ; D = C y = ((x y ) (x z)) y = ((x y )x y ) y = (xx z y x z ) y = y x z y = y x z yx z y = (y y)x z y = x z y; E = (x z) = x z ; F = E y = x z y; Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 25

27 NAND Functioneel Volledig Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 26

28 Adder Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 27

29 Cyclisch Netwerk Een netwerk met terugkoppeling Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 28

30 S-R-schuif (Flipflop) A B x y A B Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 29

31 S-R-schuif 2 De SR-schuif als eindige automaat Discrete Structuren Week 5: Gerichte Grafen, Boolese Algebra s & Logische Netwerken 30

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

(Isomorfie en) RELATIES

(Isomorfie en) RELATIES Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 15 maart 2009 (Isomorfie en) RELATIES. Paragrafen 10.5,11.1,11.2,11.4,11.5 Discrete

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 15 februari 2009 RELATIES & GRAFEN Discrete Structuren Week 2: Relaties en Grafen

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 4 april 2008 Discrete Structuren Week 8: Samenvatting Redeneerpatronen

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie 22 maart 2009 ONEINDIGHEID

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie   22 maart 2009 ONEINDIGHEID Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 maart 2009 ONEINDIGHEID. Paragraaf 13.3. De paradox van de oneindigheid ligt slechts

Nadere informatie

Talen & Automaten. Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 mei 2008

Talen & Automaten. Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie   9 mei 2008 Talen & Automaten Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.cs.rug.nl/~wim 9 mei 2008 Talen & automaten Week 1: Inleiding Dit college Talen Automaten Berekenbaarheid Weekoverzicht

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dystra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 12 februari 2008 INLEIDING Discrete Structuren Wee1: Inleiding Onderwerpen

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 februari 2009 INLEIDING

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie   9 februari 2009 INLEIDING Discrete Structuren Piter Dystra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 INLEIDING Discrete Structuren Wee1: Inleiding Onderwerpen Elementaire

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Grafen deel 2 8/9. Zesde college

Grafen deel 2 8/9. Zesde college Grafen deel 2 8/9 Zesde college 1 Een Eulercircuit is een gesloten wandeling die elke lijn precies één keer bevat. traversable trail all edges distinct 8.5 rondwandeling zeven bruggenprobleem van Köningsbergen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober 2015 1 / 25 Definitie Een boom is een samenhangende

Nadere informatie

Minimum Opspannende Bomen. Algoritmiek

Minimum Opspannende Bomen. Algoritmiek Minimum Opspannende Bomen Inhoud Het minimum opspannende bomen probleem Een principe om een minimum opspannende boom te laten groeien Twee greedy algoritmen + tijd en datastructuren: Het algoritme van

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie Kennisrepresentatie & Redeneren Piter Dykstra Instituut voor Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 8 oktober 2007 GRAMMATICA S Kennisrepresentatie & Redeneren Week6: Grammatica

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

Discrete Wiskunde, College 12. Han Hoogeveen, Utrecht University

Discrete Wiskunde, College 12. Han Hoogeveen, Utrecht University Discrete Wiskunde, College 12 Han Hoogeveen, Utrecht University Dynamische programmering Het basisidee is dat je het probleem stap voor stap oplost Het probleem moet voldoen aan het optimaliteitsprincipe

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Elfde college algoritmiek. 10 mei Algoritme van Dijkstra, Gretige Algoritmen

Elfde college algoritmiek. 10 mei Algoritme van Dijkstra, Gretige Algoritmen lgoritmiek 019/lgoritme van ijkstra lfde college algoritmiek 10 mei 019 lgoritme van ijkstra, Gretige lgoritmen 1 lgoritmiek 019/ynamisch programmeren Programmeeropdracht 3 Lange Reis 0 10 10 1 1 100 0

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Tiende college algoritmiek. 2 mei Gretige algoritmen, Dijkstra

Tiende college algoritmiek. 2 mei Gretige algoritmen, Dijkstra College 10 Tiende college algoritmiek mei 013 Gretige algoritmen, Dijkstra 1 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag van n (n 0) eurocent. Alle

Nadere informatie

Uitwerking tentamen Analyse van Algoritmen, 29 januari

Uitwerking tentamen Analyse van Algoritmen, 29 januari Uitwerking tentamen Analyse van Algoritmen, 29 januari 2007. (a) De buitenste for-lus kent N = 5 iteraties. Na iedere iteratie ziet de rij getallen er als volgt uit: i rij na i e iteratie 2 5 4 6 2 2 4

Nadere informatie

Verzamelingen deel 3. Derde college

Verzamelingen deel 3. Derde college 1 Verzamelingen deel 3 Derde college rekenregels Een bewerking op A heet commutatief als voor alle x en y in A geldt dat x y = y x. Een bewerking op A heet associatief als voor alle x, y en z in A geldt

Nadere informatie

Tiende college algoritmiek. 26 april Gretige algoritmen

Tiende college algoritmiek. 26 april Gretige algoritmen Algoritmiek 01/10 College 10 Tiende college algoritmiek april 01 Gretige algoritmen 1 Algoritmiek 01/10 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag

Nadere informatie

Optimaliseren in Netwerken

Optimaliseren in Netwerken Optimaliseren in Netwerken Kees Roos e-mail: C.Roos@tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos Kaleidoscoop college Zaal D, Mekelweg 4, TU Delft 11 October, A.D. 2006 Optimization Group 1 Onderwerpen

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Tiende college algoritmiek. 14 april Gretige algoritmen

Tiende college algoritmiek. 14 april Gretige algoritmen College 10 Tiende college algoritmiek 1 april 011 Gretige algoritmen 1 Greedy algorithms Greed = hebzucht Voor oplossen van optimalisatieproblemen Oplossing wordt stap voor stap opgebouwd In elke stap

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2. opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 2 Gröbnerbases 1. Vragen We hebben gezien dat de studie van stelsels polynoomvergelijkingen in meerdere variabelen op natuurlijke manier leidt

Nadere informatie

Tiende college algoritmiek. 4 mei Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 4 mei Gretige Algoritmen Algoritme van Dijkstra Tiende college algoritmiek mei 018 Gretige Algoritmen Algoritme van Dijkstra 1 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag van n (n 0) eurocent. Alle

Nadere informatie

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Giso Dal (0752975) Pagina s 5 7 1 Deelverzameling Representatie

Nadere informatie

Tweede college algoritmiek. 12 februari Grafen en bomen

Tweede college algoritmiek. 12 februari Grafen en bomen College 2 Tweede college algoritmiek 12 februari 2016 Grafen en bomen 1 Grafen (herhaling) Een graaf G wordt gedefinieerd als een paar (V,E), waarbij V een eindige verzameling is van knopen (vertices)

Nadere informatie

Tentamen Discrete Wiskunde

Tentamen Discrete Wiskunde Discrete Wiskunde (WB011C) 22 januari 2016 Tentamen Discrete Wiskunde Schrijf op ieder ingeleverd blad duidelijk leesbaar je naam en studentnummer. De opgaven 1 t/m 6 tellen alle even zwaar. Je hoeft slechts

Nadere informatie

Elfde college algoritmiek. 18 mei Algoritme van Dijkstra, Heap, Heapify & Heapsort

Elfde college algoritmiek. 18 mei Algoritme van Dijkstra, Heap, Heapify & Heapsort Algoritmiek 018/Algoritme van Dijkstra Elfde college algoritmiek 18 mei 018 Algoritme van Dijkstra, Heap, Heapify & Heapsort 1 Algoritmiek 018/Algoritme van Dijkstra Uit college 10: Voorb. -1- A B C D

Nadere informatie

Verzamelingen deel 2. Tweede college

Verzamelingen deel 2. Tweede college 1 Verzamelingen deel 2 Tweede college herhaling Deelverzameling: AB wil zeggen dat elk element van A ook in B te vinden is: als x A dan x B Er geldt: A=B AB en BA De lege verzameling {} heeft geen elementen.

Nadere informatie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie Kennisrepresentatie & Redeneren Piter Dykstra Instituut voor Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 30 april 2007 INLEIDING Kennisrepresentatie & Redeneren Week1: Introductie

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 13 november 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Grafen deel 2 8/9. Zevende college

Grafen deel 2 8/9. Zevende college Grafen deel 2 8/9 Zevende college 1 H8: ongerichte graaf Een graaf G = G(V,E) = (V,E) bestaat uit twee (eindige) verzamelingen: V knopen (punten; vertices,nodes,points) E lijnen (takken,zijden,kanten,bogen;edges)

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 BEWIJZEN Discrete Structuren Week1 : Bewijzen Onderwerpen Puzzels

Nadere informatie

8C080 deel BioModeling en bioinformatica

8C080 deel BioModeling en bioinformatica Vijf algemene opmerkingen Tentamen Algoritmen voor BIOMIM, 8C080, 13 maart 2009, 09.00-12.00u. Het tentamen bestaat uit 2 delen, een deel van BioModeling & bioinformatics en een deel van BioMedische Beeldanalyse.

Nadere informatie

3 De stelling van Kleene

3 De stelling van Kleene 18 3 De stelling van Kleene Definitie 3.1 Een formele taal heet regulier als hij wordt herkend door een deterministische eindige automaat. Talen van de vorm L(r) met r een reguliere expressie noemen we

Nadere informatie

Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen

Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen Tweede huiswerkopdracht Lineaire algebra 1 en opmerkingen November 10, 2009 Opgave 1 Gegeven een vectorruimte V met deelruimtes U 1 en U 2. Als er geldt dim U 1 = 7, dimu 2 = 9, en dim(u 1 U 2 ) = 4, wat

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Verzamelingen deel 2. Tweede college

Verzamelingen deel 2. Tweede college Verzamelingen deel 2 1 Tweede college herhaling A B A B A U vereniging A B doorsnede A B complement A c A B A B 2 verschil A-B A\B symmetrisch verschil A B = (A-B) (B-A) redeneren met Venn diagrammen Toon

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

Mededelingen. TI1300: Redeneren en Logica. Metavariabelen Logica, p Minder connectieven nodig

Mededelingen. TI1300: Redeneren en Logica. Metavariabelen Logica, p Minder connectieven nodig Mededelingen TI1300: Redeneren en Logica College 5: Semantiek van de Propositielogica Tomas Klos Algoritmiek Groep Tip: Als ik je vraag de recursieve definitie van een functie over PROP op te schrijven,

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

Grafen en BFS. Mark Lekkerkerker. 24 februari 2014

Grafen en BFS. Mark Lekkerkerker. 24 februari 2014 Grafen en BFS Mark Lekkerkerker 24 februari 2014 1 Grafen Wat is een graaf? Hoe representeer je een graaf? 2 Breadth-First Search Het Breadth-First Search Algoritme Schillen De BFS boom 3 Toepassingen

Nadere informatie

Automaten & Complexiteit (X )

Automaten & Complexiteit (X ) Automaten & Complexiteit (X 401049) Beschrijven van reguliere talen Jeroen Keiren j.j.a.keiren@gmail.com VU University Amsterdam 5 Februari 2015 Talen Vorig college: Talen als verzamelingen Eindige automaten:

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 8 december 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Minimum Spanning Tree

Minimum Spanning Tree Minimum Spanning Tree Wat is MST? Minimum spanning tree De meest efficiënte manier vinden om een verbonden netwerk op te bouwen Wat is een tree/boom? Graaf G: een verzameling knopen (vertices): V een verzameling

Nadere informatie

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden.

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden. . a) Een Fibonacci boom (niet te verwarren met een Fibonacci queue) van hoogte h is een AVL-boom van hoogte h met zo weinig mogelijk knopen. i. Geefvoorh =,,,,eenfibonacciboomvanhoogteh(eenboombestaande

Nadere informatie

Algoritmiek. 15 februari Grafen en bomen

Algoritmiek. 15 februari Grafen en bomen Algoritmiek 15 februari 2019 Grafen en bomen 1 Grafen (herhaling) Een graaf G wordt gedefinieerd als een paar (V,E), waarbij V een eindige verzameling is van knopen (vertices) en E een verzameling van

Nadere informatie

opgaven formele structuren deterministische eindige automaten

opgaven formele structuren deterministische eindige automaten opgaven formele structuren deterministische eindige automaten Opgave. De taal L over het alfabet {a, b} bestaat uit alle strings die beginnen met aa en eindigen met ab. Geef een reguliere expressie voor

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde op donderdag 13 april 2017, 14.30-17.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

Processoren. Marc Seutter & David N. Jansen 12 November 2013

Processoren. Marc Seutter & David N. Jansen 12 November 2013 Processoren Marc Seutter & David N. Jansen 12 November 2013 Leerdoel opbouw van de hardware in een computer je construeert een (eenvoudige) processor je schrijft een (kort) assembly-programma je kunt uitleggen:

Nadere informatie

Formeel Denken 2013 Uitwerkingen Tentamen

Formeel Denken 2013 Uitwerkingen Tentamen Formeel Denken 201 Uitwerkingen Tentamen (29/01/1) 1. Benader de betekenis van de volgende Nederlandse zin zo goed mogelijk (6 punten) door een formule van de propositielogica: Het is koud, maar er ligt

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3 Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3 Koen Rutten, Aris van Dijk 30 mei 2007 Inhoudsopgave 1 Verzamelingen 2 1.1 Definitie................................ 2 1.2 Eigenschappen............................

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Logic for Computer Science

Logic for Computer Science Logic for Computer Science 06 Normaalvormen en semantische tableaux Wouter Swierstra University of Utrecht 1 Vorige keer Oneindige verzamelingen 2 Vandaag Wanneer zijn twee formules hetzelfde? Zijn er

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde II op donderdag 6 juli 2017, 13.30-16.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Friendly Functions and Shared BDD s

Friendly Functions and Shared BDD s Friendly Functions and Shared BDD s Bob Wansink 19 Juni 2010 Deze notitie behandelt pagina s 81 tot 84 van The Art of Computer Programming, Volume 4, Fascicle 1 van Donald E. Knuth. Inhoudelijk gaat het

Nadere informatie

Modeluitwerking Tentamen Computationele Intelligentie Universiteit Leiden Informatica Vrijdag 11 Januari 2013

Modeluitwerking Tentamen Computationele Intelligentie Universiteit Leiden Informatica Vrijdag 11 Januari 2013 Modeluitwerking Tentamen Computationele Intelligentie Universiteit Leiden Informatica Vrijdag Januari 20 Opgave. Python Gegeven is de volgende (slechte) Python code:. def t(x): 2. def p(y):. return x*y

Nadere informatie

De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica

De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica College 7: Resolutie Tomas Klos Algoritmiek Groep De Resolutiemethode De resolutiemethode is een methode waarmee je

Nadere informatie

Logica voor Informatica. Propositielogica. Normaalvormen en Semantische tableaux. Mehdi Dastani

Logica voor Informatica. Propositielogica. Normaalvormen en Semantische tableaux. Mehdi Dastani Logica voor Informatica Propositielogica Normaalvormen en Semantische tableaux Mehdi Dastani m.m.dastani@uu.nl Intelligent Systems Utrecht University Literals Een literal is een propositieletter, of de

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

Elfde college complexiteit. 23 april NP-volledigheid III

Elfde college complexiteit. 23 april NP-volledigheid III college 11 Elfde college complexiteit 23 april 2019 NP-volledigheid III 1 TSP Als voorbeeld bekijken we het Travelling Salesman/person Problem, ofwel het Handelsreizigersprobleem TSP. Hiervoor geldt: TSP

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Fundamenten van de Informatica

Fundamenten van de Informatica Fundamenten van de Informatica Luc De Raedt Academiejaar 2006-2007 naar de cursustekst van Karel Dekimpe en Bart Demoen A.1: Talen en Eindige Automaten 1 Deel 1: Inleiding 2 Motivatie Fundamenten van de

Nadere informatie

Radboud Universiteit Nijmegen

Radboud Universiteit Nijmegen Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica L(,1)-labeling van grafen Naam: Studentnummer: Studie: Begeleider: Myrte klein Brink 4166140 Bachelor Wiskunde Dr.

Nadere informatie

17 Operaties op bits. 17.1 Bitoperatoren en bitexpressies

17 Operaties op bits. 17.1 Bitoperatoren en bitexpressies 17 Operaties op bits In hoofdstuk 1 is gezegd dat C oorspronkelijk bedoeld was als systeemprogrammeertaal om het besturingssysteem UNIX te implementeren. Bij dit soort toepassingen komt het voor dat afzonderlijke

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2010 2011, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Vandaag Kortste Paden probleem All pairs / Single Source / Single Target versies DP algoritme voor All Pairs probleem (Floyd s algoritme) Dijkstra s algoritme voor Single Source Negatieve

Nadere informatie

1 Groepen van orde 24.

1 Groepen van orde 24. 1 1 Groepen van orde 24. Als G een groep van orde 24 is, dan zeggen de stellingen van Sylov: Het aantal 2-Sylow-groepen van G is 1 modulo 2 en bovendien een deler van 24, dus bedraagt 1 of 3. Het aantal

Nadere informatie

Combinatorische Algoritmen: Binary Decision Diagrams, Deel III

Combinatorische Algoritmen: Binary Decision Diagrams, Deel III Combinatorische Algoritmen: Binary Decision Diagrams, Deel III Sjoerd van Egmond LIACS, Leiden University, The Netherlands svegmond@liacs.nl 2 juni 2010 Samenvatting Deze notitie beschrijft een nederlandse

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

Automaten & Complexiteit (X )

Automaten & Complexiteit (X ) Automaten & Complexiteit (X 401049) Inleiding Jeroen Keiren j.j.a.keiren@vu.nl VU University Amsterdam Materiaal Peter Linz An Introduction to Formal Languages and Automata (5th edition) Jones and Bartlett

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

Het minimale aantal sleutels op niveau h is derhalve

Het minimale aantal sleutels op niveau h is derhalve 1 (a) In een B-boom van orde m bevat de wortel minimaal 1 sleutel en maximaal m 1 sleutels De andere knopen bevatten minimaal m 1 sleutels en maximaal m 1 sleutels (b) In een B-boom van orde 5 bevat elke

Nadere informatie

Termherschrijfsystemen en Propositie-Algebra

Termherschrijfsystemen en Propositie-Algebra Termherschrijfsystemen en Propositie-Algebra Evalien IJsendijk 19 augustus 2010 Bachelorscriptie Begeleiding: dr. Alban Ponse x y z u v x y v z x u v KdV Instituut voor Wiskunde Faculteit der Natuurwetenschappen,

Nadere informatie

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking 10 december 2013, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

Logica voor Informatica

Logica voor Informatica Logica voor Informatica 13 Prolog Wouter Swierstra University of Utrecht 1 Programmeren met Logica Propositielogica is niet geschikt voor programmeren er is nauwlijkst iets interessants uit te drukken.

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

Het omzetten van reguliere expressies naar eindige automaten, zie de vakken Fundamentele Informatica 1 en 2.

Het omzetten van reguliere expressies naar eindige automaten, zie de vakken Fundamentele Informatica 1 en 2. Datastructuren 2016 Programmeeropdracht 3: Patroonherkenning Deadlines. Woensdag 23 november 23:59, resp. vrijdag 9 december 23:59. Inleiding. Deze opdracht is gebaseerd op Hoofdstuk 13.1.7 in het boek

Nadere informatie

Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4

Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4 Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4 Jonathan K. Vis 1 Inleiding (blz. 70 72) In dit essay behandelen we bladzijden 70 75 van Donald E. Knuth

Nadere informatie

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort College 7 Zevende college complexiteit 17 maart 2008 Ondergrens sorteren, Quicksort 1 Sorteren We bekijken sorteeralgoritmen gebaseerd op het doen van vergelijkingen van de vorm A[i] < A[j]. Aannames:

Nadere informatie

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen Tentamen Grondslagen van de Wiskunde A, met uitwerkingen 8 december 2015, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

Examen Complexe Analyse (September 2008)

Examen Complexe Analyse (September 2008) Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst

Nadere informatie