Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie"

Transcriptie

1 Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie 22 februari 2009 INDUCTIE & RECURSIE Paragrafen Discrete Structuren Week 3: Inductie & Recursie

2 Onderwerpen Loopinvarianten Mathematische inductie Ordes van grootte Recursieve definities Recurrente betrekkingen Volledige inductie Discrete Structuren Week 3: Inductie & Recursie 1

3 Lusinvariant Discrete Structuren Week 3: Inductie & Recursie 2

4 Lusinvariant Discrete Structuren Week 3: Inductie & Recursie 3

5 Inductie Is een veelvoud van 10? Is de volgende stelling waar? Theorem 1. n 5 n is deelbaar door 5 voor alle n N. Gedachtenexperiment: we testen de bewering n 5 n is deelbaar door 5 voor 1 n, met een computerprogramma. begin n:=1 ; while n < do if n 5 n is een veelvoud van 5 then n:=n+1 end Discrete Structuren Week 3: Inductie & Recursie 4

6 Stel n = n +1 Als I = n 5 n is deelbaar door 5 een invariant is, moet na iedere iteratie gelden waar I bij aanvang waar is, ook I aan het eind waar zijn, dus n 5 n is deelbaar door 5 (n +1) 5 (n +1) is deelbaar door 5 (n +1) 5 (n +1) = n 5 +5n 4 +10n 3 +10n 2 +5n +1 n 1 = (n 5 n) +5(n 4 +2n 3 +2n 2 +n) Als n 5 n is deelbaar door 5 dan ook (n +1) 5 (n +1), want 5(n 4 +2n 3 +2n 2 +n) is ook deelbaar door 5. Discrete Structuren Week 3: Inductie & Recursie 5

7 Voor willekeurig grote getallen kan het volgende programma uitkomst bieden: n:=1 ; while 1 n do if n 5 n is een veelvoud van 5 then n:=n+1 In het algemeen zouden we willekeurige beweringen p(k),m k < n kunnen bewijzen met het programma: begin k:=m ; {p(k) is waar} while m k <n do if p(k) is waar then n:=n+1 end Discrete Structuren Week 3: Inductie & Recursie 6

8 Voor de invariant p(k) volstaat het om te bewijzen dat: (B) p(m) is waar en (I) p(k +1) is waar indien p(k) waar is en m k < n. Discrete Structuren Week 3: Inductie & Recursie 7

9 Beperkte & volledige inductie (B) - basisstap (I) - inductiestap (H) - inductiehypothese Theorem 2. [Het principe van eindige (beperkte) inductie]. Als p(m),p(m + 1),...,p(n) een eindige rij proposities is met (B) p(m) is waar en (I) Uit de waarheid van p(k) (H) en m k < n volgt p(k +1) is waar, dan zijn alle proposities waar. Discrete Structuren Week 3: Inductie & Recursie 8

10 Theorem 3. [Het principe van volledige inductie]. Als p(m), p(m + 1),... een oneindige rij proposities is met (B) p(m) is waar en (I) Uit de waarheid van p(k) en m k volgt p(k +1) is waar, dan zijn alle proposities waar. Discrete Structuren Week 3: Inductie & Recursie 9

11 Voorbeeld 1 Theorem 4. Voor elk positief geheel getal n 4 geldt: n! > 2 n Het bewijs verloopt met inductie naar de grootte van n. (B) n = 4. Te bewijzen 4! > 2 4 check! (I) n > 4. Gegeven: (H) = k! > 2 k en 4 k Te bewijzen (k +1)! > 2 ( k +1) c (k +1)! = k! (k +1) > 2 k (k +1) [ inductie hypothese: k! > 2 k ] 2 k 2 [ omdat k +1 5 > 2] = 2 k+1 Dus p(k +1) is waar. Discrete Structuren Week 3: Inductie & Recursie 10

12 Voorbeeld Ordes Theorem 5. 2 n < n! < n n voor alle n 4 Bewijs: 1. Te bewijzen: 2 n < n! 1 Voor n = 4 krijgen we 16 < 24 < 256. Voor n > 4 geldt: n! = (4!) (n 1) n De eerste factor 4! is groter dan 2 4 en de overige n 4 factoren zijn groter dan 2. Dus: n! > n 4 = 2 n 2. Te bewijzen: n! < n n Alle factoren van n n, op één na, zijn groter dan die van n!. 1 2 n < n! is met theorema 5 bewezen (met volledige inductie). Discrete Structuren Week 3: Inductie & Recursie 11

13 Orde 2 Theorem 6. Voor alle natuurlijke getallen n geldt: 4 n 3 n n n n 2 n 3 n 4... Discrete Structuren Week 3: Inductie & Recursie 12

14 Theorem 7. Er is een ordening van rijen, zodat voor elke element van een rij geldt dat het kleiner of gelijk is dan het overeenkomstige element in alle rijen aan haar rechterzijde: 1, log 2 n, 4 n, 3 n, n,n,nlog 2 n,n n,n 2,n 3,n 4,...,2 n,n!,n n Om aan te geven dat een rij op de lange duur niet sneller groeit dan een andere rij gebruiken we de grote O-notatie Discrete Structuren Week 3: Inductie & Recursie 13

15 Definition 1. [Grote O]. Als s een rij is van reële getallen en a een rij van positieve reële getallen, dan schrijven we: 2 s(n) = O(a(n)) = def C,k n > k ( s(n) C a(n)) 2x = O(x 2 ) 2 En we spreken uit: s(n) is in grote O van a(n) Discrete Structuren Week 3: Inductie & Recursie 14

16 Polynomiale groei 6n 4 +20n = O(n 4 ) Want er zijn een C en k te vinden zodat 6n 4 +20n C n 4 voor alle n k Voor C = 7 en n = 8 geldt: k 8 = 6n 4 +20n n 4 Alleen de exponent van de dominante term bepaalt dus de orde. Discrete Structuren Week 3: Inductie & Recursie 15

17 Alleen de exponent van de dominante term bepaalt dus de orde. Theorem 8. [Polynomiale groei]. Beschouw het polynoom s(n) = a m n m +a m 1 n m a 0 in n en met de graad m (met a m = 0) Dan hebben we: En dus geldt: s(n) a m n m + a m 1 n m a 0 ( a m + a m a 0 ) n m s(n) = O(n m ) Discrete Structuren Week 3: Inductie & Recursie 16

18 Grote theta We willen uitdrukken dat s(n) en a(n) groeien met dezelfde orde. Definition 2. s(n) = Θ(a(n)) = def s(n) = O(a(n)) en a(n) = O(s(n)) Voorbeelden: 1. 3n 2 +15n = O(n 2 ), maar n 2 3n 2 3n 2 +15n Dus: n 2 = O(3n 2 +15n) En daarom ook: 3n 2 +15n = Θ(n 2 ) 2. Als s(n) = a m n m +a m 1 n m a 0 met a m = 0, dan s(n) = O(n m ) Maar ook n m = (1/a m ) a m n m (1/a m ) s(n). Dus: n m = O(s(n)) en daarom ook: s(n) = Θ(n m ) Discrete Structuren Week 3: Inductie & Recursie 17

19 Theorem 9. Als a(n) en b(n) rijen positieve getallen zijn en als: 1. s(n) = O(a(n)) en c is een constante dan c s(n) = O(a(n)) 2. s(n) = O(a(n)) en t(n) = O(a(n)) dan s(n) +t(n) = O(a(n)) 3. s(n) = O(a(n)) en t(n) = O(b(n)) dan s(n) +t(n) = O(max(a(n),b(n))) 4. s(n) = O(a(n)) en t(n) = O(b(n)) dan s(n) t(n) = O(a(n) b(n)) Idem voor Θ (bewijs in beide richtingen). Discrete Structuren Week 3: Inductie & Recursie 18

20 Recursieve Definities Definition 3. [Recursieve Rij]. Een rij is recursief gedefinieerd als er: (B) Er een eindige verzameling (begin-)waarden is aangegeven. (R) De overige waarden van de rij worden gedefinieerd in termen van eraan voorafgaande. Zo n formule heet een recurrente betrekking. Voorbeeld: We definiëren de rij faculteit recursief. (B) FACT(0) = 1 (R) FACT(n +1) = (n +1) FACT(n) voor n > 0 Discrete Structuren Week 3: Inductie & Recursie 19

21 Theorem 10. FACT(n) = n! voor n N Bewijs: (B) FACT(0) = 1 = 0! (H) FACT(m) = m! (hyp) (I) Te bewijzen: FACT(m +1) = (m +1)! FACT(m +1) = (m +1) FACT(m) [Stap (R) : m +1 1] = (m +1) m! [ind. hyp (H)] = (m +1)! Discrete Structuren Week 3: Inductie & Recursie 20

22 Voorbeeld Beschouw de rij SUM(n) = n 1 i! i=0 Een computerprogramma voor het berekenen van de rij kan gebaseerd zijn op de recursieve definitie: (B) SUM(0) = 1 (R) SUM(n +1) = 1 (n+1)! + SUM(n) voor n > 0 Maar dan wordt voor iedere n FACT(n) berekend. Het volgende programma combineert beide berekeningen. {Input:een integer n 0} {Output:SUM,de som k+1 i=0 1 i! } begin Discrete Structuren Week 3: Inductie & Recursie 21

23 i:=0 ; SUM:=0 ; FACT:=1 ; {FACT = i!} while i n do SUM:=SUM +1/FACT ; FACT:= (i +1). FACT ; i:=i+1 return SUM end Discrete Structuren Week 3: Inductie & Recursie 22

24 Voorbeelden De rij Fibonacci is als volgt gedefinieerd. (B) FIB(1) = FIB(2) = 1 (R) FIB(n) = FIB(n 1) + FIB(n 2) voor n 3 De rij kan zo worden gedefinieerd: 1,1,2,2,3,3,... (B) SEQ(0) = SEQ(1) = 0 (R) SEQ(n) = 1+ SEQ(n 2) voor n 2 Discrete Structuren Week 3: Inductie & Recursie 23

25 Recurrentie relaties We willen proberen voor recurrente betrekkingen proberen formules te vinden die niet afhankelijk zijn van de oplossingen in een voorgaande stap. We kijken naar relaties van de vorm: s n = as n 1 +bs n 2 waarin a en b constanten zijn. De gevallen a = 0 en b = 0 zijn makkelijk. Als b = 0 dan s n = a s n 1 voor n 1 s 1 = as 0, s 2 = as 1 = a 2 s 0, dus s n = a n s 0 voor alle n N Als a = 0 dan s 2 = bs 0, s 4 = bs 1 = b 2 s 0, dus s 2n = b n s 0 voor alle n N Evenzo: s 3 = bs 1, s 5 = bs 3 = b 2 s 1, dus s 2n+1 = b n s 1 voor alle n N Maar als a = 0 en b = 0 dan zouden we kunnen hopen op iets van de vorm s n = c r n. Dat geeft: r n = ar n 1 +br n 2 Delen door r n 2 geeft: r 2 = ar +b Ofwel de karakteristieke vergelijking: r 2 ar b = 0 Discrete Structuren Week 3: Inductie & Recursie 24

26 Recurrentie relaties 2 Theorem 11. Beschouw: s n = as n 1 +bs n 2 met karakteristieke vergelijking x 2 ax b = 0 met a = 0 en b = 0 Als de karakteristieke functie twee wortels, r 1 en r 2 heeft, dan zijn er constanten c 1 en c 2 zodat: s n = c 1 r1 n +c 2 r2 n voor n N Als s 0 en s 1 gegeven zijn, kunnen daarmee c 1 en c 2 worden opgelost. Als de karakteristieke functie één wortel, r heeft, dan zijn er constanten c 1 en c 2 zodat: s n = c 1 r n +c 2 n r n voor n N Discrete Structuren Week 3: Inductie & Recursie 25

27 Voorbeeld Fibonacci Stel s 0 = 0 en s n = FIB(n) voor n 1 Dan: s n = s n 1 +s n 2 voor n 1 Dus: a = b = 1 en we lossen x 2 x 1 = 0 op r 1 = en r 2 = Deel a van de stelling is van toepassing: s n = c 1 r n 1 +c 2 r n 2 = c 1 ( c 1 en c 2 zijn op te lossen door n = 0 en n = 1 te kiezen: ) n ( ) n 1 5 +c 2 voor n N 2 0 = c 1 +c 2 en 1 = c 1 r 1 +c 2 r 2 Discrete Structuren Week 3: Inductie & Recursie 26

28 0 = c 1 +c 2 en 1 = c 1 r 1 +c 2 r 2 We vervangen c 2 door c 1 in de rechter vergelijking en we krijgen: 1 = c 1 r 1 c 1 r 2 = c 1 (r 1 r 2 ) En dus: c 1 = 1 r 1 r 2 Omdat r 1 r 2 = 5, concluderen we dat c 1 = 1/ 5 en c 2 = 1/ 5 s(n) = c 1 r 1 c 1 r 2 = 1 5 r n r n 2 = 1 5 (r n 1 r n 2) voor n 1 [ (1 FIB(n) = 1 ) n ( ) n ] voor n 1 Discrete Structuren Week 3: Inductie & Recursie 27

29 Bewijs theorema 7 (a) Er zijn twee wortels r 1 en r 2. (B) Uit: s 0 = c 1 +c 2 en s 1 = c 1 r 1 +c 2 r 2 kunnen c 1 en c 2 worden opgelost. Voor r 1 geldt: als x = r 1 dan x 2 = ax +b, Dus hebben we: r1 n = arn 1 1 +br n 2 1 Evenzo r2 n (I) as n 1 +bs n 2 = a(c 1 r n 1 1 +c 2 r n 1 2 ) +b(c 1 r n 2 1 +c 2 r n 2 2 ) = c 1 (ar n 1 1 +br n 2 2 ) +c 2 (ar n 1 1 +br n 2 2 ) = c 1 r n 1 +c 2 r n 2 = s n Discrete Structuren Week 3: Inductie & Recursie 28

30 (b) Er is één wortel r met karakteristieke functie (x r) 2 = 0 Dus de vergelijkingen x 2 2rx +r 2 en x 2 ax b zijn dezelfde. We krijgen a = 2r en b = r 2. De recurrentierelatie wordt dan: s n = 2rs n 1 r 2 s n 2 (B) Invullen van n = 0 en n = 1 in: s n = c 1 r n +c 2 n r n geeft: s 0 = c 1 en s 1 = c 1 r +c 2 r Dus voor c 1 = s 0 en c 2 = s 0 +s 1 /r voldoet de stelling. Discrete Structuren Week 3: Inductie & Recursie 29

31 (I) Nog te bewijzen: s n = c 1 r n +c 2 n r n voor n > 1 s n = 2rs n 1 r 2 s n 2 = 2r(c 1 r n 1 +c 2 (n 1)r n 1 ) r 2 (c 1 r n 2 +c 2 (n 2)r n 2 ) = 2c 1 r n +2c 2 (n 1)r n c 1 r n c 2 (n 2)r n = c 1 r n +c 2 n r n = s n Discrete Structuren Week 3: Inductie & Recursie 30

32 Inductie revisited Definition 4. [Eerste principe van volledige inductie]. Stel m is een geheel getal en p(n) een rij proposities gedefinieerd op {n Z : n m}. Als: (B) p(m) is waar en (I) p(k) volgt uit de waarheid van p(k 1) voor k m, dan zijn alle proposities p(n) waar voor n m. Definition 5. [Tweede principe van volledige inductie]. Stel m is een geheel getal en p(n) een rij proposities gedefinieerd op {n Z : n m}. Als: (B) p(m) is waar en (I) p(k) volgt uit p(m),...,p(k 1) voor k m, dan zijn alle proposities p(n) waar voor n m. Discrete Structuren Week 3: Inductie & Recursie 31

33 driemaal is scheepsrecht Definition 6. [Tweede principe van volledige inductie]. Stel m is een geheel getal en p(n) een rij proposities gedefinieerd op {n Z : n m} en l is een niet negatief geheel getal. Als:, (B) p(m),...,p(m +l) zijn waar en (I) p(k) > m+l volgt uit de waarheid van p(m),...,p(k 1) voor k m dan zijn alle proposities p(n) waar voor n m. Discrete Structuren Week 3: Inductie & Recursie 32

34 Bewijs tweede principe van volledige inductie Stel: (B) p(m),...p(m +l) zijn allemaal waar (I) voor k > m +l als p(k) waar is als p(m),...p(k 1) maar p(n) is onwaar voor een n m Dan is de verzameling S = {n Z : n m en p(n) is onwaar} niet leeg. Volgens het welordeningsprincipe heeft S een kleinste element n 0. Vanwege (B) moet n 0 > m +l Omdat p(n) geldt voor m n n 0 moet volgens (I) ook p(n 0 ) waar zijn. Dat houdt in dat n 0 / S Tegenspraak. Dus als (B) en (I) waar zijn, is elke p(n) waar. Discrete Structuren Week 3: Inductie & Recursie 33

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 BEWIJZEN Discrete Structuren Week1 : Bewijzen Onderwerpen Puzzels

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN II NATUURLIJKE, GEHELE EN RATIONALE GETALLEN Iedereen ent getallen: de natuurlije getallen, N = {0,1,2,3,...}, gebruien we om te tellen, om getallen van elaar af te unnen treen hebben we de gehele getallen,

Nadere informatie

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ.

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ. Tweede Toets Datastructuren 29 juni 2016, 13.30 15.30, Educ-Γ. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Een eenvoudig algoritme om permutaties te genereren

Een eenvoudig algoritme om permutaties te genereren Een eenvoudig algoritme om permutaties te genereren Daniel von Asmuth Inleiding Er zijn in de vakliteratuur verschillende manieren beschreven om alle permutaties van een verzameling te generen. De methoden

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die

Nadere informatie

Inleiding logica Inleveropgave 3

Inleiding logica Inleveropgave 3 Inleiding logica Inleveropgave 3 Lientje Maas 30 september 2013 Ik (Rijk) heb verbeteringen in rood vermeld. Deze verbeteringen meegenomen zijn dit correcte uitwerkingen van de derde inleveropgaven. 1

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

8.0 Voorkennis ,93 NIEUW

8.0 Voorkennis ,93 NIEUW 8.0 Voorkennis Voorbeeld: In 2014 waren er 12.500 speciaalzaken. Sinds 2012 is het aantal speciaalzaken afgenomen met 7%. Bereken hoeveel speciaalzaken er in 2012 waren. Aantal 2014 = 0,93 Aantal 2012

Nadere informatie

1 Inleiding in Functioneel Programmeren

1 Inleiding in Functioneel Programmeren 1 Inleiding in Functioneel Programmeren door Elroy Jumpertz 1.1 Inleiding Aangezien Informatica een populaire minor is voor wiskundestudenten, leek het mij nuttig om een stukje te schrijven over een onderwerp

Nadere informatie

Het getal e. Kees Kramer, Albert-Jan Yzelman en Robin Zeeman 6 september 2004

Het getal e. Kees Kramer, Albert-Jan Yzelman en Robin Zeeman 6 september 2004 Het getal e Kees Kramer, Albert-Jan Yzelman en Robin Zeeman 6 september 2004 Geschiedenis van e In dit onderdeel gaan we kijken naar de geschiedenis van het getal van Euler, e. Vreemd genoeg is het zo,

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig ... Oneindig 2 Top tien

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch staan. Die

Nadere informatie

Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras

Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras Bart Zevenhek 0 februari 008 Samenvatting In deze vier artikelen wordt ingegaan op enkele getaltheoretische eigenschappen

Nadere informatie

Finaletraining Nederlandse Wiskunde Olympiade

Finaletraining Nederlandse Wiskunde Olympiade NEDERLANDSE W I S K U N D E OLYMPIADE Finaletraining Nederlandse Wiskunde Olympiade Met uitwerkingen Birgit van Dalen, Julian Lyczak, Quintijn Puite Dit trainingsmateriaal is deels gebaseerd op materiaal

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

Genererende Functies K. P. Hart

Genererende Functies K. P. Hart genererende_functies.te 27--205 Z Hoe kun je een rij getallen zo efficiënt mogelijk coderen? Met behulp van functies. Genererende Functies K. P. Hart Je kunt rijen getallen op diverse manieren weergeven

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Priemontbinding en ggd s

Priemontbinding en ggd s Hoofdstuk 3 Priemontbinding en ggd s 3.1 Priemgetallen Een getal > 1 dat alleen 1 en zichzelf als positieve deler heeft noemen we een priemgetal. De rij priemgetallen begint als volgt, 2, 3, 5, 7, 11,

Nadere informatie

Propositionele logica en predikatenlogica. 1. Noteer volgende Nederlandse uitspraken formeel m.b.v. propositionele logica :

Propositionele logica en predikatenlogica. 1. Noteer volgende Nederlandse uitspraken formeel m.b.v. propositionele logica : HOOFDSTUK 4. LOGICA Opgaven Propositionele logica en predikatenlogica 1. Noteer volgende Nederlandse uitspraken formeel m.b.v. propositionele logica : a) Als de maan ichtbaar is en het niet sneeuwt, al

Nadere informatie

Elliptische krommen en hun topologische aspecten

Elliptische krommen en hun topologische aspecten Elliptische krommen en hun topologische aspecten René Pannekoek 25 januari 2011 Dit is een korte introductie tot elliptische krommen voor het bachelorseminarium van de Universiteit Leiden. De bespreking

Nadere informatie

10 Meer over functies

10 Meer over functies 10 Meer over functies In hoofdstuk 5 hebben we functies uitgebreid bestudeerd. In dit hoofdstuk bekijken we drie andere aspecten van functies: recursieve functies dat wil zeggen, functies die zichzelf

Nadere informatie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie Hoofdstuk 5 Recursion I N T R O D U C T I E Veel methoden die we op een datastructuur aan kunnen roepen, zullen op een recursieve wijze geïmplementeerd worden. Recursie is een techniek waarbij een vraagstuk

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe

Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging 1.1.3 De ordening van de gehele getallen 1.1.4 Het axioma van de goede ordening 1.2 Recursieve

Nadere informatie

Dossier 3 PRIEMGETALLEN

Dossier 3 PRIEMGETALLEN Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,

Nadere informatie

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade Katernen voor de regionale training ten behoeve van de tweede ronde van de Nederlandse Wiskunde Olympiade NEDERLANDSE WISKUNDE OLYMPIADE Birgit van Dalen Julian Lyczak Quintijn Puite Inhoudsopgave Katern

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Set 1 Inleveropgaven Kansrekening (2WS20)

Set 1 Inleveropgaven Kansrekening (2WS20) 1 Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 1 Inleveropgaven Kansrekening (2WS20) 2014-2015 1. (Het sleutelprobleem) In een denkbeeldige wedstrijd kunnen deelnemers auto s

Nadere informatie

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet.

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet. Les C-02: Werken met Programma Structuur Diagrammen 2.0 Inleiding In deze lesbrief bekijken we een methode om een algoritme zodanig structuur te geven dat er gemakkelijk programmacode bij te schrijven

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

Small Basic Console Uitwerking opdrachten

Small Basic Console Uitwerking opdrachten Opdracht 1 3 getallen => inlezen Gemiddelde uitrekenen Resultaat afdrukken TextWindow.WriteLine("Dit programma berekend het gemiddelde van drie door U in te voeren getallen.") TextWindow.Write("Voer getal

Nadere informatie

3 De stelling van Kleene

3 De stelling van Kleene 18 3 De stelling van Kleene Definitie 3.1 Een formele taal heet regulier als hij wordt herkend door een deterministische eindige automaat. Talen van de vorm L(r) met r een reguliere expressie noemen we

Nadere informatie

Niet-standaard analyse (Engelse titel: Non-standard analysis)

Niet-standaard analyse (Engelse titel: Non-standard analysis) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Niet-standaard analyse (Engelse titel: Non-standard analysis) Verslag ten behoeve

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Geef een goede onderbouwing van je antwoorden. Succes! 1. (a) (10 pt) Ontbindt het polynoom X 3 3X+3 in irreducibele factoren in Q[X] en in

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties Hoofdstuk 6 Congruentierekening 6.1 Congruenties We hebben waarschijnlijk allemaal wel eens opgemerkt dat bij vermenigvuldigen van twee getallen de laatste cijfers als het ware meevermenigvuldigen. Stel

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c Een Minimaal Formalisme om te Programmeren We hebben gezien dat Turing machines beschouwd kunnen worden als universele computers. D.w.z. dat iedere berekening met natuurlijke getallen die met een computer

Nadere informatie

BEWIJZEN EN REDENEREN

BEWIJZEN EN REDENEREN BEWIJZEN EN REDENEREN voor Bachelor of Science in Fysica en Wiskunde Academiejaar 2012/2013 Arno KUIJLAARS Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Heverlee Inhoudsopgave

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

PHP herhaalt: for en while

PHP herhaalt: for en while PHP herhaalt: for en while Huub de Beer Eindhoven, 4 juni 2011 Iteratie, repetitie en loops PHP herhaalt Een voor een de elementen van een array doorlopen? Gebruik foreach-statement Tellen van een beginwaarde

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Paragraaf 9.1 : Twee soorten groei

Paragraaf 9.1 : Twee soorten groei Hoofdstuk 9 Exponentiële Verbanden (H5 Wis A) Pagina 1 van 9 Paragraaf 9.1 : Twee soorten groei Les 1 Lineaire en exponentiele groei Definitie Lijn = LINEAIRE GROEI Algemene formule van een lijn : y =

Nadere informatie

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr.

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr. Numerieke aspecten van de vergelijking van Cantor Opgedragen aan Th. J. Dekker H. W. Lenstra, Jr. Uit de lineaire algebra is bekend dat het aantal oplossingen van een systeem lineaire vergelijkingen gelijk

Nadere informatie

Vrije Universiteit Brussel Faculteit van de Wetenschappen Vakgroep Informatica. Deel 2a: Ontwerp van register machines

Vrije Universiteit Brussel Faculteit van de Wetenschappen Vakgroep Informatica. Deel 2a: Ontwerp van register machines Vrije Universiteit Brussel Faculteit van de Wetenschappen Vakgroep Informatica Deel 2a: Ontwerp van registermachines Interpretatie van Computerprogramma's I Theo D'Hondt p. 1 Register Machines registers

Nadere informatie

Dossier 1 SYMBOLENTAAL

Dossier 1 SYMBOLENTAAL Dossier 1 SYMBOLENTAAL basis voor wiskundige communicatie Dr. Luc Gheysens Wiskundigen hebben een eigen symbolentaal waarmee ze onderling communiceren, redeneringen en bewijzen neerschrijven, mathematische

Nadere informatie

Functies. Ch.3 Functions and Algorithms

Functies. Ch.3 Functions and Algorithms 3 Functies Ch.3 Functions and Algorithms Ch.3 Functions and Algorithms Inderdaad, algorithms heb ik doorgestreept. Het is een mooi onderwerp, maar komt hier bij de vakken Algoritmiek, Datastructuren, en

Nadere informatie

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen Universiteit Twente 2009-2010/2 Afdeling Informatica, Faculteit EWI Tentamen dinsdag 19 januari 2010, 8.45-12.15 Algoritmen, Datastructuren en Complexiteit (214020 en 214025) Uitwerkingen Bij dit tentamen

Nadere informatie

Alle opgaven tellen even zwaar, 10 punten per opgave.

Alle opgaven tellen even zwaar, 10 punten per opgave. WAT IS WISKUNDE (English version on the other side) Maandag 5 november 2012, 13.30 1.30 uur Gebruik voor iedere opgave een apart vel. Schrijf je naam en studentnummer op elk vel. Alle opgaven tellen even

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 3 De Nullstellensatz 1. De zwakke Nullstellensatz Stelling 1.1. Zij K een algebraïsch gesloten lichaam en zij I een ideaal in K[x] = K[x 1,...,

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

Lijst-kleuringen in de grafentheorie

Lijst-kleuringen in de grafentheorie Lijst-kleuringen in de grafentheorie Berrie Bottelier 16 juli 2014 Bachelorscriptie Begeleiding: dr. Guus Regts 4 5 6 1 2 3 Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen,

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

Prof. dr. H.W. Broer Instituut voor Wiskunde en Informatica Faculteit der Wiskunde en Natuurwetenschappen met dank aan Jan van Maanen en Pauline Vos

Prof. dr. H.W. Broer Instituut voor Wiskunde en Informatica Faculteit der Wiskunde en Natuurwetenschappen met dank aan Jan van Maanen en Pauline Vos Werken met getallen (en verzamelingen en oneindigheid) Prof. dr. H.W. Broer Instituut voor Wiskunde en Informatica Faculteit der Wiskunde en Natuurwetenschappen met dank aan Jan van Maanen en Pauline Vos

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato Algebra voor Informaticastudenten Getallen Jean Delville: de school van Plato Ernic Kamerich januari 2007 Inhoud 1 De gehele getallen..........................................................................

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

7 Omzetten van Recursieve naar Iteratieve Algoritmen

7 Omzetten van Recursieve naar Iteratieve Algoritmen 7 Omzetten van Recursieve naar Iteratieve Algoritmen Het lijkt mogelijk om elke oplossings-algoritme, die vaak in eerste instantie recursief geformuleerd werd, om te zetten in een iteratieve algoritme

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

INLEIDING TOT DE HOGERE WISKUNDE

INLEIDING TOT DE HOGERE WISKUNDE INLEIDING TOT DE HOGERE WISKUNDE DEEL : Analyse van functies van één veranderlijke Arno KUIJLAARS Stefaan POEDTS Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 300 Heverlee

Nadere informatie