Automaten & Complexiteit (X )

Maat: px
Weergave met pagina beginnen:

Download "Automaten & Complexiteit (X )"

Transcriptie

1 Automaten & Complexiteit (X ) Inleiding Jeroen Keiren VU University Amsterdam

2 Materiaal Peter Linz An Introduction to Formal Languages and Automata (5th edition) Jones and Bartlett 3 / 31

3 Informatie Docenten: Jeroen Keiren Wan Fokkink kamer: T453 T www: Werkcollegedocent: Franz Geiger Opbouw: 11 hoorcolleges 13 werkcolleges inleveropgaven (bonus: 0.1 punt/set, 1 set/week) schriftelijk tentamen Homepage: 4 / 31

4 Verwachtingen en Inhoud Individueel (2 min.) Bron: Schrijf 2 verwachtingen voor dit vak op In groepjes van 3 (5 min.) Introduceer jezelf aan je groepsgenoten Bespreek jullie verwachtingen voor dit vak. Identificeer overeenkomsten en verschillen Klassikaal (7 min.) Verzamel verwachtingen 5 / 31

5 Rode draad van dit vak Programmeren = algoritmes + logica Aan computer ligt universeel berekeningsmechanisme ten grondslag Verschillende toepassingen = verschillende formalismes: Patroonherkenning: reguliere talen Parseren: contextvrije talen, grammatica s Computerberekening: Turing machines RSA kraken: quantum-computer 6 / 31

6 Rode draad van dit vak Wat is er mogelijk met een computer? Sommige (op het oog simpele) problemen zijn onbeslisbaar (PCP, Predikaat logica) Sommige problemen zijn waarschijnlijk niet efficiënt oplosbaar door een computer (NP-compleetheid, TSP, Satisfiability) Nadruk ligt op constructies en algoritmes (ipv formele bewijzen) 7 / 31

7 Rode draad van dit vak Typische vragen die we beantwoorden: Wat is een (programmeer)taal? Hoe kunnen talen worden herkend door automaten (computers)? Welke problemen kunnen worden herkend door types automaten? Hoeveel tijd/geheugen kost dit oplossen? 8 / 31

8 Strings Een computerprogramma: neemt input-string produceert output-string bestaat uit string van symbolen String notatie: u, v, w, x, y, z eindige rij symbolen (a, b, c) uit (niet-leeg) eindig input alfabet Σ Lege string: λ Symbool: a Σ 9 / 31

9 Operaties op Strings (1) Concatenatie Als v = a 1 a n en w = b 1 b m, dan vw = a 1 a n b 1 b m Lengte a 1 a n = n λ = 0 va = v / 31

10 Operaties op Strings (2) Macht v k bestaat uit k concatenaties van v s v 0 = λ v k+1 = v k v Reverse (a 1 a n ) R = a n a 1 λ R = λ (va) R = av R 11 / 31

11 Formele talen Formele taal = verzameling strings Voorbeeld Alle parseerbare C programma s vormen een taal. Meer specifiek: Σ noteert de verzameling van alle strings over Σ (Formele) taal is deelverzameling van Σ 12 / 31

12 Dit vak Precies beschrijven en bestuderen van (meestal oneindige) talen: programmeertalen, specificatietalen,... Bij een taal kun je beschouwen: syntax: de vorm, welke strings zitten in de taal semantiek: de betekenis van strings in de taal Wij concentreren ons voorlopig op de syntax. 13 / 31

13 Formele talen: voorbeelden Laat Σ = {a, b} {ab, aab, bbaaabb} is (eindige) taal {ab n a n 1} is (oneindige) taal: {aba, abba, abbba, abbbba,...} {a n b n n 0} is (oneindige) taal: {λ, ab, aabb, aaabbb, aaaabbbb,...} 14 / 31

14 Operaties op talen (1) Taal is verzameling strings, dus,,,, \,... hebben betekenis voor talen Complement L: alle strings die niet in taal L zitten Concatenatie, reverse en macht voor talen: L 1 L 2 = {xy x L 1 y L 2 } L R = {x R x L} L 0 = {λ} L n+1 = L n L (n 0) Pas op: L 2 = {uv u, v L} {uu u L} 15 / 31

15 Operaties op talen (2) Kleene ster: L = L + = L i = L 0 L 1 L 2 L 3 i=0 L i = L 1 L 2 L 3 i=1 Dus L = L + {λ} 16 / 31

16 Vraag (In tweetallen, 2 min.) Laat Σ = {a, b} en L = {ab n n 0} Beschrijf de volgende talen als set: L R L L R L R Conclusie Verzamelingen zijn niet ideaal om (operaties op) talen te beschrijven. 17 / 31

17 Deterministic finite accepter Een deterministic finite accepter, kortweg dfa, bestaat uit: een eindige verzameling Q van toestanden een eindig input alfabet Σ elke toestand en elk symbool uit Σ geeft een resulterende toestand, beschreven door een transitiefunctie δ : Q Σ Q een starttoestand q 0 Q een verzameling F Q van eindtoestanden 18 / 31

18 Dfa als transitiegraaf Een dfa wordt getekend als een transitiegraaf, bestaande uit: toestanden pijlen met label uit Σ starttoestand heeft extra inkomende pijl. eindtoestanden als dubbel rondje Voorbeeld Σ = {a, b} q 1 a b a a b q 0 q 2 q 4 b b a a q 3 b 19 / 31

19 Vraag (Individueel, 2 min.) Geef een dfa die {a 2n+1, b 2n n 0} accepteert. 20 / 31

20 Reguliere talen Dfa M = (Q, Σ, δ, q 0, F ) definieert een taal (q, aw) (r, w) als δ(q, a) = r is de reflexief-transitieve afsluiting van De taal geaccepteerd door dfa M is L(M) = {w Σ (q 0, w) (r, λ) met r F } Taal L heet regulier als er een dfa M bestaat met L(M) = L. 21 / 31

21 Vraag (Quick questions, klassikaal) Laat Σ = {a, b} Laat zien dat de volgende talen regulier zijn: {λ} {a n b n 0} {w {a, b} w bevat een substring bab} {w {a, b} w bevat geen substring bab} 22 / 31

22 Stellingen voor reguliere talen Stelling Als L regulier is, dan is L ook regulier. Bewijs. L(M) = L voor een dfa M = (Q, Σ, δ, q 0, F ). N = (Q, Σ, δ, q 0, Q\F ) is een dfa met L(N) = L. Stelling Als L, L 1 en L 2 regulier zijn, dan zijn L 1 L 2, en L R ook regulier. Merk op: {a n b n n 0} is niet regulier. Intuïtie Een dfa heeft slechts een begrensd geheugen (de toestanden). Bewijzen van deze drie beweringen volgen later. 23 / 31

23 Vragen (Quick check, klassikaal) Geef een deterministic accepter met oneindig veel toestanden voor {a n b n n 0}. Is elke eindige taal regulier? 24 / 31

24 Nondeterministic finite accepter Dfa is deterministisch: elke string leidt tot precies één pad vanuit de starttoestand door de transitiegraaf, omdat bij elke q Q en elke a Σ precies één pijl uit q is met label a. (δ is een functie van Q Σ naar Q) In nondeterministic finite accepter, kortweg nfa: toestand kan nul of meerdere uitgaande pijlen hebben met hetzelfde label kan lege stappen bevatten: pijlen met label λ, die geen symbool uit de input-string opeten. Nfa s worden gebruikt in software engineering, en voor het modelleren van hardware circuits, compilers en netwerk-protocollen 25 / 31

25 Nondeterministic finite accepter Definitie van nfa = definitie dfa, behalve: δ : Q (Σ {λ}) 2 Q (2 Q is de verzameling van alle deelverzamelingen van Q.) (q, αw) (r, w) als r δ(q, α), met α Σ {λ}. Taal geaccepteerd door nfa M: L(M) = {w Σ (q 0, w) (r, λ) met r F } 26 / 31

26 Dfa s en nfa s zijn even expressief Stelling Een taal L wordt door een nfa geaccepteerd L is regulier. Constructie (Subsets) M = (Q, Σ, δ, q 0, F ) is een nfa. We construeren een dfa N D = (Q D, Σ, δ D, q 0D, F D ). Q D = 2 Q δ D (X, a) = {r Q (q, a) (r, λ) voor een q X } q 0D = {r Q (q 0, λ) (r, λ)} F D = {X Q X F } Voor elke w Σ en q Q geldt (q 0, w) (q, λ) (q 0D, w) (X, λ) met q X. Hieruit volgt L(N D ) = L(M). 27 / 31

27 Vraag (Quick check, klassikaal) Gegeven de volgende nfa b a q 0 λ q 1 b Construeer een dfa die dezelfde taal accepteert. 28 / 31

28 Tot slot (Individueel, 2 min.) Schrijf voor jezelf de 3 punten uit dit college op die jij het belangrijkst vindt. 29 / 31

29 Vooruit kijken Lees: Linz , Maak: Linz 1.2: 2, 4, 8, 10 Linz 2.1: 1, 2d, 3, 7b, 9b,f, 11 Linz 2.2: 12 Linz 2.3: 2, 3, 6, 12 Volgend college: Alternatieven voor beschrijven reguliere talen: reguliere expressies grammatica s 30 / 31

Automaten & Complexiteit (X )

Automaten & Complexiteit (X ) Automaten & Complexiteit (X 401049) Beschrijven van reguliere talen Jeroen Keiren j.j.a.keiren@gmail.com VU University Amsterdam 5 Februari 2015 Talen Vorig college: Talen als verzamelingen Eindige automaten:

Nadere informatie

De klasse van recursief opsombare talen is gesloten onder en. Dit bewijzen we met behulp van een recursieve opsomming

De klasse van recursief opsombare talen is gesloten onder en. Dit bewijzen we met behulp van een recursieve opsomming Recursieve talen De klasse van recursief opsombare talen is gesloten onder en. Echter, het is niet zo dat L recursief opsombaar is voor alle recursief opsombare talen L. Dit bewijzen we met behulp van

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

Inhoud eindtoets. Eindtoets. Introductie 2. Opgaven 3. Terugkoppeling 6

Inhoud eindtoets. Eindtoets. Introductie 2. Opgaven 3. Terugkoppeling 6 Inhoud eindtoets Eindtoets Introductie 2 Opgaven 3 Terugkoppeling 6 1 Formele talen en automaten Eindtoets I N T R O D U C T I E Deze eindtoets is bedoeld als voorbereiding op het tentamen van de cursus

Nadere informatie

Formeel Denken. Herfst 2004

Formeel Denken. Herfst 2004 Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 2002 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen Herfst 2004 Contents 1 Talen 1 1.1

Nadere informatie

TENTAMEN Basismodellen in de Informatica VOORBEELDUITWERKING

TENTAMEN Basismodellen in de Informatica VOORBEELDUITWERKING TENTAMEN Basismodellen in de Informatica vakcode: 211180 datum: 2 juli 2009 tijd: 9:00 12:30 uur VOORBEELDUITWERKING Algemeen Bij dit tentamen mag gebruik worden gemaakt van het boek van Sudkamp, van de

Nadere informatie

Automaten en Berekenbaarheid 2016 Oplossingen #4

Automaten en Berekenbaarheid 2016 Oplossingen #4 Automaten en Berekenbaarheid 2016 Oplossingen #4 28 oktober 2016 Vraag 1: Toon aan dat de klasse van context vrije talen gesloten is onder concatenatie en ster. Antwoord Meerdere manieren zijn mogelijk:

Nadere informatie

3 De stelling van Kleene

3 De stelling van Kleene 18 3 De stelling van Kleene Definitie 3.1 Een formele taal heet regulier als hij wordt herkend door een deterministische eindige automaat. Talen van de vorm L(r) met r een reguliere expressie noemen we

Nadere informatie

Automaten en Berekenbaarheid

Automaten en Berekenbaarheid Automaten en Berekenbaarheid Bart Demoen KU Leuven 2016-2017 Les 2: 20-35 reguliere expressies NFA DFA minimalisatie Van RE naar NFA I 2/11 structureel (als algebra s) zijn RegExp en de NFA s gelijk voor

Nadere informatie

opgaven formele structuren deterministische eindige automaten

opgaven formele structuren deterministische eindige automaten opgaven formele structuren deterministische eindige automaten Opgave. De taal L over het alfabet {a, b} bestaat uit alle strings die beginnen met aa en eindigen met ab. Geef een reguliere expressie voor

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 8 december 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 13 november 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Fundamenten van de Informatica

Fundamenten van de Informatica Fundamenten van de Informatica Luc De Raedt Academiejaar 2006-2007 naar de cursustekst van Karel Dekimpe en Bart Demoen A.1: Talen en Eindige Automaten 1 Deel 1: Inleiding 2 Motivatie Fundamenten van de

Nadere informatie

Stelling. SAT is NP-compleet.

Stelling. SAT is NP-compleet. Het bewijs van de stelling van Cook Levin zoals gegeven in het boek van Sipser gebruikt niet-deterministische turing machines. Het is inderdaad mogelijk de klasse NP op een alternatieve wijze te definiëren

Nadere informatie

Inhoud. Introductie tot de cursus

Inhoud. Introductie tot de cursus Inhoud Introductie tot de cursus 1 Plaats en functie van de cursus 7 2 Inhoud van de cursus 7 2.1 Tekstboek 7 2.2 Voorkennis 8 2.3 Leerdoelen 8 2.4 Opbouw van de cursus 9 3 Leermiddelen en wijze van studeren

Nadere informatie

IN2505 II Berekenbaarheidstheorie Tentamen Maandag 2 juli 2007, uur

IN2505 II Berekenbaarheidstheorie Tentamen Maandag 2 juli 2007, uur TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4 2628 CD Delft IN2505 II Berekenbaarheidstheorie Tentamen Maandag 2 juli 2007, 14.00-17.00 uur BELANGRIJK Beschikbare

Nadere informatie

Beslisbare talen (1) IN2505-II Berekenbaarheidstheorie. Beslisbare talen (2) Beslisbare talen (3) De talen: College 7

Beslisbare talen (1) IN2505-II Berekenbaarheidstheorie. Beslisbare talen (2) Beslisbare talen (3) De talen: College 7 Beslisbare talen (1) College 7 Algoritmiekgroep Faculteit EWI TU Delft 10 mei 2009 De talen: A DFA = { M, w M is een DFA die w accepteert} A NFA = { M, w M is een NFA die w accepteert} E DFA = { M M is

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 6A, paragraaf 4 (vervolg): Eindige automaten, gezien als multi-grafen Jan Terlouw woensdag 17 / donderdag 18 maart 2010 Het frame van

Nadere informatie

Logische Complexiteit

Logische Complexiteit Logische Complexiteit Universele Turing machines College 12 Donderdag 18 Maart 1 / 11 Hoog-niveau beschrijvingen en coderen Vanaf nu: hoog-niveau beschrijvingen van TM s. Daarbij worden objecten die geen

Nadere informatie

Tentamen TI2310 Automaten en Talen. 19 april 2012, uur

Tentamen TI2310 Automaten en Talen. 19 april 2012, uur TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica TP Delft Tentamen TI2310 Automaten en Talen 19 april 2012, 14.00-17.00 uur Totaal aantal pagina's (exclusief dit titelblad):

Nadere informatie

Reguliere Expressies

Reguliere Expressies Reguliere Expressies Een reguliere expressie (regexp, regex, regxp) is een string (een woord) die, volgens bepaalde syntaxregels, een verzameling strings (een taal) beschrijft Reguliere expressies worden

Nadere informatie

Automaten en Berekenbaarheid

Automaten en Berekenbaarheid Automaten en Berekenbaarheid Bart Demoen KU Leuven 2016-2017 Les 8: 118-125 orakels en reducties met orakels Turing-berekenbare functies de bezige bever Orakelmachines I 2/14 we kennen al: een TM die een

Nadere informatie

Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1

Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Bas Westerbaan bas@westerbaan.name 24 april 2012 1 Opgave 1.1 Een goed en voldoende antwoord is: L 1 = L 2, want L 1 en L 2 zijn alle woorden

Nadere informatie

c, X/X a, c/λ a, X/aX b, X/X

c, X/X a, c/λ a, X/aX b, X/X ANTWOORDEN tentamen FUNDAMENTELE INFORMATICA 3 vrijdag 25 januari 2008, 10.00-13.00 uur Opgave 1 L = {x {a,b,c} n a (x) n b (x)} {x {a,b,c} n a (x) n c (x)}. a. Een stapelautomaat die L accepteert: Λ,

Nadere informatie

Fundamentele Informatica

Fundamentele Informatica Fundamentele Informatica (IN3120 en IN3005 DOI nwe stijl) 20 augustus 2004, 9.00 11.00 uur Het tentamen IN3120 bestaat uit 10 meerkeuzevragen en 2 open vragen. Voor de meerkeuzevragen kunt u maximaal 65

Nadere informatie

Automaten en Berekenbaarheid

Automaten en Berekenbaarheid Automaten en Berekenbaarheid Bart Demoen KU Leuven 2016-2017 Les 3: 36-54 Myhill-Nerode relaties; regulier pompen Myhill-Nerode equivalentieklassen in Σ I 2/10 belangrijk te verstaan: een equivalentie-relatie

Nadere informatie

VERZAMELINGEN EN AFBEELDINGEN

VERZAMELINGEN EN AFBEELDINGEN I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen

Nadere informatie

Automaten en Berekenbaarheid

Automaten en Berekenbaarheid Automaten en Berekenbaarheid 3 Bachelor Informatica Diverse Minoren en Kennisdomeinen 15 december 2015 B. Demoen KU Leuven Departement Computerwetenschappen Inhoudsopgave 1 Voorwoord 1 2 Talen en Automaten

Nadere informatie

Taaltechnologie. Januari/februari Inhoud

Taaltechnologie. Januari/februari Inhoud Taaltechnologie Januari/februari 2002 1 Finite state............................................... 4 1.1 Deterministic finite state automata.................... 4 1.2 Non-deterministic finite state automata................

Nadere informatie

Opgaven 1. Verwijzingen in deze opgaven betreffen het boek van Peter Linz.

Opgaven 1. Verwijzingen in deze opgaven betreffen het boek van Peter Linz. Opgaven Verwijzingen in deze opgaven betreffen het boek van Peter Linz.. Toon de volgende eigenschappen uit de verzamelingenleer aan: Exercises, 3, 5, 6, 7, 0 blz. 2-3 (neem aan dat er een universele verzameling

Nadere informatie

FP-theorie. 2IA50, Deel B. Inductieve definities 1/19. / department of mathematics and computer science

FP-theorie. 2IA50, Deel B. Inductieve definities 1/19. / department of mathematics and computer science FP-theorie 2IA50, Deel B Inductieve definities 1/19 Inductieve definitie Definitie IL α, (Cons-)Lijsten over α Zij α een gegeven verzameling. De verzameling IL α van eindige (cons-)lijsten over α is de

Nadere informatie

Semantische eigenschappen van XML-schematalen

Semantische eigenschappen van XML-schematalen transnationale Universiteit Limburg School voor Informatietechnologie Universiteit Hasselt Semantische eigenschappen van XML-schematalen Thesis voorgedragen tot het behalen van de graad van licentiaat

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

Fundamenten voor de Informatica

Fundamenten voor de Informatica Fundamenten voor de Informatica Bachelor Informatica Aanvullende Opleiding Informatica Academiejaar 25 26 K. Dekimpe K.U.Leuven Campus Kortrijk B. Demoen K.U.Leuven Dep. Computerwetenschappen Inhoudsopgave

Nadere informatie

String Matching. Algoritmiek

String Matching. Algoritmiek String Matching Algoritmiek String Matching Gegeven string (haystack): aabaabbabaaba zoek patroon abba (needle) 4 algoritmen: Naïef Rabin-Karp Eindige Automaat Knuth-Morris-Pratt 2 String Matching (formeel)

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

String Matching. Algoritmiek

String Matching. Algoritmiek String Matching Algoritmiek String Matching Gegeven string (haystack): aabaabbabaaba zoek patroon abba (needle) 4 algoritmen: Naïef Rabin-Karp Eindige Automaat Knuth-Morris-Pratt 2 String Matching (formeel)

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

Oplossingen oefeningen logica en eindige automaten 12 december Het bestand oplnoef12dec.zip bevat de.sen en.fa bestanden met de oplossingen.

Oplossingen oefeningen logica en eindige automaten 12 december Het bestand oplnoef12dec.zip bevat de.sen en.fa bestanden met de oplossingen. Oplossingen oefeningen logica en eindige automaten 12 december 2003 Het bestand oplnoef12dec.zip bevat de.sen en.fa bestanden met de oplossingen. Oefening 1 Deel 1: Logica Vertaal de volgende zinnen in

Nadere informatie

Helden van de wiskunde: L.E.J. Brouwer Brouwers visie vanuit een logica-informatica perspectief

Helden van de wiskunde: L.E.J. Brouwer Brouwers visie vanuit een logica-informatica perspectief Helden van de wiskunde: L.E.J. Brouwer Brouwers visie vanuit een logica-informatica perspectief Herman Geuvers Radboud Universiteit Nijmegen Technische Universiteit Eindhoven 1 Helden van de wiskunde:

Nadere informatie

Inhoud leereenheid 1. Introduction to the theory of computation. Introductie 13. Leerkern 15. Zelftoets 22. Terugkoppeling 23

Inhoud leereenheid 1. Introduction to the theory of computation. Introductie 13. Leerkern 15. Zelftoets 22. Terugkoppeling 23 Inhoud leereenheid 1 Introduction to the theory of computation Introductie 13 Leerkern 15 1 Mathematical preliminaries and notation 15 2 Three basic concepts 16 3 Some applications 19 4 Kennismaking met

Nadere informatie

ω-automaten Martijn Houtepen, november 2008 Begeleider: R. Iemhoff

ω-automaten Martijn Houtepen, november 2008 Begeleider: R. Iemhoff ω-automaten Martijn Houtepen, 0208523 Begeleider: R. Iemhoff 26 november 2008 1 Inhoudsopgave 1 Inleiding 3 2 Eindige automaten 4 3 Büchi-automaten 4 3.1 Büchi-automaten........................... 4 3.2

Nadere informatie

Introductie tot de cursus

Introductie tot de cursus Inhoud introductietalen en ontleders Introductie tot de cursus 1 Plaats en functie van de cursus 7 2 Inhoud van de cursus 7 2.1 Voorkennis 7 2.2 Leerdoelen 8 2.3 Opbouw van de cursus 8 3 Leermiddelen en

Nadere informatie

TU Delft. TU Delft. TU Delft. TU Delft. IN3100 Fundamentele Informatica. Practicum. Practicum: Inschrijven. Practicum: LET OP

TU Delft. TU Delft. TU Delft. TU Delft. IN3100 Fundamentele Informatica. Practicum. Practicum: Inschrijven. Practicum: LET OP 1 2 IN3100 Fundamentele Informatica Docenten: Hans Tonino (IN3110) & Cees Witteveen (IN3120) Colleges: Maandag 1 + 2, in zaal D, Mekelweg 4. Boek: Michael Sipser, Introduction to the Theory of Computation,

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

1e Deeltentamen Inleiding Taalkunde

1e Deeltentamen Inleiding Taalkunde 1e Deeltentamen Inleiding Taalkunde 28/05/2009 13.15-16.15 Dit tentamen heeft 5 vragen. Je hebt drie uur de tijd om deze te beantwoorden. Vergeet niet je naam en studentnummer steeds duidelijk te vermelden.

Nadere informatie

Klanken 2. Dit college. Automaten: Talen. Colleges en hoofdstukken (let op verranderingen) Fonologie met eindige automaten en transducers

Klanken 2. Dit college. Automaten: Talen. Colleges en hoofdstukken (let op verranderingen) Fonologie met eindige automaten en transducers Dit college Klanken 2 Fonologie met eindige automaten en transducers Colleges en hoofdstukken (let op verranderingen) 4 mei: Klanken (Fonetiek, fonologie) Chapter 7 6 mei: Klanken 2 (eindige automaten

Nadere informatie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie Kennisrepresentatie & Redeneren Piter Dykstra Instituut voor Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 8 oktober 2007 GRAMMATICA S Kennisrepresentatie & Redeneren Week6: Grammatica

Nadere informatie

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren Overzicht TI1300: Redeneren en Logica College 10: Verzamelingenleer Tomas Klos Algoritmiek Groep Colleges 1 2: Bewijstechnieken Colleges 3 9: Propositielogica Vandaag en morgen: Verzamelingenleer Colleges

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 2B Jan Terlouw woensdag 17 februari 2010 Deze handout sluit aan op handout 2A van maandag 15 februari. De gepresenteerde stof valt grotendeels

Nadere informatie

equationeel programmeren 2015 01 05 college 1

equationeel programmeren 2015 01 05 college 1 equationeel programmeren 2015 01 05 college 1 schema praktische zaken opmerkingen vooraf lambda termen materiaal schema praktische zaken opmerkingen vooraf lambda termen materiaal wie hoorcolleges: Femke

Nadere informatie

Er zijn alle soorten modificaties hoe je deze FST beter kan maken. Bijvoorbeeld, door - teen van thirteen - nineteen in het algemeen te lezen.

Er zijn alle soorten modificaties hoe je deze FST beter kan maken. Bijvoorbeeld, door - teen van thirteen - nineteen in het algemeen te lezen. 3. FST Het antwoord is: Er zijn alle soorten modificaties hoe je deze FST beter kan maken. Bijvoorbeeld, door - teen van thirteen - nineteen in het algemeen te lezen. Het idee is duidelijk hoop ik: voor

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica

De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica College 7: Resolutie Tomas Klos Algoritmiek Groep De Resolutiemethode De resolutiemethode is een methode waarmee je

Nadere informatie

Vorig college. IN2505-II Berekenbaarheidstheorie College 4. Opsommers versus herkenners (Th. 3.21) Opsommers

Vorig college. IN2505-II Berekenbaarheidstheorie College 4. Opsommers versus herkenners (Th. 3.21) Opsommers Vorig college College 4 Algoritmiekgroep Faculteit EWI TU Delft Vervolg NDTM s Vergelijking rekenkracht TM s en NDTM s Voorbeelden NDTM s 20 april 2009 1 2 Opsommers Opsommers versus herkenners (Th. 3.21)

Nadere informatie

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c Een Minimaal Formalisme om te Programmeren We hebben gezien dat Turing machines beschouwd kunnen worden als universele computers. D.w.z. dat iedere berekening met natuurlijke getallen die met een computer

Nadere informatie

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle  holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/37052 holds various files of this Leiden University dissertation. Author: Vliet, Rudy van Title: DNA expressions : a formal notation for DNA Issue Date:

Nadere informatie

Formeel Denken. 15 juli 2014

Formeel Denken. 15 juli 2014 Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 2002 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen. Herfst 2008 herzien en uitgebreid

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 3A Jan Terlouw maandag 22 februari 2010 De eerste paragraaf van deze handout is inhoudelijk een afronding van handout 2B (versie als

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Oefening 2.2. Welke van de volgende beweringen zijn waar?

Oefening 2.2. Welke van de volgende beweringen zijn waar? Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.

Nadere informatie

HOOFDSTUK I - INLEIDENDE BEGRIPPEN

HOOFDSTUK I - INLEIDENDE BEGRIPPEN HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.1 Waarschijnlijkheidsrekening 1 Beschouw een toevallig experiment (de resultaten zijn aan het toeval te danken) Noem V de verzameling van alle mogelijke uitkomsten

Nadere informatie

Formeel Denken. Inhoudsopgave

Formeel Denken. Inhoudsopgave Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 2002 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen. Herfst 2008 herzien en uitgebreid

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

Semantiek (2IT40) Jos Baeten. HG 7.19 tel.: Hoorcollege 3 (12 april 2007)

Semantiek (2IT40) Jos Baeten.  HG 7.19 tel.: Hoorcollege 3 (12 april 2007) Jos Baeten josb@wintuenl http://wwwwintuenl/~josb/ HG 719 tel: 040 247 5155 Hoorcollege 3 (12 april 2007) Voorbeeld [Bewijstechniek 2 niet altijd succesvol] Executie van commands is deterministisch: c

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Credit cards, computationele complexiteit en consistentie uitspraken

Credit cards, computationele complexiteit en consistentie uitspraken Credit cards, computationele complexiteit en consistentie uitspraken Joost J. Joosten 14 december 2005 Praag en bier Sinds enkele maanden werk ik als post-doc aan de Czech Academy of Sciences in Praag.

Nadere informatie

Het minimale aantal sleutels op niveau h is derhalve

Het minimale aantal sleutels op niveau h is derhalve 1 (a) In een B-boom van orde m bevat de wortel minimaal 1 sleutel en maximaal m 1 sleutels De andere knopen bevatten minimaal m 1 sleutels en maximaal m 1 sleutels (b) In een B-boom van orde 5 bevat elke

Nadere informatie

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens Algoritmes in ons dagelijks leven Leve de Wiskunde! 7 April 2017 Jacobien Carstens Wat is een algoritme? Een algoritme is een eindige reeks instructies die vanuit een gegeven begintoestand naar een beoogd

Nadere informatie

Reguliere Expressies

Reguliere Expressies Reguliere Expressies Theorie en praktijk Leerboek voor het VO Huub de Beer Eindhoven, 31 mei 2011 Inhoudsopgave 1 Inleiding: patronen en tekst 4 1.1 Patronen in tekst zijn belangrijk................ 4

Nadere informatie

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN II NATUURLIJKE, GEHELE EN RATIONALE GETALLEN Iedereen ent getallen: de natuurlije getallen, N = {0,1,2,3,...}, gebruien we om te tellen, om getallen van elaar af te unnen treen hebben we de gehele getallen,

Nadere informatie

Logische Complexiteit Hoorcollege 12

Logische Complexiteit Hoorcollege 12 Logische Complexiteit Hoorcollege 12 Jacob Vosmaer Bachelor CKI, Universiteit Utrecht 22 maart 2011 Tijdscomplexiteit Inleiding Grote O en kleine o Complexiteitsanalyse van een simpele taal Complexiteitsverschillen

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

HOOFDSTUK 0. = α g1 α g2

HOOFDSTUK 0. = α g1 α g2 HOOFDSTUK 0 Acties van groepen 0.1 Groep-actie Uit de cursus Meetkunde en Lineaire Algebra van 1ste jaar Bachelor Wiskunde ([KI] in de referentielijst) weten we reeds wat een permutatiegroep G op een verzameling

Nadere informatie

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer.

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer. Cabri-werkblad Raaklijnen Raaklijnen aan een cirkel Definitie Een raaklijn aan een cirkel is een rechte lijn die precies één punt (het raakpunt) met de cirkel gemeenschappelijk heeft. Stelling De raaklijn

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen Tentamen Grondslagen van de Wiskunde A, met uitwerkingen 8 december 2015, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Natuurlijke-taalverwerking 1. Daniël de Kok

Natuurlijke-taalverwerking 1. Daniël de Kok Natuurlijke-taalverwerking 1 Daniël de Kok Natuurlijke-Taalverwerking Het college Natuurlijke-taalverwerking is een inleiding in de computationele taalkunde en maakt deel uit van het curriculum van Informatiekunde

Nadere informatie

Algoritmiek. 8 uur college, zelfwerkzaamheid. Doel. Hoe te realiseren

Algoritmiek. 8 uur college, zelfwerkzaamheid. Doel. Hoe te realiseren Algoritmiek Doel Gevoel en inzicht ontwikkelen voor het stapsgewijs, receptmatig oplossen van daartoe geëigende [biologische] probleemstellingen, en dat inzicht gebruiken in het vormgeven van een programmeerbare

Nadere informatie

Sequentiële Logica. Processoren 24 november 2014

Sequentiële Logica. Processoren 24 november 2014 Sequentiële Logica Processoren 24 november 2014 Inhoud Eindige automaten Schakelingen met geheugen Realisatie van eindige automaten Registers, schuifregisters, tellers, etc. Geheugen Herinnering van week

Nadere informatie

Dag van Respect & PABO. DOE MEE met de Dag van Respect 8 November 2012

Dag van Respect & PABO. DOE MEE met de Dag van Respect 8 November 2012 Dag van Respect & PABO DOE MEE met de Dag van Respect 8 November 2012 Beste Pabo-studenten, Elk jaar ontwikkelt Stichting Dag van Respect nieuw lesmateriaal over respect. Respect voor jezelf, Respect voor

Nadere informatie

METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.)

METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.) METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.) 1. Inleiding. In deze syllabus behandelen we een aantal fundamentele onderwerpen uit de

Nadere informatie

Gödels Onvolledigheidsstellingen

Gödels Onvolledigheidsstellingen Gödels Onvolledigheidsstellingen Jaap van Oosten Department Wiskunde, Universiteit Utrecht Symposium A-eskwadraat, 11 december 2014 De Onvolledigheidsstellingen van Gödel zijn verreweg de beroemdste resultaten

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Wanneer zijn alle continue functies uniform continu?

Wanneer zijn alle continue functies uniform continu? Faculteit Wetenschappen Vakgroep Wiskunde Wanneer zijn alle continue functies uniform continu? Bachelor Project I Stijn Tóth Promotor: Prof. Eva Colebunders Academiejaar 2011-2012 Inhoudsopgave 1 Inleiding

Nadere informatie

Algoritmiek. 12 uur college, werkgroep, zelfwerkzaamheid. Doel. Eindniveau. Hoe te realiseren

Algoritmiek. 12 uur college, werkgroep, zelfwerkzaamheid. Doel. Eindniveau. Hoe te realiseren Algoritmiek Doel Gevoel en inzicht ontwikkelen voor het stapsgewijs, receptmatig oplossen van daartoe geëigende [biologische] probleem-stellingen, en dat inzicht gebruiken in het vormgeven van een programmeerbare

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 21 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 21 oktober 2015 1 / 20 Deze week: algoritmes en complexiteit

Nadere informatie

ESA College 5b. Mark van der Zwaag. 7 oktober Programming Research Group, UvA. Mark van der Zwaag (PRG, UvA) ESA5a 7 oktober / 34

ESA College 5b. Mark van der Zwaag. 7 oktober Programming Research Group, UvA. Mark van der Zwaag (PRG, UvA) ESA5a 7 oktober / 34 ESA College 5b Mark van der Zwaag Programming Research Group, UvA 7 oktober 2006 Mark van der Zwaag (PRG, UvA) ESA5a 7 oktober 2006 1 / 34 Vandaag: Reguliere Expressies en Grammatica s Formele talen Context-vrije

Nadere informatie

Formeel Denken. Herfst 2004

Formeel Denken. Herfst 2004 Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 2002 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen Herfst 2004 Contents 1 Propositielogica

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur Faculteit Elektrotechniek, Wiskunde en Informatica Ti Delft Tentamen IN3105 Complexiteitstheorie 16 april 2012, 9.00-12.00 uur Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open

Nadere informatie