(Isomorfie en) RELATIES

Maat: px
Weergave met pagina beginnen:

Download "(Isomorfie en) RELATIES"

Transcriptie

1 Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie 15 maart 2009 (Isomorfie en) RELATIES. Paragrafen 10.5,11.1,11.2,11.4,11.5 Discrete Structuren Week 7: Relaties

2 Onderwerpen Terugkoppeling in netwerken en zelfreferentie Isomorfie Partiële en lineaire ordening Eigenschappen van relaties Eigenschappen van relaties en matrices Afsluitingen Discrete Structuren Week 7: Relaties 1

3 Netwerken met zelfreferentie E = x E x E E = x E x E 1?? 0 1 Hoe ziet de logica van de stabiele zelfreferente netwerken eruit? Discrete Structuren Week 7: Relaties 2

4 S-R-schuif f(s,r) = ( A ( f(s,r) ),B ( ) f(s,r) A ( f(s,r) ) = B ( f(s,r) ) = (S B ( f(s,r) )) ( A ( f(s,r) ) ) R Discrete Structuren Week 7: Relaties 3

5 S-R-schuif 2 f(s,r) = ( ( S B ( f(s,r) )) (, A ( f(s,r) ) ) ) R (S,R) f(s,r) (0,1) (1,0) (1,0) (0,1) (1,1) (1,0) (1,1) (0,1) Discrete Structuren Week 7: Relaties 4

6 Isomorfie Definition 1. [Boolese algebra isomorfisme]. Een Boolese algebra isomorfisme is een bijectie tussen twee Boolese algebra s B 1 en B 2 zodanig dat: voor alle x,y B 1. φ(x y) = φ(x) φ(y) (1) φ(x y) = φ(x) φ(y) (2) φ(x ) = φ(x) (3) Voorbeeld 1. Stel S = {1,2,3,...,n} en beschouw de Boolese algebra s: P(S), B n en FUN(S, B). Proposition 1. Deze algebra s zijn isomorf. Bewijs: De karakteristieke functie χ A van een verzameling A in P(S) zit ook in FUN(S, B). We definiëren: φ 1 : P(S) FUN(s, B) met: φ 1 (A) = χ A φ 1 is een bijectie van P(S) naar FUN(S, B). En bovendien: φ 1 (A B) = χ A B = χ A χ B = φ(a) φ(b)) Discrete Structuren Week 7: Relaties 5

7 Vervolg voorbeeld Er bestaat een φ 2 : FUN(S, B) B n. Voor een f in FUN(S, B) zit er een tupel ( f(1),...f(n) ) in B n. φ 2 (f) = ( f(1),...f(n) ) is een bijectie van FUN(S, B) naar B n. En bovendieen een Boolese algebra isomorfisme: φ 2 (f g) = ( (f g)(1),..., (f g)(n) ) def. φ 2 = ( f(1) g(1),..., (f(n) g(n) ) def. f g = ( (f(1),..., f(n) ) ( g(1),...,g(n) ) def. in B n = φ 2 (f) φ 2 (g) def. φ 2 En de compositie φ 2 φ 1 is een Boolese algebra isomorfisme van P(S) naar B n Theorem 1. [Boolese algebra isomorfisme]. Als A een verzameling van n atomen is, dan is er een isomorfisme van P(A) naar een Boolese algebra B met 2 n elementen. Corollary 1. Een eindige Boolese algebra heeft 2 n elementen (n P) en n atomen. Discrete Structuren Week 7: Relaties 6

8 Volledige ordening op R is een relatie die aan de volgende eigenschappen (R) x x voor alle x (AS) uit x y en y x volgt x = y voldoet: (T) uit x y en y z volgt x z (L) voor elke x en y geldt: x y of y x en als beide gelden ook: x = y Definition 2. Een relatie met deze eigenschappen heet een volledige (total) of lineaire ordening-srelatie. Discrete Structuren Week 7: Relaties 7

9 Partiële ordening Definition 3. Stel R is een relatie op S. R is een partiële ordening desda R reflexief, antisymmetrisch en transitief is. we noteren: x y voor (x,y) R. (R) (AS) (T) x x voor alle x S uit x y en y x volgt x = y uit x y en y z volgt x z Definition 4. (S, ) heet een partieel geordende verzameling (poset). Discrete Structuren Week 7: Relaties 8

10 Quasi ordening Gegeven een PO,, op een verzameling S, dan kunnen we definiëeren als: x y desda x y en x = y voldoet aan: (AR) (T) x x is onwaar voor alle x S uit x y en y z volgt x z Definition 5. [Quasi ordening]. Elke antireflexieve transitieve relatie heet een quasiordening. Definition 6. [Bedekking]. Gegeven een PO-relatie op S, dan bedekt een element t een element s indien s t er is geen u in S met s u t. Definition 7. [Hasse-diagram]. Een Hasse-diagram van een PO-set S, is een digraaf met S als de verzameling knopen en met ribbe (t,s) desda t bedekt s.. Discrete Structuren Week 7: Relaties 9

11 Een Hasse-diagram van de PO-set (S, ) met S = {1,2,3,4,5,6} Een Hasse-diagram van de PO-set (P{a,b,c}, ) Discrete Structuren Week 7: Relaties 10

12 Theorem 2. Elke eindige PO-set heeft een Hasse-diagram. Definition 8. [Minimaal/maximaal element]. Van een poset (P, ) is x P een minimaal/maximaal element als er geen y in P is zodat y x/x y Definition 9. [Subposet]. S is een subposet van (P, ) als S P. Merk op dat de beperking van tot S ook reflexief antisymmetrisch en transitief is. Definition 10. [Minimum/ maximum]. x is een minimum/maximum van een subposet S als y S : x y / y S : y x (notatie: x = min(s) / x = max(s)) Definition 11. [Beneden/bovengrens]. Als zo n minimum/maximum niet in S zit maar wel in P S dan heet zo n element een benedengrens /bovengrens. Discrete Structuren Week 7: Relaties 11

13 Definition 12. [Grootste beneden/kleinste bovengrens]. x is de grootste benedengrens van S als voor elke benedengrens y van S geldt: y x. (idem kleinste bovengrens) Discrete Structuren Week 7: Relaties 12

14 Tralie Definition 13. [Tralie(Lattice)]. Een tralie (L,,, ) is een partieel geordende verzameling (L, ), waarin voor elk tweetal elementen x enyde verzameling {x, y} zowel een supremum (= kleinste bovengrens / least upper bound) x y als een infimum (= grootste ondergrens / greatest lower bound) x y heeft. Uit de definitie volgt direct dat elke eindige (niet-lege) deelverzameling ook een supremum en een infimum heeft. Definition 14. Een tralie met zowel een grootste als een kleinste element, gewoonlijk aangeduid met respectievelijk 1 en 0, heet begrensd. Door aan een partieel geordende verzameling een grootste en een kleinste element toe te voegen ontstaat een begrensde tralie. Discrete Structuren Week 7: Relaties 13

15 Tralie-eigenschappen Proposition 2. [Dualiteit]. Door omkering van de ordening ontstaat uit een tralie een andere tralie, waarin als het ware de begrippen groter en kleiner omgewisseld zijn. Is (L,,, ) een tralie, dan is ook (L,,, ) er één. Proposition 3. [Ordening]. De ordening en de begrippen supremum en infimum zijn erg met elkaar verbonden. In feite leggen supremum en infimum de ordening vast. Als namelijk (L,,, ) en (L,,, ) beide tralies zijn, is, d.w.z. beide tralies hebben dezelfde partile ordening. De ordening wordt immers bepaald door: of wat equivalent is: x y x = x y x y y = x y Dus:. x y x = x y x y Discrete Structuren Week 7: Relaties 14

16 Speciale ordeningen Definition 15. [Keten (chain)]. S heet een keten als S een partiële ordening waarvan elk paar elementen vergelijkbaar is: s,t S : s t t s Definition 16. [Welgeordende keten]. Een keten S is welgeordend als elke deelverzameling van S een kleinste element heeft Definition 17. [Product ordening]. Stel (S, s ) en (T, t ) zijn posets en voor s,s S en t,t T geldt: s s s en t t t desda (s,t) (s,t ) dan is een product-ordening op S T. Discrete Structuren Week 7: Relaties 15

17 Definition 18. [Filing ordening]. Als (S 1, 1 ),..., (S n, n ) posets zijn de relatie ops 1... S n gedefinieerd is als: (s 1,...,s n ) (t 1,...,t n ) indien s 1 t 1 of er is een r {2..n} zo dat s 1 = t 1... s r 1 = t r 1 s r = r t r dan is een quasi-ordening die een partiële ordening, de filing ordening, op S 1... S n induceert. Theorem 3. Als (S 1, 1 ),..., (S n, n ) ketens zijn, dan is de filing ordening op S 1... S n ook een keten. Definition 19. [Lexicografische ordening]. Als Σ een alfabet is dan is L een lexicografische ordening op Σ als L een filing ordening is. Discrete Structuren Week 7: Relaties 16

18 Boolese Matrices a 11 a a 1n a i1 a i2.... a in a m1 a m2... a mn A b 11 b b 1k... b 1p b 21. b b 2k.... b 2p. b n1 b n2... b nk... b np B = c 11 c c 1p c 21 c c 2p.. c ik. c n1 c n2... c np AB Het scalair matrixproduct: c i,k = Het boolese matrixproduct: n j=1 a ij b jk c i,k = n a ij b jk j=1 Discrete Structuren Week 7: Relaties 17

19 Eigenschappen van relaties Functies als relaties. De functie f : S T is synomiem met: R f = {(s,t) S T : f(s) = t} Definition 20. [Functiecompositie]. Stel f : S T en f : T U, dan is de compositie van g op f: g f : S U synoniem met: R g f = {(s,u) S U : (g f)(s) = g(f(s)) = u} De compositie van R 1 : S T en R 2 : T U noteren we als: R 1 R 2 = R 1 R 2 : S U en is gedefinieerd door: R 2 R 1 = {(s,u) S U : t T ( (s,t) R 1 (t,u) R 2 ) Associativiteit van relaties. Als R 1 : S T, R 2 : T U en R 3 : U V dan (R 1 R 2 )R 3 = R 1 (R 2 R 3 ) Discrete Structuren Week 7: Relaties 18

20 Transitiviteit Theorem 4. Als R 1 een relatie is van S naar T en R 2 een relatie van T naar U, en A 1 en A 2 zijn de corresponderende matrices van R 1 en R 2, dan is A 1 A 2 de corresponderen de matrix van de compositie R 1 R 2. Theorem 5. Als R een realtie is op S, dan is R transitief desda R 2 R Discrete Structuren Week 7: Relaties 19

21 R A A = A = = R * R Discrete Structuren Week 7: Relaties 20

22 Afsluitingen Definition 21. [Afsluiting]. Als R een relatie is dan is de kleinste relatie die R bevat en bovendien: 1. reflexief is, de reflexieve afsluiting van R : r(r) 2. symmetrisch is, de symmetrische afsluiting van R : s(r) 3. transitief is, de transitieve afsluiting van R : t(r) Proposition 4.. Als R een relatie is dan is: 1. R = r(r) desda R reflexief is. 2. R = s(r) desda R symmetrisch is. 3. R = t(r) desda R transitief is. Bovendien: r(r(r)) = r(r) s(s(r)) = s(r) t(t(r)) = t(r) Discrete Structuren Week 7: Relaties 21

23 A = r(a) = Discrete Structuren Week 7: Relaties 22

24 s(a) = t(a) = Discrete Structuren Week 7: Relaties 23

25 Theorem 6. Als R een relatie is opsen E = {(x,x) : x S} dan: (r) r(r) = R E (s) s(r) = R R (t) t(r) = R k Lemma 1. k=1 1. Als R reflexief is dan ook s(r) en t(r). 2. Als R symmetrisch is dan ook r(r) en t(r). 3. Als R transitief is dan ook r(r) en s(r). Theorem 7. Voor elke relatie R op S is tsr(r) de kleinste equivalentierelatie die R bevat. Bewijs: a ( ): r(r) is reflexief. b ( ): Beschouw de equivalentiereatie R, zodat R R r(r) r(r ) = R Dus: sr(r) s(r ) = R En dus: tsr(r) t(r ) = R r(r) r(r ) = R Dus: sr(r) s(r ) = R En dus: tsr(r) t(r ) = R Dus tsr(r) is de kleinste equivalentierelatie die R bevat. Discrete Structuren Week 7: Relaties 24

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 4 april 2008 Discrete Structuren Week 8: Samenvatting Redeneerpatronen

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie 22 maart 2009 ONEINDIGHEID

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie   22 maart 2009 ONEINDIGHEID Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 maart 2009 ONEINDIGHEID. Paragraaf 13.3. De paradox van de oneindigheid ligt slechts

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 15 februari 2009 RELATIES & GRAFEN Discrete Structuren Week 2: Relaties en Grafen

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dystra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 12 februari 2008 INLEIDING Discrete Structuren Wee1: Inleiding Onderwerpen

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 februari 2009 INLEIDING

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie   9 februari 2009 INLEIDING Discrete Structuren Piter Dystra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 INLEIDING Discrete Structuren Wee1: Inleiding Onderwerpen Elementaire

Nadere informatie

Gerichte Grafen Boolese Algebra s &. Logische Netwerken

Gerichte Grafen Boolese Algebra s &. Logische Netwerken Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 10 maart 2009 Gerichte Grafen Boolese Algebra s &. Logische Netwerken. Paragrafen

Nadere informatie

Relaties en Functies

Relaties en Functies Logica voor Informatica Relaties en Functies Mehdi Dastani m.m.dastani@uu.nl Intelligent Systems Utrecht University Geordende paren, productverzameling, relatie (a, b) geordend paar (a, b) = (c, d) a =

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Wiskunde. Verzamelingen, functies en relaties. College 2. Donderdag 3 November

Wiskunde. Verzamelingen, functies en relaties. College 2. Donderdag 3 November Wiskunde Verzamelingen, functies en relaties College 2 Donderdag 3 November 1 / 17 Equivalentierelaties Def. Een relatie R heet reflexief als x xrx. R heet transitief als x y z (xry yrz xrz). R heet symmetrisch

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 5A Jan Terlouw maandag 8 maart 2010 1 Algemeen over DS in deze week Nadere belichting van stof van week 4 (mede i.v.m. toets). Bij het

Nadere informatie

Oefening 2.2. Welke van de volgende beweringen zijn waar?

Oefening 2.2. Welke van de volgende beweringen zijn waar? Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen Tentamen Grondslagen van de Wiskunde A, met uitwerkingen 8 december 2015, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

Supplement Verzamelingenleer. A.J.M. van Engelen en K. P. Hart

Supplement Verzamelingenleer. A.J.M. van Engelen en K. P. Hart Supplement Verzamelingenleer A.J.M. van Engelen en K. P. Hart 1 Hoofdstuk 1 Het Keuzeaxioma Het fundament van de hedendaagse verzamelingenleer werd in de vorige eeuw gelegd door Georg Cantor. Cantor gebruikte

Nadere informatie

Bewijzen en Redeneren voor Informatici

Bewijzen en Redeneren voor Informatici Bewijzen en Redeneren voor Informatici Reinoud Berkein 17 januari 2018 Samenvatting Een korte samenvatting van definities uit de cursus. Hoofdstuk 1 Doorsnede: De verzamerling die alle elementen bevat

Nadere informatie

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking 10 december 2013, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is

Nadere informatie

Relaties deel 2. Vierde college

Relaties deel 2. Vierde college 2 Relaties deel 2 Vierde college 1 n-tupels & Cartesisch product A 1, A 2,, A n verzamelingen Een n-tupel is een geordend rijtje (ook wel: geordend n-tal) (a 1,a 2,...,a n ) met a 1 A 1, a 2 A 2,, a n

Nadere informatie

Talen & Automaten. Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 mei 2008

Talen & Automaten. Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie   9 mei 2008 Talen & Automaten Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.cs.rug.nl/~wim 9 mei 2008 Talen & automaten Week 1: Inleiding Dit college Talen Automaten Berekenbaarheid Weekoverzicht

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

RAF belangrijk te onthouden

RAF belangrijk te onthouden RAF belangrijk te onthouden Auteur: Daan Pape Hoofdstuk 1 symbool omschrijving lees als negatie (ontkenning) p niet p het is niet zo dat p conjunctie p q p en q disjunctie p q p of q implicatie p q als

Nadere informatie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie Kennisrepresentatie & Redeneren Piter Dykstra Instituut voor Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 30 april 2007 INLEIDING Kennisrepresentatie & Redeneren Week1: Introductie

Nadere informatie

Verzamelingen deel 3. Derde college

Verzamelingen deel 3. Derde college 1 Verzamelingen deel 3 Derde college rekenregels Een bewerking op A heet commutatief als voor alle x en y in A geldt dat x y = y x. Een bewerking op A heet associatief als voor alle x, y en z in A geldt

Nadere informatie

Multicriteria Optimization and Decision Making. Michael Emmerich and André Deutz

Multicriteria Optimization and Decision Making. Michael Emmerich and André Deutz 2 Relaties 1 Multicriteria Optimization and Decision Making Michael Emmerich and André Deutz 2 motivatie We bestuderen relaties: de terminologie, representaties (de manieren om relaties weer te geven)

Nadere informatie

Rieszcompleteringen van ruimten van operatoren

Rieszcompleteringen van ruimten van operatoren Rieszcompleteringen van ruimten van operatoren Inleiding tot Rieszruimten met enkele nieuwe resultaten gepresenteerd met vele voorbeelden en uitleg Leiden, 6 juli 2015 Geschreven door JRF Deckers begeleider:

Nadere informatie

Eindige topologische ruimten

Eindige topologische ruimten R.A.C.H. Wols Eindige topologische ruimten Bachelorscriptie, 8 juni 2010 Scriptiebegeleider: dr. R.S. de Jong Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding 1 2 Eindige ruimten

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Tentamen Discrete Wiskunde

Tentamen Discrete Wiskunde Discrete Wiskunde (WB011C) 22 januari 2016 Tentamen Discrete Wiskunde Schrijf op ieder ingeleverd blad duidelijk leesbaar je naam en studentnummer. De opgaven 1 t/m 6 tellen alle even zwaar. Je hoeft slechts

Nadere informatie

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen Hoofdstuk 3 Equivalentierelaties SCHAUM 2.8: Equivalence Relations Twee belangrijke voorbeelden van equivalentierelaties in de informatica: resten (modulo rekenen) en cardinaliteit (aftelbaarheid). 3.1

Nadere informatie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie Kennisrepresentatie & Redeneren Piter Dykstra Instituut voor Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 8 oktober 2007 GRAMMATICA S Kennisrepresentatie & Redeneren Week6: Grammatica

Nadere informatie

Dossier 1 SYMBOLENTAAL

Dossier 1 SYMBOLENTAAL Dossier 1 SYMBOLENTAAL basis voor wiskundige communicatie Dr. Luc Gheysens Wiskundigen hebben een eigen symbolentaal waarmee ze onderling communiceren, redeneringen en bewijzen neerschrijven, mathematische

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

Relaties deel 1. Derde college

Relaties deel 1. Derde college 2 Relaties deel 1 Derde college 1 Carl Friedrich Gauss Carl Friedrich Gauss (30 april 1777 23 februari 1855) was een Duits wiskundige en natuurkundige, die een zeer belangrijke bijdrage heeft geleverd

Nadere informatie

Tentamen Grondslagen van de Wiskunde B met uitwerkingen

Tentamen Grondslagen van de Wiskunde B met uitwerkingen Tentamen Grondslagen van de Wiskunde B met uitwerkingen 8 november 2012, 14:00 17:00 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

Propositielogica. Onderdeel van het college Logica (2017) Klaas Landsman

Propositielogica. Onderdeel van het college Logica (2017) Klaas Landsman Propositielogica Onderdeel van het college Logica (2017) Klaas Landsman They who are acquainted with the present state of the theory of Symbolic Algebra, are aware of the validity of the processes of analysis

Nadere informatie

Grondslagen van het Caristi-Ekelandprincipe in ZF

Grondslagen van het Caristi-Ekelandprincipe in ZF Grondslagen van het Caristi-Ekelandprincipe in ZF Bachelorscriptie Rick Schreurs s4244346 Begeleider: Michael Müger Faculteit der natuurwetenschappen, wiskunde en informatica Radboud Universiteit Nijmegen

Nadere informatie

Automaten en Berekenbaarheid

Automaten en Berekenbaarheid Automaten en Berekenbaarheid Bart Demoen KU Leuven 2016-2017 Les 3: 36-54 Myhill-Nerode relaties; regulier pompen Myhill-Nerode equivalentieklassen in Σ I 2/10 belangrijk te verstaan: een equivalentie-relatie

Nadere informatie

Oefening 2.3. Noteer de volgende verzamelingen d.m.v. (eenvoudig) voorschrift voor de eerste helft en d.m.v. opsomming voor de tweede helft.

Oefening 2.3. Noteer de volgende verzamelingen d.m.v. (eenvoudig) voorschrift voor de eerste helft en d.m.v. opsomming voor de tweede helft. Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.

Nadere informatie

3 De duale vectorruimte

3 De duale vectorruimte 3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 8 J.Keijsper

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 2 Gröbnerbases 1. Vragen We hebben gezien dat de studie van stelsels polynoomvergelijkingen in meerdere variabelen op natuurlijke manier leidt

Nadere informatie

Collegestof verzamelingenleer. Verzamelingenleer. Inhoud dit deel college. Verzamelingen. Universele en lege verzameling. Verzamelingen en elementen

Collegestof verzamelingenleer. Verzamelingenleer. Inhoud dit deel college. Verzamelingen. Universele en lege verzameling. Verzamelingen en elementen Collegesto verzamelingenleer Verzamelingenleer Pro dr J-J Ch Meyer UU - ICS Gebaseerd op (aantal hoodstukken van) het boek: Set Theory and Related Topics by Seymour Lipschutz Schaum s Outlines, McGraw-Hill

Nadere informatie

Drie problemen voor de prijs van één

Drie problemen voor de prijs van één Drie problemen voor de prijs van één Of: één probleem voor de prijs van drie K. P. Hart Faculty EEMCS TU Delft Delft, 30 oktober, 2012: 10:15 10:45 Eenvoudig begin Opgave Bewijs dat voor m, n N het volgende

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Ingela Mennema. Roosters. Bachelorscriptie. Scriptiebegeleider: Dr. R.M. van Luijk en H.D. Visse MSc. Datum Bachelorexamen: 28 juni 2016

Ingela Mennema. Roosters. Bachelorscriptie. Scriptiebegeleider: Dr. R.M. van Luijk en H.D. Visse MSc. Datum Bachelorexamen: 28 juni 2016 Ingela Mennema Roosters Bachelorscriptie Scriptiebegeleider: Dr. R.M. van Luijk en H.D. Visse MSc Datum Bachelorexamen: 28 juni 2016 Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3

Nadere informatie

College WisCKI. Albert Visser. 17 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties.

College WisCKI. Albert Visser. 17 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 17 oktober, 2012 1 Overview 2 Overview 2 Overview 2 Overview 2 Overview 3 Wat is een equivalentierelatie? Een

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07 Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Coveringgebaseerde ruwverzamelingen en hun uitbreiding in de vaagverzamelingenleer. Tara Vanhecke

Coveringgebaseerde ruwverzamelingen en hun uitbreiding in de vaagverzamelingenleer. Tara Vanhecke Faculteit Wetenschappen Vakgroep Toegepaste Wiskunde, Informatica en Statistiek overinggebaseerde ruwverzamelingen en hun uitbreiding in de vaagverzamelingenleer Tara Vanhecke Promotor: Prof. dr. hris

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

1 Groepen van orde 24.

1 Groepen van orde 24. 1 1 Groepen van orde 24. Als G een groep van orde 24 is, dan zeggen de stellingen van Sylov: Het aantal 2-Sylow-groepen van G is 1 modulo 2 en bovendien een deler van 24, dus bedraagt 1 of 3. Het aantal

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Verzamelingen deel 1. Eerste college

Verzamelingen deel 1. Eerste college 1 Verzamelingen deel 1 Eerste college Set = Verzameling 2 https://en.wikipedia.org/wiki/set_(deity) http://www.spelmagazijn.nl/nl/spelmag/set.html22 http://perkamentus.blogspot.nl/2016/12/de-complete-verzameling.html

Nadere informatie

KU Leuven. Algebra. Notities. Tom Sydney Kerckhove

KU Leuven. Algebra. Notities. Tom Sydney Kerckhove KU Leuven Algebra Notities Tom Sydney Kerckhove Gestart 23 september 2014 Gecompileerd 28 oktober 2014 Inhoudsopgave 1 Verzamelingen 3 1.1 Basisbegrippen....................................... 3 1.2 De

Nadere informatie

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002

Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002 Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002 1. We vatten {0, 1} op als het lichaam F 2. Een schuifregisterrij is een rij {s n } n=0 in F 2 gegeven door r startwaarden s

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D2. Datum: dinsdag 29 april 28. Tijd: 14: 17:. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Vorig college. IN2505-II Berekenbaarheidstheorie. Aanbevolen opgaven. Wat is oneindigheid? College 5

Vorig college. IN2505-II Berekenbaarheidstheorie. Aanbevolen opgaven. Wat is oneindigheid? College 5 Vorig college College 5 Algoritmiekgroep Faculteit EWI TU Delft Opsommers vs. Herkenners Church-Turing These Codering van problemen 23 april 2009 1 2 Aanbevolen opgaven Wat is oneindigheid? Sipser p. 163

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30 Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde vrijdag 3 februari 2012, 8:30 12:30 Naam: Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

LINEAIRE ALGEBRA EN MEETKUNDE. G. Van Steen

LINEAIRE ALGEBRA EN MEETKUNDE. G. Van Steen LINEAIRE ALGEBRA EN MEETKUNDE G. Van Steen 13 november 2001 Inhoudsopgave 1 Verzamelingenleer 3 1.1 Bewerkingen met verzamelingen................. 4 1.2 Relaties.............................. 7 1.3 Functies..............................

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

Rationale tetraëders.

Rationale tetraëders. Youssef Achnine Rationale tetraëders. Bachelorscriptie, 1 juni 009 Scriptiebegeleider: Dr. R.M. van Luijk Mathematisch Instituut, Universiteit Leiden 1 Inhoudsopgave Introductie 1. Topologische begrippen

Nadere informatie

Tentamen Grondslagen van de Wiskunde B met uitwerkingen

Tentamen Grondslagen van de Wiskunde B met uitwerkingen Tentamen Grondslagen van de Wiskunde B met uitwerkingen 19 januari 2012, 13.30-16.30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

HOOFDSTUK 0. = α g1 α g2

HOOFDSTUK 0. = α g1 α g2 HOOFDSTUK 0 Acties van groepen 0.1 Groep-actie Uit de cursus Meetkunde en Lineaire Algebra van 1ste jaar Bachelor Wiskunde ([KI] in de referentielijst) weten we reeds wat een permutatiegroep G op een verzameling

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 1 Jan Terlouw maandag 8 februari 2010 1 Algemene gegevens over deze cursus DS. Docenten. Jan Terlouw (hoorcollege) en Piter Dykstra

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Stabiele koppelingen (Engelse titel: Stable Matchings)

Stabiele koppelingen (Engelse titel: Stable Matchings) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Stabiele koppelingen (Engelse titel: Stable Matchings) Verslag ten behoeve van het

Nadere informatie

Niet-standaard analyse (Engelse titel: Non-standard analysis)

Niet-standaard analyse (Engelse titel: Non-standard analysis) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Niet-standaard analyse (Engelse titel: Non-standard analysis) Verslag ten behoeve

Nadere informatie

D. M. van Diemen. Homotopie en Hopf. Bachelorscriptie, 7 juni Scriptiebegeleider: dr. B. de Smit. Mathematisch Instituut, Universiteit Leiden

D. M. van Diemen. Homotopie en Hopf. Bachelorscriptie, 7 juni Scriptiebegeleider: dr. B. de Smit. Mathematisch Instituut, Universiteit Leiden D. M. van Diemen Homotopie en Hopf Bachelorscriptie, 7 juni 2010 Scriptiebegeleider: dr. B. de Smit Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding 3 2 Homotopie 4 2.1 Hogere homotopiegroepen..............................

Nadere informatie

Deelgroepen en normaaldelers

Deelgroepen en normaaldelers Hoofdstuk 2 Deelgroepen en normaaldelers 2.1 Wat is een deelgroep? Definitie 2.1. Een deelverzameling H van een groep G, is een deelgroep van G als en slechts als H niet leeg is en H, zelf een groep is.

Nadere informatie

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015 Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen

Nadere informatie

IL-modellen en bisimulaties

IL-modellen en bisimulaties IL-modellen en bisimulaties René de Jonge juli 2004 Samenvatting In dit artikel worden enkele bekende begrippen en stellingen uit de klassieke modale logica geformuleerd voor de uitgebreidere logica IL.

Nadere informatie

Oplossingen Oefeningen Bewijzen en Redeneren

Oplossingen Oefeningen Bewijzen en Redeneren Oplossingen Oefeningen Bewijzen en Redeneren Goeroen Maaruf 20 augustus 202 Hoofdstuk 3: Relaties. Oefening 3..2 (a) Persoon p is grootouder van persoon q. (b) (p, q) O o O r P : [ (p, r) O (r, q) O ]

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 6 26 september 2016 1 Hoofdstuk 3.1 en 3.2 Matrix operaties Optellen van matrices Matrix vermenigvuldigen met een constante Matrices vermenigvuldigen Machten

Nadere informatie

Keuze-axioma (Axiom of Choice) Voor elke familie F van niet-lege verzamelingen bestaat er een functie f (een keuzefunctie) zodanig dat f(s) S S F.

Keuze-axioma (Axiom of Choice) Voor elke familie F van niet-lege verzamelingen bestaat er een functie f (een keuzefunctie) zodanig dat f(s) S S F. Scoop februari 2003 Keuze-axioma Bram Buijs Het keuze-axioma We komen allemaal wel eens in de situatie dat je keuzes moet maken. Kiezen wat je gaat studeren, kiezen tussen studeren en gezelligheid, kiezen

Nadere informatie

Wiskunde. Verzamelingen, functies en relaties. College 6. Donderdag 7 Januari

Wiskunde. Verzamelingen, functies en relaties. College 6. Donderdag 7 Januari Wiskunde Verzamelingen, functies en relaties College 6 Donderdag 7 Januari 1 / 14 Kardinaliteit Def. A is de kardinaliteit van A. A = B : er is een bijectie van A naar B. A B : er is een injectie van A

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 BEWIJZEN Discrete Structuren Week1 : Bewijzen Onderwerpen Puzzels

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Oefensommen tentamen Lineaire algebra 2 - december A =

Oefensommen tentamen Lineaire algebra 2 - december A = Oefensommen tentamen Lineaire algebra 2 - december 2012 Opg 1 De schaakbordmatrix A is de 8 bij 8 matrix 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 A = 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1

Nadere informatie

College WisCKI. Albert Visser. 10 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties.

College WisCKI. Albert Visser. 10 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 10 oktober, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Wat is een equivalentierelatie? Een equivalentie

Nadere informatie

Logica voor AI. Responsiecollege. Antje Rumberg. 12 december Kripke Semantiek. Geldigheid. De bereikbaarheidsrelatie

Logica voor AI. Responsiecollege. Antje Rumberg. 12 december Kripke Semantiek. Geldigheid. De bereikbaarheidsrelatie Logica voor AI Responsiecollege Antje Rumberg Antje.Rumberg@phil.uu.nl 12 december 2012 1 De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ Blokje en ruitje ϕ: het is noodzakelijk

Nadere informatie

EEN CONSTRUCTIEF ALGORITME

EEN CONSTRUCTIEF ALGORITME Faculteit Wetenschappen Vakgroep Toegepaste Wiskunde, Informatica en Statistiek EEN CONSTRUCTIEF ALGORITME VOOR UNION CLOSED SETS door Robin DEKLERCK Promotor: Prof. Dr. Gunnar BRINKMANN Masterproef ingediend

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie week 4.8, maandag Faculteit EWI TU Delft Delft, 6 juni, 2016 1 / 33 Outline 1 Maximum-modulusprincipe Lemma van Schwarz 2 2 / 33 Maximum-modulusprincipe Lemma van Schwarz Maximum-modulusprincipe Stelling

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Convexe Analyse en Optimalisering Opleiding: Bacheloropleiding Econometrie Vakcode: 64200 Datum:

Nadere informatie

Tentamen lineaire algebra 2 17 januari 2014, 10:00 13:00 zalen 174, 312, 412, 401, 402

Tentamen lineaire algebra 2 17 januari 2014, 10:00 13:00 zalen 174, 312, 412, 401, 402 Tentamen lineaire algebra 2 17 januari 214, 1: 13: zalen 174, 312, 412, 41, 42 Dit zijn geen complete uitwerkingen. Er is dus geen garantie dat het overschrijven met andere getallen voldoende is voor huiswerk

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het

Nadere informatie

Elke uitspraak is waar of onwaar

Elke uitspraak is waar of onwaar Boole Algebra E.S.Wojiulewitsh, 1974 Deze tekst kan vrij gebruikt worden voor elke eduatieve ativiteit. Vriendelijk verzoek de oorsprong ervan wel te respeteren. Boole-algebra 1. Een en ander over logia

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)

Nadere informatie

Suprema in ruimten van operatoren

Suprema in ruimten van operatoren Suprema in ruimten van operatoren Jan van Waaij Bachelorscriptie, 14 juni 2011 Scriptiebegeleider: dr. O.W. van Gaans Mathematisch Instituut, Universiteit Leiden INHOUDSOPGAVE i Inhoudsopgave Inhoudsopgave

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Verzamelingen deel 2. Tweede college

Verzamelingen deel 2. Tweede college 1 Verzamelingen deel 2 Tweede college herhaling Deelverzameling: AB wil zeggen dat elk element van A ook in B te vinden is: als x A dan x B Er geldt: A=B AB en BA De lege verzameling {} heeft geen elementen.

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D00. Datum: vrijdag 3 juni 008. Tijd: 09:00-:00. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie