Collegestof verzamelingenleer. Verzamelingenleer. Inhoud dit deel college. Verzamelingen. Universele en lege verzameling. Verzamelingen en elementen

Maat: px
Weergave met pagina beginnen:

Download "Collegestof verzamelingenleer. Verzamelingenleer. Inhoud dit deel college. Verzamelingen. Universele en lege verzameling. Verzamelingen en elementen"

Transcriptie

1 Collegesto verzamelingenleer Verzamelingenleer Pro dr J-J Ch Meyer UU - ICS Gebaseerd op (aantal hoodstukken van) het boek: Set Theory and Related Topics by Seymour Lipschutz Schaum s Outlines, McGraw-Hill Verzamelingenleer J-J Ch Meyer 2 Inhoud dit deel college Het begrip verzameling en basisoperaties op verzamelingen Relaties en uncties Grootte van verzamelingen, cardinaal getallen Verzamelingen asisbegrippen en basisoperaties Verzamelingenleer J-J Ch Meyer 3 Verzamelingen en elementen Een verzamelingen is een (eindige o oneindige) welgedeinieerde collectie objecten, de zgn elementen van de verzameling Notatie (eindige) verzameling: = {a 1, a 2,, a n } a : a is een element van {a conditie(a)}: verzameling van alle elementen uit die voldoen aan conditie(a) Universele en lege verzameling Universele verzameling (Universum) Lege verzameling U Ø Verzamelingenleer J-J Ch Meyer 5 Verzamelingenleer J-J Ch Meyer 6 1

2 Deelverzameling en gelijkheid Venn-diagram, deelverzameling is een deelverzameling van elk element van is een element van x U : x x Verz is gelijk aan verz = en hebben precies dezelde elementen x U : x x Verzamelingenleer J-J Ch Meyer 7 Verzamelingenleer J-J Ch Meyer 8 Eigenschappen Voor elke verz : Ø U Voor elke verz : en C C = en Strikte deelverzameling is een strikte deelverzameling van is een deelverz van en is ongelijk en Verzamelingenleer J-J Ch Meyer 9 Verzamelingenleer J-J Ch Meyer 10 Vereniging, doorsnede, complement Vereniging van en : = {x U x o x } Vereniging, doorsnede, complement, Doorsnede van en : = {x U x en x } Complement van : c = {x U x } Verzamelingenleer J-J Ch Meyer 11 Verzamelingenleer J-J Ch Meyer 12 2

3 Vereniging Doorsnede Verzamelingenleer J-J Ch Meyer 13 Verzamelingenleer J-J Ch Meyer 14 Complement c U Verschil en symmetrisch verschil Verschil van en \ = {x U x en x } \ = c Symm verschil van en = ( ) \ ( ) = ( \ ) ( \ ) Verzamelingenleer J-J Ch Meyer 15 Verzamelingenleer J-J Ch Meyer 16 Verschil \ Symmetrisch verschil Verzamelingenleer J-J Ch Meyer 17 Verzamelingenleer J-J Ch Meyer 18 3

4 Disjuncte verzamelingen De algebra van verzamelingen en heten disjunct als ze geen elementen gemeenschappelijk hebben Maw: = Ø = ( ) C = ( C) = ( C) = ( ) ( C) ( c ) c = U = U Ø = c = U U c = Ø ( ) c = c c = ( ) C = ( C) = ( C) = ( ) ( C) ( c ) c = U = Ø = Ø c = Ø Ø c = U ( ) c = c c Verzamelingenleer J-J Ch Meyer 19 Verzamelingenleer J-J Ch Meyer 20 lgebra, # Dit is een oole se algebra net als de algebra van proposities!! Voor eindige verzameling S, geven we met #(S) het aantal elementen van S aan Klassen verzamelingen en de machtsverzameling Een klasse verzamelingen is een collectie die bestaat uit verzamelingen Gegeven een verzameling S, is de machtsverzameling van S de klasse van alle deelverzamelingen van S Notatie: P(S) o 2 S Feit: #(P(S)) = 2 #(S) voor eindige S Verzamelingenleer J-J Ch Meyer 21 Verzamelingenleer J-J Ch Meyer 22 Voorbeeld Zij S = {1, 2, 3} Dan is P(S) = { Ø, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3} } Partitie Zij S een verzameling Een deelklasse C P(S) heet een partitie als Ø C U, V C : U V U V = Ø ongelijke verzamelingen in C zijn disjunct a S U C : a U elk element van S behoort tot een verzameling in C Verzamelingenleer J-J Ch Meyer 23 Verzamelingenleer J-J Ch Meyer 24 4

5 Partitie S Relaties en uncties a U V U,V C Verzamelingenleer J-J Ch Meyer 25 Geordende paren, productverzameling, relatie (a, b) geordend paar (a, b) = (c, d) a = c en b = d Productverzameling (Cartesisch product) van en : = {(a, b) a en b } (inaire) relatie R van naar R Notatie: R(a, b) o arb voor (a, b) R Relatie, R a b Verzamelingenleer J-J Ch Meyer 27 Verzamelingenleer J-J Ch Meyer 28 Universele, lege, gelijkheidsrelatie, inverse relatie Gegeven een verzameling, is de universele relatie Ø is de lege relatie = = {(a, a) a } is de gelijkheidsrelatie op Gegeven een relatie R van naar is: De inverse relatie R -1 gedeinieerd als R -1 = {(b, a) (a, b) R} Inverse relatie, R a -1 b Verzamelingenleer J-J Ch Meyer 29 Verzamelingenleer J-J Ch Meyer 30 5

6 Compositie van relaties Zij R en S C, dan is de compositie R S van R en S is gede: R S = {(a, c) b : (a, b) R en (b, c) S} Dwz a(r S)c b : arb en bsc Compositie van relaties R S C Verzamelingenleer J-J Ch Meyer 31 Verzamelingenleer J-J Ch Meyer 32 Compositie van relaties R S C Typen relaties Relexieve relatie op verz a : ara Symmetrische relatie op verz a, b : arb bra ntisymmetrische relatie op verz a, b : arb en bra a = b Transitieve relatie op verz a, b, c : arb en brc arc Verzamelingenleer J-J Ch Meyer 33 Verzamelingenleer J-J Ch Meyer 34 Relexieve relatie Symmetrische relatie Verzamelingenleer J-J Ch Meyer 35 Verzamelingenleer J-J Ch Meyer 36 6

7 Transitieve relatie Stelling Zij R een relatie op R relexie = R R symmetrisch R -1 R R transitie R R R Verzamelingenleer J-J Ch Meyer 37 Verzamelingenleer J-J Ch Meyer 38 Equivalentierelatie Een relatie R op een verz is een equivalentierelatie als: R is relexie, R is symmetrisch, en R is transitie Notatie: vaak ~ o Voorbeeld: gelijkheid = op will verz Equivalentieklassen en quotiëntverzameling Zij R een equivalentierelatie op De equivalentieklasse van a onder R [a] R = {x (a, x) R} De quotiëntverzameling van onder R / R = {[a] R a } Stelling / R is een partitie van Verzamelingenleer J-J Ch Meyer 39 Verzamelingenleer J-J Ch Meyer 40 Equivalentieklassen en quotiëntverzameling Partiële ordening a [a] R [a] R /R Een relatie R op verz is een partiële ordening op als: R is relexie, R is antisymmetrisch, en R is transitie Notatie: vaak Voorbeeld: deelverzamelingsrelatie Verzamelingenleer J-J Ch Meyer 41 Verzamelingenleer J-J Ch Meyer 42 7

8 n-aire relaties n-aire relatie R op is een verzameling n-tuples (a 1,, a n ) Maw: n-aire relatie R op : R n = (n keer) Functies Een unctie (abeelding) van naar : Een relatie F van naar met de eigenschap dat, voor elke a, 1 b : (a, b) F 2 b,b : (a, b) F en (a, b ) F b = b Notatie: (a) = b voor (a, b) F N (a) verwijst naar uniek element in Verzamelingenleer J-J Ch Meyer 43 Verzamelingenleer J-J Ch Meyer 44 Functie, Functie, a b a b Verzamelingenleer J-J Ch Meyer 45 Verzamelingenleer J-J Ch Meyer 46 Functie, Functie, a b ok ok Verzamelingenleer J-J Ch Meyer 47 Verzamelingenleer J-J Ch Meyer 48 8

9 Identiteitsunctie en unctiecompositie Gegeven een verz Identiteitsunctie 1 : 1 (a) = a voor elke a Gegeven : en g : C Compositie g is de unctie die hoort bij de relatie F G (Let op volgorde!) a : (g )(a) = g((a)) Speciale typen uncties Functie : is injectie (o 1-1 ) a, a : (a) = (a ) a = a Functie : is surjectie (o onto ) b a : (a) = b Functie : is bijectie als zowel injectie als surjectie is Verzamelingenleer J-J Ch Meyer 49 Verzamelingenleer J-J Ch Meyer 50 Niet-injectieve unctie, Niet-surjectieve unctie, a b Verzamelingenleer J-J Ch Meyer 51 Verzamelingenleer J-J Ch Meyer 52 Inverteerbare uncties Functie Gegeven unctie : (en geassocieerde relatie F ) Functie is inverteerbaar als de inverse relatie F -1 van de relatie F weer een unctie is Stelling: is inverteerbaar is bijectie Notatie: inverse unctie -1 :, a b Verzamelingenleer J-J Ch Meyer 53 Verzamelingenleer J-J Ch Meyer 54 9

10 Inverse unctie, Geen inverse unctie, a -1 b Verzamelingenleer J-J Ch Meyer 55 Verzamelingenleer J-J Ch Meyer 56 Geen inverse unctie, Geen inverse unctie, a b Verzamelingenleer J-J Ch Meyer 57 Verzamelingenleer J-J Ch Meyer 58 Geen inverse unctie, a -1 b Eigenschappen inverse unctie Zij : bijectie (inverteerbaar) Dan geldt voor -1 : : -1 = 1 Dwz -1 ((a)) = a -1 = 1 Dwz ( -1 (b)) = b Verzamelingenleer J-J Ch Meyer 59 Verzamelingenleer J-J Ch Meyer 60 10

11 Probleem van grootte van verzamelingen Grootte van verzamelingen Cardinaalgetallen Voor eindige verzamelingen geen probleem om vast te stellen hoe groot een verzameling is: we hebben de cardinaliteitsunctie # eerder gezien Maar hoe zit dit met oneindige verzamelingen? Zijn deze allemaal even groot? Intuitie: sommige verzamelingen zijn groter dan andere?!? Maar intuitie is gevaarlijk bij oneindige verzamelingen Verzamelingenleer J-J Ch Meyer 62 Gelijkmachtige verzamelingen Verzamelingen en zijn gelijkmachtig ls er een bijectie : bestaat Stelling: is een equivalentierelatie Stelling: voor eindige verz en : #() = #() Voorbeelden {1, 2, 3} {4, 9, 13} Niet: {a, b, c, d} {1, 2, 3} Verrassend: E N (strikt!), maar toch: N = {0, 1, 2, 3, } bijectie! E = {0, 2, 4, 6, } Dus: N E Verzamelingenleer J-J Ch Meyer 63 Verzamelingenleer J-J Ch Meyer 64 Oneindige verzamelingen Zijn alle oneindige verzamelingen gelijkmachtig? ntwoord: neen! telbaar vs overatelbaar Een verz is atelbaar oneindig als Er is een bijectie : N Een verz is atelbaar als is eindig o atelbaar oneindig Een verz heet overatelbaar als is niet atelbaar Verzamelingenleer J-J Ch Meyer 65 Verzamelingenleer J-J Ch Meyer 66 11

12 Eigenschappen Propositie: atelbaar oneindig N Dus, per deinitie: ls overatelbaar, dan niet N telbare verzamelingen N is atelbaar: triviaal: N N E is atelbaar: E N Z is atelbaar: Z N Q is atelbaar: Q N Zijn er overatelbare verzamelingen? Verzamelingenleer J-J Ch Meyer 67 Verzamelingenleer J-J Ch Meyer 68 Relatie op verzamelingen Om erachter te komen o er overatelbare verzamelingen bestaan, bekijken we eerst een relatie op verzamelingen: De relatie is gedeinieerd als: Er bestaat een injectieve unctie : Eigenschappen van Relexiviteit Transitiviteit en C C Stelling van Schroeder-ernstein: en Verzamelingenleer J-J Ch Meyer 69 Verzamelingenleer J-J Ch Meyer 70 De strikte relatie De relatie is gedeinieerd als: asea en niet Wet van trichotomie o o Stelling van Cantor Voor elke verzameling geldt: P() Ihb N P(N) Dwz P(N) is overatelbaar! Verzamelingenleer J-J Ch Meyer 71 Verzamelingenleer J-J Ch Meyer 72 12

13 Terzijde Zij 2 de verzameling uncties {0,1} Stelling: P() 2 ewijs: deinieer unctie :P() 2 als volgt Voor X P(): (X) = g : {0,1} zdd g(a) = 1 als a X g(a) = 0 als a X Er kan worden bewezen dat een bijectie is QED Verband met continuum Er geldt: R P(N) Dus: N R, en dus niet: R N Maw R is overatelbaar!! Verzamelingenleer J-J Ch Meyer 73 Verzamelingenleer J-J Ch Meyer 74 Cardinaalgetallen Voor eindige verzamelingen deinieerden we simpelweg #() als het aantal elementen in Nu breiden we het begrip cardinaliteit uit en deinieren #(N) = ℵ 0 en #(R) = c en stipuleren dat voor # geldt: #() #() #() < #() Continuumhypothese Dus: er geldt: 0 < 1 < 2 < < ℵ 0 < c Vraag: is er β : ℵ 0 < β < c? Cantor s Continuumhypothese: neen! Cohen (1963): zowel de continuumhypothese als haar negatie kan consistent aan (standaard) verzamelingtheorie worden toegevoegd ( onahankelijkheid )!!! Verzamelingenleer J-J Ch Meyer 75 Verzamelingenleer J-J Ch Meyer 76 Cardinale rekenkunde De kardinaalgetallen kunnen worden opgevat als superset van N Je kunt er ook mee rekenen De rekenkundige operaties worden gedeinieerd mbv verzamelingstheoretische operaties Cardinale rekenkunde Zij α = #() en β = #() α + β = #( ) α β = #( ) α β = #( ) waarbij is de verzameling van alle uncties Verzamelingenleer J-J Ch Meyer 77 Verzamelingenleer J-J Ch Meyer 78 13

14 Wetten cardinale rekenkunde (α + β) + γ = α + (β + γ) α + β = β + α (α β) γ = α (β γ) α β = β α α (β + γ) = (α β) + (α γ) (α β) γ = α γ β γ α β α γ = α β+γ (α β ) γ = α β γ Speciale wetten mbt ℵ 0 en c n + ℵ 0 = ℵ 0 (n N) ℵ 0 + ℵ 0 = ℵ 0 ℵ 0 = ℵ 0 2 ℵ0 = c c + c = c c = c c ℵ0 = c c c = 2 c Verzamelingenleer J-J Ch Meyer 79 Verzamelingenleer J-J Ch Meyer 80 Onbegrensdheid cardinaalgetallen ltijd een groter cardinaalgetal te vinden, nl volgens de stelling van Cantor geldt: 0 < 1 < 2 < < ℵ 0 < c < 2 c < 2 2c < 2 22c < Verzamelingenleer J-J Ch Meyer 81 14

Relaties en Functies

Relaties en Functies Logica voor Informatica Relaties en Functies Mehdi Dastani m.m.dastani@uu.nl Intelligent Systems Utrecht University Geordende paren, productverzameling, relatie (a, b) geordend paar (a, b) = (c, d) a =

Nadere informatie

Oefening 2.2. Welke van de volgende beweringen zijn waar?

Oefening 2.2. Welke van de volgende beweringen zijn waar? Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.

Nadere informatie

Bewijzen en Redeneren voor Informatici

Bewijzen en Redeneren voor Informatici Bewijzen en Redeneren voor Informatici Reinoud Berkein 17 januari 2018 Samenvatting Een korte samenvatting van definities uit de cursus. Hoofdstuk 1 Doorsnede: De verzamerling die alle elementen bevat

Nadere informatie

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen Hoofdstuk 3 Equivalentierelaties SCHAUM 2.8: Equivalence Relations Twee belangrijke voorbeelden van equivalentierelaties in de informatica: resten (modulo rekenen) en cardinaliteit (aftelbaarheid). 3.1

Nadere informatie

Verzamelingen deel 3. Derde college

Verzamelingen deel 3. Derde college 1 Verzamelingen deel 3 Derde college rekenregels Een bewerking op A heet commutatief als voor alle x en y in A geldt dat x y = y x. Een bewerking op A heet associatief als voor alle x, y en z in A geldt

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dystra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 12 februari 2008 INLEIDING Discrete Structuren Wee1: Inleiding Onderwerpen

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 februari 2009 INLEIDING

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie   9 februari 2009 INLEIDING Discrete Structuren Piter Dystra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 INLEIDING Discrete Structuren Wee1: Inleiding Onderwerpen Elementaire

Nadere informatie

Bewijzen en Redeneren voor Informatici Samenvatting

Bewijzen en Redeneren voor Informatici Samenvatting Bewijzen en Redeneren voor Informatici Samenvatting Robin Kelchtermans 17 februari 2018 1 Voorwoord In deze samenvatting komen alle onderdelen van de cursus Bewijzen en Redeneren voor Informatici (academiejaar

Nadere informatie

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren Overzicht TI1300: Redeneren en Logica College 10: Verzamelingenleer Tomas Klos Algoritmiek Groep Colleges 1 2: Bewijstechnieken Colleges 3 9: Propositielogica Vandaag en morgen: Verzamelingenleer Colleges

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Wiskunde. Verzamelingen, functies en relaties. College 6. Donderdag 7 Januari

Wiskunde. Verzamelingen, functies en relaties. College 6. Donderdag 7 Januari Wiskunde Verzamelingen, functies en relaties College 6 Donderdag 7 Januari 1 / 14 Kardinaliteit Def. A is de kardinaliteit van A. A = B : er is een bijectie van A naar B. A B : er is een injectie van A

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 15 februari 2009 RELATIES & GRAFEN Discrete Structuren Week 2: Relaties en Grafen

Nadere informatie

College WisCKI. Albert Visser. 17 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties.

College WisCKI. Albert Visser. 17 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 17 oktober, 2012 1 Overview 2 Overview 2 Overview 2 Overview 2 Overview 3 Wat is een equivalentierelatie? Een

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie 22 maart 2009 ONEINDIGHEID

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie   22 maart 2009 ONEINDIGHEID Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 maart 2009 ONEINDIGHEID. Paragraaf 13.3. De paradox van de oneindigheid ligt slechts

Nadere informatie

Oefening 2.3. Noteer de volgende verzamelingen d.m.v. (eenvoudig) voorschrift voor de eerste helft en d.m.v. opsomming voor de tweede helft.

Oefening 2.3. Noteer de volgende verzamelingen d.m.v. (eenvoudig) voorschrift voor de eerste helft en d.m.v. opsomming voor de tweede helft. Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.

Nadere informatie

232 NAW 5/6 nr. 3 september 2005 Te Moeilijk? Welnee! Hans Finkelnberg

232 NAW 5/6 nr. 3 september 2005 Te Moeilijk? Welnee! Hans Finkelnberg 232 NAW 5/6 nr. 3 september 2005 Te Moeilijk? Welnee! Hans Finkelnberg illustratie: Rye Tajiri Hans Finkelnberg Te moeilijk? Welnee! NAW 5/6 nr. 3 september 2005 233 Hans Finkelnberg Mathematisch Instituut

Nadere informatie

Dossier 1 SYMBOLENTAAL

Dossier 1 SYMBOLENTAAL Dossier 1 SYMBOLENTAAL basis voor wiskundige communicatie Dr. Luc Gheysens Wiskundigen hebben een eigen symbolentaal waarmee ze onderling communiceren, redeneringen en bewijzen neerschrijven, mathematische

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

KU Leuven. Algebra. Notities. Tom Sydney Kerckhove

KU Leuven. Algebra. Notities. Tom Sydney Kerckhove KU Leuven Algebra Notities Tom Sydney Kerckhove Gestart 23 september 2014 Gecompileerd 28 oktober 2014 Inhoudsopgave 1 Verzamelingen 3 1.1 Basisbegrippen....................................... 3 1.2 De

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

1 Verzamelingen. en relaties. 1.1 De basisnotaties. Hoofdstuk

1 Verzamelingen. en relaties. 1.1 De basisnotaties. Hoofdstuk Inhoudsopgave Inhoudsopgave iii 1 Verzamelingen en relaties 1 1.1 De basisnotaties.......................... 1 1.2 Relaties.............................. 4 1.2.1 Basisdefinities.......................

Nadere informatie

Verzamelingen deel 1. Eerste college

Verzamelingen deel 1. Eerste college 1 Verzamelingen deel 1 Eerste college Set = Verzameling 2 https://en.wikipedia.org/wiki/set_(deity) http://www.spelmagazijn.nl/nl/spelmag/set.html22 http://perkamentus.blogspot.nl/2016/12/de-complete-verzameling.html

Nadere informatie

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen Tentamen Grondslagen van de Wiskunde A, met uitwerkingen 8 december 2015, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

Enkele valkuilen om te vermijden

Enkele valkuilen om te vermijden Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige

Nadere informatie

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2. opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 1 Jan Terlouw maandag 8 februari 2010 1 Algemene gegevens over deze cursus DS. Docenten. Jan Terlouw (hoorcollege) en Piter Dykstra

Nadere informatie

Wiskunde. Verzamelingen, functies en relaties. College 2. Donderdag 3 November

Wiskunde. Verzamelingen, functies en relaties. College 2. Donderdag 3 November Wiskunde Verzamelingen, functies en relaties College 2 Donderdag 3 November 1 / 17 Equivalentierelaties Def. Een relatie R heet reflexief als x xrx. R heet transitief als x y z (xry yrz xrz). R heet symmetrisch

Nadere informatie

College WisCKI. Albert Visser. 10 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties.

College WisCKI. Albert Visser. 10 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 10 oktober, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Wat is een equivalentierelatie? Een equivalentie

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

(Isomorfie en) RELATIES

(Isomorfie en) RELATIES Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 15 maart 2009 (Isomorfie en) RELATIES. Paragrafen 10.5,11.1,11.2,11.4,11.5 Discrete

Nadere informatie

Harm de Vries. Partitiestellingen. Bachelor Thesis, Thesis advisor: Dr. K.P. Hart. Mathematisch Instituut, Universiteit Leiden

Harm de Vries. Partitiestellingen. Bachelor Thesis, Thesis advisor: Dr. K.P. Hart. Mathematisch Instituut, Universiteit Leiden Harm de Vries Partitiestellingen Bachelor Thesis, 2008 Thesis advisor: Dr. K.P. Hart Mathematisch Instituut, Universiteit Leiden Partitiestellingen Harm de Vries (hdv@math.leidenuniv.nl) Mathematisch Instituut

Nadere informatie

VERZAMELINGEN EN AFBEELDINGEN

VERZAMELINGEN EN AFBEELDINGEN I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen

Nadere informatie

Inhoudsopgave. Relaties geordend paar, cartesisch product, binaire relatie, inverse, functie, domein, bereik, karakteristieke functies

Inhoudsopgave. Relaties geordend paar, cartesisch product, binaire relatie, inverse, functie, domein, bereik, karakteristieke functies Inhoudsopgave Verzamelingen element, Venn-diagram, singleton, lege verzameling, gelijkheid, deelverzameling, machtsverzameling, vereniging, doorsnede, verschilverzameling Relaties geordend paar, cartesisch

Nadere informatie

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff Oneindig in Wiskunde & Informatica Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft Tom Verhoeff Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica http://www.win.tue.nl/~wstomv/

Nadere informatie

Drie problemen voor de prijs van één

Drie problemen voor de prijs van één Drie problemen voor de prijs van één Of: één probleem voor de prijs van drie K. P. Hart Faculty EEMCS TU Delft Delft, 30 oktober, 2012: 10:15 10:45 Eenvoudig begin Opgave Bewijs dat voor m, n N het volgende

Nadere informatie

Verzamelingen. Hoofdstuk 5

Verzamelingen. Hoofdstuk 5 Hoofdstuk 5 Verzamelingen In de meest uiteenlopende omstandigheden kan het handig zijn om een stel objecten, elementen, of wat dan ook, samen een naam te geven. Het resultaat noemen we dan een verzameling.

Nadere informatie

Vorig college. IN2505-II Berekenbaarheidstheorie. Aanbevolen opgaven. Wat is oneindigheid? College 5

Vorig college. IN2505-II Berekenbaarheidstheorie. Aanbevolen opgaven. Wat is oneindigheid? College 5 Vorig college College 5 Algoritmiekgroep Faculteit EWI TU Delft Opsommers vs. Herkenners Church-Turing These Codering van problemen 23 april 2009 1 2 Aanbevolen opgaven Wat is oneindigheid? Sipser p. 163

Nadere informatie

Fundamenten. Lerarenprogramma Mastermath, versie 2015/12/02. Theo van den Bogaart Bas Edixhoven

Fundamenten. Lerarenprogramma Mastermath, versie 2015/12/02. Theo van den Bogaart Bas Edixhoven Fundamenten Lerarenprogramma Mastermath, versie 2015/12/02 Theo van den Bogaart Bas Edixhoven i Inhoudsopgave I Verzamelingen en afbeeldingen............................................... 3 I.1 Notatie.........................................................................

Nadere informatie

RAF belangrijk te onthouden

RAF belangrijk te onthouden RAF belangrijk te onthouden Auteur: Daan Pape Hoofdstuk 1 symbool omschrijving lees als negatie (ontkenning) p niet p het is niet zo dat p conjunctie p q p en q disjunctie p q p of q implicatie p q als

Nadere informatie

KU Leuven. Algebra. Notities. Tom Sydney Kerckhove. met dank aan: Katelijne Caerts Eline van der Auwera Anneleen Truijen

KU Leuven. Algebra. Notities. Tom Sydney Kerckhove. met dank aan: Katelijne Caerts Eline van der Auwera Anneleen Truijen KU Leuven Algebra Notities Tom Sydney Kerckhove met dank aan: Katelijne Caerts Eline van der Auwera Anneleen Truijen Gestart 23 september 2014 Gecompileerd 1 juni 2015 Inhoudsopgave 1 Verzamelingen 6 1.1

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Algebra en Getaltheorie@Work: van cryptosysteem tot digitale handtekening

Algebra en Getaltheorie@Work: van cryptosysteem tot digitale handtekening Algebra en Getaltheorie@Work: van cryptosysteem tot digitale handtekening Dr. Fabien Decruyenaere, St. Amandscollege, 8500 Kortrijk fabien.decruyenaere@skynet.be Prof. Dr. Paul Igodt, K.U.Leuven Campus

Nadere informatie

LINEAIRE ALGEBRA EN MEETKUNDE. G. Van Steen

LINEAIRE ALGEBRA EN MEETKUNDE. G. Van Steen LINEAIRE ALGEBRA EN MEETKUNDE G. Van Steen 13 november 2001 Inhoudsopgave 1 Verzamelingenleer 3 1.1 Bewerkingen met verzamelingen................. 4 1.2 Relaties.............................. 7 1.3 Functies..............................

Nadere informatie

Multicriteria Optimization and Decision Making. Michael Emmerich and André Deutz

Multicriteria Optimization and Decision Making. Michael Emmerich and André Deutz 2 Relaties 1 Multicriteria Optimization and Decision Making Michael Emmerich and André Deutz 2 motivatie We bestuderen relaties: de terminologie, representaties (de manieren om relaties weer te geven)

Nadere informatie

Martin s axioma en ccc-ruimten

Martin s axioma en ccc-ruimten WETENSCHAPPEN WISKUNDE Martin s axioma en ccc-ruimten Sandra Van Vooren Promotor : Eva Colebunders 22 maart 2010 Inhoudsopgave 1 Inleidende begrippen 4 1.1 De ZFC-axioma s...................................

Nadere informatie

Relaties deel 2. Vierde college

Relaties deel 2. Vierde college 2 Relaties deel 2 Vierde college 1 n-tupels & Cartesisch product A 1, A 2,, A n verzamelingen Een n-tupel is een geordend rijtje (ook wel: geordend n-tal) (a 1,a 2,...,a n ) met a 1 A 1, a 2 A 2,, a n

Nadere informatie

equivalentie-relaties

equivalentie-relaties vandaag equivalentie-relaties reflexief, symmetrisch, transitief 1 1. gelijkmachtigheid / aftelbaarheid 2. modulo rekenen 3. theorie Gelijkmachtigheid en aftelbaarheid 3.7 aleph 2 intuitie Amst Brux Roma

Nadere informatie

Wiskundige Structuren

Wiskundige Structuren wi1607 Wiskundige Structuren Cursus 2009/2010 Eva Coplakova en Bas Edixhoven i Inhoudsopgave I Verzamelingen en afbeeldingen..... 2 I.1 Notatie........3 I.2 Operaties op verzamelingen...7 I.3 Functies.......10

Nadere informatie

FILOSOFIE VAN DE WISKUNDE. Filosofische stromingen in de wiskunde. De genetische methode. Voorbeeld van de gen. meth.

FILOSOFIE VAN DE WISKUNDE. Filosofische stromingen in de wiskunde. De genetische methode. Voorbeeld van de gen. meth. Filosofische stromingen in de wiskunde FILOSOFIE VAN DE WISKUNDE n logicisme (Frege, Russell) "wiskunde is een tak van de logica" n formalisme (Hilbert) "wiskunde is de wetenschap van formele systemen"

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

BEWIJZEN EN REDENEREN

BEWIJZEN EN REDENEREN BEWIJZEN EN REDENEREN voor Bachelor of Science in Fysica en Wiskunde Academiejaar 2012/2013 Arno KUIJLAARS Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Heverlee Inhoudsopgave

Nadere informatie

Kardinaalgetallen en het gedrag van de 2-machtsfunctie (Engelse titel: Cardinal numbers and the behaviour of the powersetfunction)

Kardinaalgetallen en het gedrag van de 2-machtsfunctie (Engelse titel: Cardinal numbers and the behaviour of the powersetfunction) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Kardinaalgetallen en het gedrag van de 2-machtsfunctie (Engelse titel: Cardinal numbers

Nadere informatie

Functies deel 1. Vijfde college

Functies deel 1. Vijfde college 3 Functies deel 1 Vijfde college 1 Ch.3 Functions and Algorithms Hoofdstuk 3 uit Schaum gaat over functies en algoritmen. Het gedeelte over algoritmen ( 3.8 en 3.9) komt uitgebreid aan de orde bij toekomstige

Nadere informatie

Masterproef Uniforme Random Generatie van Strings

Masterproef Uniforme Random Generatie van Strings 2012 2013 FACULTEIT WETENSCHAPPEN master in de informatica: databases Masterproef Uniforme Random Generatie van Strings Promotor : Prof. dr. Frank NEVEN De transnationale Universiteit Limburg is een uniek

Nadere informatie

Logisch redeneren. Historische figuren. Begrippen. Axioma s of grondbegrippen. Grondbegrippen

Logisch redeneren. Historische figuren. Begrippen. Axioma s of grondbegrippen. Grondbegrippen Logisch redeneren We vertrekken vanuit grondbegrippen en axioma s om de logica op te bouwen Historische figuren August De Morgan(19 de eeuw, Engeland): grondlegger van de formele logica. George Boole(

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat:

Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat: Hoofdstuk 1 Eerste begrippen 1.1 Wat is een groep? Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat: 1. a, b G : a b G 2. a, b, c G : a (b c) = (a b) c = a

Nadere informatie

Verzamelingen deel 2. Tweede college

Verzamelingen deel 2. Tweede college 1 Verzamelingen deel 2 Tweede college herhaling Deelverzameling: AB wil zeggen dat elk element van A ook in B te vinden is: als x A dan x B Er geldt: A=B AB en BA De lege verzameling {} heeft geen elementen.

Nadere informatie

Basiswiskunde. P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam

Basiswiskunde. P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam Basiswiskunde P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam 22 augustus 2007 Inhoudsopgave 1 Verzamelingen 2 2 Taal van de wiskunde 6 3 Afbeeldingen 11 4 Relaties 15 5 Inductie

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30 Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde vrijdag 3 februari 2012, 8:30 12:30 Naam: Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Kardinaalfuncties in de topologie

Kardinaalfuncties in de topologie Kardinaalfuncties in de topologie Azer Aras 8 juli 2016 Bachelorscriptie Begeleiding: prof. dr. Jan van Mill Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Nadere informatie

Inhoudsopgave. I Theorie 1

Inhoudsopgave. I Theorie 1 Inhoudsopgave I Theorie 1 1 Verzamelingen 3 1.1 Inleiding........................................ 3 1.2 Bewerkingen met verzamelingen........................... 6 1.2.1 Vereniging (unie) van twee verzamelingen.................

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig ... Oneindig 2 Top tien

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07 Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Eerstebachelorstudenten moeten heel wat nieuwe kennis verwerven. Het pleidooi voor een abstracte aanpak sluit niet uit dat we meestal met concrete

Eerstebachelorstudenten moeten heel wat nieuwe kennis verwerven. Het pleidooi voor een abstracte aanpak sluit niet uit dat we meestal met concrete Voorwoord Deze cursusnota s horen bij het opleidingsonderdeel Relaties en structuren uit de eerste Bachelor wiskunde. Alles wat aan bod zal komen tijdens de theorielessen, is bevat in deze nota s. De student

Nadere informatie

Verzamelingenleer. Inhoud leereenheid 5. Introductie 9

Verzamelingenleer. Inhoud leereenheid 5. Introductie 9 Inhoud leereenheid 5 Introductie 9 1 Verzamelingen 10 2 Deelverzamelingen 15 3 Operaties op verzamelingen 20 3.1 Doorsnede en lege verzameling 20 3.2 Vereniging en verschil 24 3.3 Complement en universum

Nadere informatie

Samenvatting. TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten. Disclaimer

Samenvatting. TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten. Disclaimer Samenvatting TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst mogelijke

Nadere informatie

Deelgroepen en normaaldelers

Deelgroepen en normaaldelers Hoofdstuk 2 Deelgroepen en normaaldelers 2.1 Wat is een deelgroep? Definitie 2.1. Een deelverzameling H van een groep G, is een deelgroep van G als en slechts als H niet leeg is en H, zelf een groep is.

Nadere informatie

Eigenschappen en Axioma s van de E 6 -meetkunde

Eigenschappen en Axioma s van de E 6 -meetkunde Faculteit Wetenschappen Vakgroep Wiskunde Eigenschappen en Axioma s van de E 6 -meetkunde Magali Victoor Promotor: Prof. dr. Hendrik Van Maldeghem Masterproef ingediend tot het behalen van de academische

Nadere informatie

Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006

Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006 Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006 Inhoudsopgave 1 Topologische ruimten 2 2 Metriseerbaarheid en aftelbaarheid 7 3 Convergentie en continuïteit 8 4 Separatie-eigenschappen

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

Inleiding Logica. Jan Jaspars. CKI, eerste studiejaar, september/oktober 2005 Web: jaspars/inleidinglogica

Inleiding Logica. Jan Jaspars. CKI, eerste studiejaar, september/oktober 2005 Web:  jaspars/inleidinglogica Inleiding Logica Jan Jaspars CKI, eerste studiejaar, september/oktober 2005 Web: http://www.science.uva.nl/ jaspars/inleidinglogica 2 Dit diktaat, en de programmatuur op boven vernoemde website, is tot

Nadere informatie

R.P. Thommassen. Whitehead Groepen. Bachelorscriptie, 10 Augustus Scriptiebegeleider: prof.dr. K.P. Hart

R.P. Thommassen. Whitehead Groepen. Bachelorscriptie, 10 Augustus Scriptiebegeleider: prof.dr. K.P. Hart R.P. Thommassen Whitehead Groepen Bachelorscriptie, 10 Augustus 2014 Scriptiebegeleider: prof.dr. K.P. Hart Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding 3 2 Binnen ZFC 6 2.1 Eigenschappen

Nadere informatie

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

Keuze-Axioma en filosofische vragen over de Wiskunde

Keuze-Axioma en filosofische vragen over de Wiskunde Keuze-Axioma en filosofische vragen over de Wiskunde Jaap van Oosten Department of Mathematics, Utrecht University Caleidsocoop 1, 3 april 2012 In de wiskunde bewijzen we stellingen (uitspraken). In het

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 5A Jan Terlouw maandag 8 maart 2010 1 Algemeen over DS in deze week Nadere belichting van stof van week 4 (mede i.v.m. toets). Bij het

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 5 J.Keijsper (TUE)

Nadere informatie

Automaten en Berekenbaarheid

Automaten en Berekenbaarheid Automaten en Berekenbaarheid Bart Demoen KU Leuven 2016-2017 Les 3: 36-54 Myhill-Nerode relaties; regulier pompen Myhill-Nerode equivalentieklassen in Σ I 2/10 belangrijk te verstaan: een equivalentie-relatie

Nadere informatie

De vragen van vandaag. Hoeveel elementen? Hoeveel provincies? Hoeveel natuurlijke getallen? Non impeditus ab ulla scientia

De vragen van vandaag. Hoeveel elementen? Hoeveel provincies? Hoeveel natuurlijke getallen? Non impeditus ab ulla scientia De vragen van vandaag Hoeveel elementen? Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Hoeveel provincies heeft Nederland? Hoeveel natuurlijke getallen zijn er? Hoeveel reële getallen

Nadere informatie

Verfijningen van de Borelhiërarchie in Intuïtionistische Beschrijvende Verzamelingenleer. Roy Loos

Verfijningen van de Borelhiërarchie in Intuïtionistische Beschrijvende Verzamelingenleer. Roy Loos Verfijningen van de Borelhiërarchie in Intuïtionistische Beschrijvende Verzamelingenleer Roy Loos 2014 2 Proloog Deze scriptie is het resultaat van een onderzoek in de intuïtionistische wiskunde, specifieker

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Verzamelingenleer. Onderdeel van het college Logica (2017) Klaas Landsman

Verzamelingenleer. Onderdeel van het college Logica (2017) Klaas Landsman Verzamelingenleer Onderdeel van het college Logica (2017) 1.1 Zermelo Fraenkel axioma s Klaas Landsman De moderne wiskunde berust op het volgende stelsel van axioma s, dat in de periode 1900 1925 werd

Nadere informatie

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking 10 december 2013, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is

Nadere informatie

1 Verzamelingen en afbeeldingen

1 Verzamelingen en afbeeldingen Samenvatting Wiskundige Structuren, 2010 Aad Offerman, www.offerman.com 1 1 Verzamelingen en afbeeldingen Notaties: A = {1,2,3},, x A, y / A, A = B A B en B A, N = {0,1,2,...}, Z = {..., 3, 2, 1,0,1,2,...},

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma Voorwoord Dit zijn aantekeningen voor het vak Discrete Wiskunde (2WC15), gegeven in het lentesemester van 2010. Dit vak bestaat uit twee delen: algoritmische

Nadere informatie

METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.)

METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.) METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.) 1. Inleiding. In deze syllabus behandelen we een aantal fundamentele onderwerpen uit de

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Propositielogica. Onderdeel van het college Logica (2017) Klaas Landsman

Propositielogica. Onderdeel van het college Logica (2017) Klaas Landsman Propositielogica Onderdeel van het college Logica (2017) Klaas Landsman They who are acquainted with the present state of the theory of Symbolic Algebra, are aware of the validity of the processes of analysis

Nadere informatie

Hoeveel elementen? Non impeditus ab ulla scientia. K. P. Hart. Faculteit EWI TU Delft. Leiden, 18 november 2009: 13:15 14:15

Hoeveel elementen? Non impeditus ab ulla scientia. K. P. Hart. Faculteit EWI TU Delft. Leiden, 18 november 2009: 13:15 14:15 Hoeveel elementen? Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Leiden, 18 november 2009: 13:15 14:15 De vragen van vandaag Hoeveel provincies heeft Nederland? Hoeveel natuurlijke getallen

Nadere informatie

Semantiek 1 college 10. Jan Koster

Semantiek 1 college 10. Jan Koster Semantiek 1 college 10 Jan Koster 1 Vandaag Vorige keer: conceptuele structuur en semantische decompositie Vandaag: inleiding in de formele semantiek Gebruikt notaties uit formele logica plus de daar gehanteerde

Nadere informatie

Oneindig. Pieter Naaijkens Radboud Universiteit Nijmegen 7 januari 2009

Oneindig. Pieter Naaijkens Radboud Universiteit Nijmegen 7 januari 2009 Oneindig Pieter Naaijkens Radboud Universiteit Nijmegen 7 januari 2009 1 Introductie Deze lesbrief gaat over het begrip oneindig. Iedereen heeft wel een idee bij het begrip oneindig. Er zijn bijvoorbeeld

Nadere informatie

Wiskundige tovertaal. Hoofdstuk 2. 2.1 Symbolen

Wiskundige tovertaal. Hoofdstuk 2. 2.1 Symbolen Hoofdstuk 2 Wiskundige tovertaal Bij het schrijven van dit hoofdstuk heb ik onder andere intensief gebruik gemaakt van het collegedictaat Inleiding tot de moderne wiskunde van Prof. N.G. de Bruijn (TH

Nadere informatie

Tentamen Topologie, Najaar 2011

Tentamen Topologie, Najaar 2011 Tentamen Topologie, Najaar 2011 27.01.2012, 08:30-11:30, LIN 8 (HG00.308) Toelichting: Je mag geen hulpmiddelen (zoals aantekeningen, rekenmachine, telefoon, etc.) gebruiken, behalve de boeken van Gamelin/Greene

Nadere informatie

Eindige topologische ruimten

Eindige topologische ruimten R.A.C.H. Wols Eindige topologische ruimten Bachelorscriptie, 8 juni 2010 Scriptiebegeleider: dr. R.S. de Jong Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding 1 2 Eindige ruimten

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 4 april 2008 Discrete Structuren Week 8: Samenvatting Redeneerpatronen

Nadere informatie