2WO12: Optimalisering in Netwerken

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "2WO12: Optimalisering in Netwerken"

Transcriptie

1 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

2 Overzicht Tot nog toe: grafen, kleuren en routeren graafrepresentaties en complexiteit kortste pad algoritmes Vandaag minimum opspannende bomen Prüfer reeksen fylogenetische bomen Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

3 Definitie Een bos is een graaf zonder circuits. Definitie Een boom is een samenhangend bos. Laat G = (V, E) een graaf zijn. Een opspannende boom (spanning tree) van G is een boom T = (V, F ) met F E. Anders gezegd, een opspannende boom van G is een deelgraaf van G die alle punten van G opspant (verbindt) en geen circuits bevat. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

4 Voorbeeld Een opspannende boom van de Petersen graaf (in zwart): Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

5 Voorbeeld Een andere opspannende boom van de Petersen graaf (in zwart): Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

6 Probleem Minimum Opspannende Boom (Minimum Spanning Tree) Gegeven: samenhangende graaf G = (V, E) en lengtefunctie l : E R Vind: een opspannende boom T = (V, F ) van G met minimale lengte l(e) e F Elke samenhangende graaf heeft een opspannende boom. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

7 Prim-Dijkstra methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) en lengtefunctie l : E R Definitie δ(u) is de verzameling lijnen die precies één eindpunt in U hebben Algoritme Kies willekeurig punt v 1 U 1 := {v 1 } F 1 := Voor k = 1, 2,..., V 1 Kies een lijn ek δ(u k ) met minimale lengte Stelling Uk+1 := U k e k Fk+1 := F k {e k } (V, F V ) is een minimum opspannende boom van G Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

8 Voorbeeld Vind een minimum opspannende boom in de volgende graaf m.b.v. de Prim-Dijkstra methode: Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

9 Lemma (1) De volgende uitspraken zijn equivalent voor een graaf G = (V, E): 1 G is een boom (is samenhangend en bevat geen circuit) 2 G is samenhangend en E = V 1 3 G bevat geen circuit en E = V 1 4 G bevat een uniek pad tussen elk tweetal punten Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

10 Lemma (2) Als G = (V, E) samenhangend is, (V, F ) een opspannende boom van G en e E \ F dan zijn de volgende twee uitspraken waar: 1 F {e} bevat een uniek circuit C 2 als f een lijn is van C, dan is F \ {f } {e} een opspannende boom van G e Voorbeeld: lijn e toevoegen geeft een uniek circuit; lijn f weglaten geeft weer een opspannende boom. f Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

11 Definitie (V, F ) is een bos van G = (V, E) als F E en (V, F ) een bos is. Definitie Een bos (V, F ) van G heet gulzig (greedy) als er een opspannende boom van minimale lengte bestaat die alle lijnen van F bevat. Een opspannende boom die gulzig is heeft dus minimale lengte Stelling (1.11) Laat (V, F ) een gulzig bos zijn van G = (V, E) en U een component van (V, F ). Als e een lijn met minimale lengte is over alle lijnen in δ(u), dan is (V, F {e}) weer een gulzig bos. Stelling Het algoritme van Prim-Dijkstra vindt een minimum opspannende boom. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

12 Stelling Het algoritme van Prim-Dijkstra vindt een minimum opspannende boom in tijd O( V 2 ). Bewijs Stelling Houd voor elk punt v V \ U k de lengte f (v) bij van een kortste lijn {u, v} met u U k. Er zijn V iteraties. In elke iteratie is er O( V ) tijd nodig om een punt v V \ U k met minimale f (v) te vinden. In elke iteratie is er O( V ) tijd nodig om de labels van de buren van dit punt v aan te passen. Het algoritme van Prim-Dijkstra geïmplementeerd met Fibonacci Heaps lost het minimum opspannende boom probleem op in tijd O( E + V log( V )). Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

13 Kruskals methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) met lengtefunctie l : E R. Algoritme Stelling F := Voor k = 1, 2,..., V 1 Kies een lijn e k E \ F met minimale lengte waarvoor (V, F {e k }) een bos is F := F {ek } Kruskals algoritme vindt een minimum opspannende boom (V, F ) van G. Stelling Kruskals algoritme kan geïmplementeerd worden zodat de looptijd O( E log( V )) is. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

14 Voorbeeld Vind een opspannende boom in de volgende graaf m.b.v. Kruskals algoritme: Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

15 Borůvka s methode voor het vinden van een minimum opspannende boom van een samenhangende graaf G = (V, E) met lengtefunctie l : E R. Neem voor het gemak aan dat alle lijnen verschillende lengtes hebben. Algoritme Stelling F := while F < V 1 laat U1,..., U k de componenten van (V, F ) zijn voor i = 1,..., k kies een lijn e i δ(u i ) van minimum lengte F := F {e1,..., e k } Borůvka s algoritme vindt een minimum opspannende boom (V, F ) van G. Stelling Borůvka s algoritme kan geïmplementeerd worden zodat de looptijd O( E log( V )) is. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

16 Voorbeeld Vind een opspannende boom in de volgende graaf m.b.v. Borůvka s methode: Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

17 Lemma (cut property) Als G = (V, E) een graaf is, l : E R, U V en e een lijn met l(e) < l(f ) f δ(u) met f e dan bevat elke minimum opspannende boom voor G de lijn e. Lemma (cycle property) Als G = (V, E) een graaf is, l : E R en e een lijn in een circuit C met l(e) > l(f ) f in C met f e dan bevat geen enkele minimum opspannende boom voor G de lijn e. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

18 Probleem Minimum Bottleneck Opspannende Boom Gegeven: samenhangende graaf G = (V, E) en lengtefunctie l : E R Vind: een opspannende boom T = (V, F ) van G waarvoor max e F l(e) minimaal is. Stelling Elke minimum opspannende boom is een minimum bottleneck opspannende boom. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

19 Stelling (Formule van Cayley) Het aantal verschillende bomen met n gelabelde punten is n n 2. Alle = 1 bomen met 2 punten, alle = 3 bomen met 3 punten en alle = 16 bomen met 4 punten. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

20 Definitie Een Prüfer reeks is een reeks van lengte n 2 bestaande uit getallen uit {1,..., n} Gegeven een gelabelde boom T, kun je als volgt een unieke Prüfer reeks bepalen: Laat 1, 2,..., n de labels van de punten van T zijn. Een blad is een punt met graad één. Algoritme Vind het blad b met kleinste label; voeg de buur van b toe aan de Prüfer reeks; verwijder b uit de boom; herhaal de voorgaande stappen totdat er twee punten over zijn. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

21 Algoritme Vind het blad b met kleinste label; voeg de buur van b toe aan de Prüfer reeks; verwijder b uit de boom; herhaal de voorgaande stappen totdat er twee punten over zijn. Voorbeeld Vind de Prüfer reeks van de onderstaande boom Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34 7

22 Gegeven een Prüfer reeks a = (a 1, a 2,..., a n 2 ), kun je als volgt een unieke gelabelde boom bepalen: Algoritme L := (1, 2,..., n) Creëer punten met labels 1, 2,..., n Herhaal de volgende stappen totdat L = 2 Laat l het eerste label in L zijn dat niet in a voor komt Laat a1 het eerste element van a zijn Verbind het punt met label l met het punt met label a1 Verwijder l uit L en a1 uit a Laat L = {l 1, l 2 } Verbind het punt met label l 1 met het punt met label l 2 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

23 Stelling Er is een bijectie tussen bomen met puntlabels 1,..., n en Prüfer reeksen van lengte n 2. Stelling (Formule van Cayley) Het aantal verschillende bomen met n gelabelde punten is n n 2. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

24 Fylogenetische bomen en splits Definitie Gegeven een verzameling labels X, een fylogenetische boom T op X is een boom zonder punten van graad 2 waarvan de bladeren bijectief zijn gelabelled met de elementen van X. Definitie A B is een split over X als {A, B} een partitie van X is, d.w.z. als A B = en A B = X. A B = B A Definitie Laat e een lijn zijn van een fylogenetische boom T op X. Split A B is de split geassocieerd met e als A en B de labels zijn van de bladeren in de twee componenten die verkregen worden als e uit T verwijderd wordt. Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

25 Notatie: Σ(T ) is de verzameling van alle splits geassocieerd met lijnen van T Voorbeeld: e a b c d Σ(T ) = {ab cde, abc de, a bcde, b acde, c abde, d abce, e abcd} Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

26 Stelling (split equivalence) Laat Σ een verzameling splits over X zijn. Dan zijn de volgende twee uitspraken equivalent: 1 er bestaat een fylogenetische boom T op X met Σ = Σ(T ) 2 voor elke twee splits A 1 B 1 en A 2 B 2 in Σ is tenminste één van de volgende vier doorsnedes leeg A1 A 2 A1 B 2 B1 A 2 B1 B 2 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

27 Voorbeeld Voor de onderstaande boom T geldt: Σ(T ) = {ab cdefg, abfg cde, abcde fg, abcfg de} Plus alle splits die één blad afsplitsen van de rest. b a c f d e g Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

28 Het vinden van T aan de hand van Σ(T ): Creëer een boom voor de eerste split. Σ(T ) = {ab cdefg, abfg cde, abcde fg, abcfg de} a,b c,d,e,f,g Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

29 Het vinden van T aan de hand van Σ(T ): Voeg de tweede split toe. Σ(T ) = {ab cdefg, abfg cde, abcde fg, abcfg de} a,b f,g c,d,e Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

30 Het vinden van T aan de hand van Σ(T ): Voeg de derde split toe. Σ(T ) = {ab cdefg, abfg cde, abcde fg, abcfg de} a,b f,g c,d,e Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

31 Het vinden van T aan de hand van Σ(T ): Voeg de vierde split toe. Σ(T ) = {ab cdefg, abfg cde, abcde fg, abcfg de} a,b f,g c d,e Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

32 Het vinden van T aan de hand van Σ(T ): Voeg alle splits toe die één blad afsplitsen van de rest. b a c f g d e Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

33 Fylogenetische bomen met lengtes Definitie Laat T = (V, E) een fylogenetische boom op X zijn en l : E R + een lengtefunctie. Voor twee bladeren met labels a en b is d T,l (a, b) := e P l(e) met P het unieke pad tussen de bladeren met labels a en b in T. Definitie Een metriek op X is een functie d : X X R + waarvoor geldt: d(x, y) = 0 x = y d(x, y) = d(y, x) (symmetrie) d(x, y) d(x, z) + d(z, y) (driehoeksongelijkheid) Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

34 Stelling (4-point condition) Laat d : X X R + een metriek op X zijn. Dan zijn de volgende twee uitspraken equivalent: 1 er bestaat een fylogenetische boom T op X met lengtefunctie l : E R + waarvoor d(x, y) = d T,l (x, y) voor alle x, y X ; 2 voor elke vier A, B, C, D X geldt: { d(a, C) + d(b, D) d(a, B) + d(c, D) max d(a, D) + d(b, C). Charles Semple and Mike Steel, Phylogenetics, Oxford University Press, Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in Netwerken 27 februari / 34

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober 2015 1 / 25 Definitie Een boom is een samenhangende

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 maart 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6.

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6. Overzicht 1. Definities 2. Basisalgoritme 3. Label setting methoden 4. Label correcting methoden 5. Ondergrenzen 6. Resultaten Kortste Pad Probleem 1 Definities Een graaf G = (V, E) bestaat uit een verzameling

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 11 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 11 november 2015 1 / 22 Mededelingen Huiswerk 2 nagekeken Terug

Nadere informatie

1.2 Bomen Algemeen 1.2. BOMEN 7

1.2 Bomen Algemeen 1.2. BOMEN 7 1.2. BOMEN 7 1.2 Bomen 1.2.1 Algemeen Beschouw eerst een niet-gerichte graaf. Een boom is een samenhangende graaf die geen kringen bevat. Een boom wordt meestal genoteerd met de letter T (tree). Een bos

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 21 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 21 oktober 2015 1 / 20 Deze week: algoritmes en complexiteit

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Netwerkstroming Toepassingen in Logistiek Video-streaming Subroutine in algoritmen 2 Vandaag Netwerkstroming: wat was dat ook alweer? Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december 2015 1 / 13 Vraag Wat moet ik kennen en kunnen voor

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden.

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden. Antwoorden Doeboek 4 Grafen.. De middelste en de rechtergraaf.. Een onsamenhangende graaf met vijf punten en vijf lijnen: Teken een vierhoek met één diagonaal. Het vijfde punt is niet verbonden met een

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 20 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde II op donderdag 6 juli 2017, 13.30-16.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen.

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen. Discrete modellen in de toegepaste wiskunde (WISB6) Uitwerkingen proeftentamen. Docent: Rob H. Bisseling april 202. Begin met een matching M = {x y, x y, x 6 y 6 } aangegeven door de vette lijnen. x De

Nadere informatie

Activiteit 9. Modderstad Minimaal Opspannende Bomen. Samenvatting. Kerndoelen. Leeftijd. Vaardigheden. Materialen

Activiteit 9. Modderstad Minimaal Opspannende Bomen. Samenvatting. Kerndoelen. Leeftijd. Vaardigheden. Materialen Activiteit 9 Modderstad Minimaal Opspannende Bomen Samenvatting Onze maatschappij is verbonden middels heel veel netwerken: telefoonnet, elektriciteitsnet, de riolering, computernetwerk, en het wegennet.

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 1 Leo van Iersel Technische Universiteit Delft 7 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 september 2016 1 / 40 Opzet vak Woensdag: hoorcollege 13:45-15:30

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

Tiende college algoritmiek. 26 april Gretige algoritmen

Tiende college algoritmiek. 26 april Gretige algoritmen Algoritmiek 01/10 College 10 Tiende college algoritmiek april 01 Gretige algoritmen 1 Algoritmiek 01/10 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde op donderdag 13 april 2017, 14.30-17.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede kandidatuur Informatica Academiejaar 2004 2005, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Binomiale

Nadere informatie

1 Vervangingsstrategie auto

1 Vervangingsstrategie auto Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2002 1 Vervangingsstrategie auto Onderdeel a Zij V = {0, 1, 2, 3, 4, 5, 6}, waarbij knoop i staat voor het einde

Nadere informatie

Uitwerkingen Sum of Us

Uitwerkingen Sum of Us Instant Insanity Uitwerkingen Sum of Us Opgave A: - Opgave B: Voor elk van de vier kubussen kun je een graaf maken die correspondeert met de desbetreffende kubus. Elk van deze grafen bevat drie lijnen.

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

Grafen. Grafen, toppen en bogen

Grafen. Grafen, toppen en bogen Grafen Het zijn configuraties van knoppen en verbindingen, waar we de knoppen toppen noemen en de verbindingen tussen 2 toppen noemen we een boog. Toppen en bogen kunnen bijkomende attributen hebben, zoals

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? me:

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes?  me: Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? Email me: peter.vdd@telenet.be 1. Het aantal knoop-tak overgangen is altijd even. De totaalsom

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

Minimaal opspannende bomen

Minimaal opspannende bomen Dit studiemateriaal is ontwikkeld door de kerngroep wiskunde D Delft en mag gratis gebruikt worden in het wiskundeonderwijs in het vo. Kerngroep wiskunde D Delft Liesbeth Bos Scala College Wim Caspers

Nadere informatie

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi Trainingsweekend 23 25 januari 2009 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen voor de verschillende

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

2 beslissen in netwerken. Wiskunde D. Keuzevak beslissen onderdeel: beslissen in netwerken. versie 4 vrijdag 16 november 2007

2 beslissen in netwerken. Wiskunde D. Keuzevak beslissen onderdeel: beslissen in netwerken. versie 4 vrijdag 16 november 2007 eslissen beslissen in netwerken Wiskunde Keuzevak beslissen onderdeel: beslissen in netwerken versie vrijdag november 00 Samenstelling Jan ssers ism Kerngroep Wiskunde indhoven ontys voorkennis: optimaliseren.

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 () Tussentoets 26 november, tijdens de instructies Zaal: paviljoen (study hub) Time: 90min Tentamenstof: colleges 4 (LP; Simplex; dualiteit; complementaire slackness) Oude tentamens:

Nadere informatie

Het minimale aantal sleutels op niveau h is derhalve

Het minimale aantal sleutels op niveau h is derhalve 1 (a) In een B-boom van orde m bevat de wortel minimaal 1 sleutel en maximaal m 1 sleutels De andere knopen bevatten minimaal m 1 sleutels en maximaal m 1 sleutels (b) In een B-boom van orde 5 bevat elke

Nadere informatie

Hoofdstuk!7!Kortste!paden!

Hoofdstuk!7!Kortste!paden! oofdstukkortstepaden oofdstukkortstepaden In een gewogen graaf is men soms geïnteresseerd in het kortste pad tussen twee punten: dat is een pad, waarbij de som van de gewichten zo klein mogelijk is..inleiding

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument Complexiteit 2017/05 College 5 Vijfde college complexiteit 21 februari 2017 Selectie Toernooimethode Adversary argument 1 Complexiteit 2017/05 Opgave 28 Gegeven twee oplopend gesorteerde even lange rijen

Nadere informatie

Local search. Han Hoogeveen. 21 november, 2011

Local search. Han Hoogeveen. 21 november, 2011 1 Local search Han Hoogeveen 21 november, 2011 Inhoud vandaag 2 Inhoud: Uitleg methode Bespreking oude opdrachten: ˆ Bezorgen wenskaarten ˆ Roosteren tentamens Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 10 Begrensde variabelen Han Hoogeveen, Utrecht University Begrensde variabelen (1) In veel toepassingen hebben variabelen zowel een ondergrens als een bovengrens:

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

Grafen deel 2 8/9. Zesde college

Grafen deel 2 8/9. Zesde college Grafen deel 2 8/9 Zesde college 1 Een Eulercircuit is een gesloten wandeling die elke lijn precies één keer bevat. traversable trail all edges distinct 8.5 rondwandeling zeven bruggenprobleem van Köningsbergen

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Gerichte lengtes spelen o.a. een rol bij de stelling van Ceva en Menelaos en komen in deel 3 aan de orde.

Gerichte lengtes spelen o.a. een rol bij de stelling van Ceva en Menelaos en komen in deel 3 aan de orde. Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi, gerichte lengtes Trainingsweekend, 16 februari 2008 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens Algoritmes in ons dagelijks leven Leve de Wiskunde! 7 April 2017 Jacobien Carstens Wat is een algoritme? Een algoritme is een eindige reeks instructies die vanuit een gegeven begintoestand naar een beoogd

Nadere informatie

Uitwerkingen tentamen Wiskunde B 16 januari 2015

Uitwerkingen tentamen Wiskunde B 16 januari 2015 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort College 7 Zevende college complexiteit 17 maart 2008 Ondergrens sorteren, Quicksort 1 Sorteren We bekijken sorteeralgoritmen gebaseerd op het doen van vergelijkingen van de vorm A[i] < A[j]. Aannames:

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2009 2010, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

Optimalisering en Complexiteit, College 2. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 2. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 2 Han Hoogeveen, Utrecht University Inhoud vandaag Inhoud: Uitleg methode Bespreking oude opdracht: Bezorgen wenskaarten Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Transport, Routing- en Schedulingproblemen. ir. H.N. Post

Transport, Routing- en Schedulingproblemen. ir. H.N. Post Transport, Routing- en Schedulingproblemen ir. H.N. Post 1 mei 2006 Inhoudsopgave 1 Kortste pad probleem 7 1.1 Definities...................................... 7 1.2 Basisalgoritme...................................

Nadere informatie

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur Faculteit Elektrotechniek, Wiskunde en Informatica Ti Delft Tentamen IN3105 Complexiteitstheorie 16 april 2012, 9.00-12.00 uur Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open

Nadere informatie

Oefententamen in2505-i Algoritmiek

Oefententamen in2505-i Algoritmiek TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Oefententamen in2505-i Algoritmiek Maart 2007 Het gebruik van boek of aantekeningen tijdens dit tentamen is niet toegestaan.

Nadere informatie

Radboud Universiteit Nijmegen

Radboud Universiteit Nijmegen Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica Kubische grafen met integraal spectrum Naam: Studentnummer: Studie: Begeleider: Tweede lezer: Daan van Rozendaal

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig ... Oneindig 2 Top tien

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff Oneindig in Wiskunde & Informatica Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft Tom Verhoeff Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica http://www.win.tue.nl/~wstomv/

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Elliptische krommen en hun topologische aspecten

Elliptische krommen en hun topologische aspecten Elliptische krommen en hun topologische aspecten René Pannekoek 25 januari 2011 Dit is een korte introductie tot elliptische krommen voor het bachelorseminarium van de Universiteit Leiden. De bespreking

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

definities recursieve datastructuren college 13 plaatjes soorten Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten

definities recursieve datastructuren college 13 plaatjes soorten Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten recursieve datastructuren college graphs definities Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten E edges, arcs, kanten, pijlen, lijnen verbinding tussen knopen Voorbeelden steden en verbindingswegen

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Grafen en BFS. Mark Lekkerkerker. 24 februari 2014

Grafen en BFS. Mark Lekkerkerker. 24 februari 2014 Grafen en BFS Mark Lekkerkerker 24 februari 2014 1 Grafen Wat is een graaf? Hoe representeer je een graaf? 2 Breadth-First Search Het Breadth-First Search Algoritme Schillen De BFS boom 3 Toepassingen

Nadere informatie

Driehoeksongelijkheid en Ravi (groep 1)

Driehoeksongelijkheid en Ravi (groep 1) Driehoeksongelijkheid en Ravi (groep 1) Trainingsdag 3, april 009 Driehoeksongelijkheid Driehoeksongelijkheid Voor drie punten in het vlak A, B en C geldt altijd dat AC + CB AB. Gelijkheid geldt precies

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Eigenschappen en Axioma s van de E 6 -meetkunde

Eigenschappen en Axioma s van de E 6 -meetkunde Faculteit Wetenschappen Vakgroep Wiskunde Eigenschappen en Axioma s van de E 6 -meetkunde Magali Victoor Promotor: Prof. dr. Hendrik Van Maldeghem Masterproef ingediend tot het behalen van de academische

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie