Grafen en BFS. Mark Lekkerkerker. 24 februari 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Grafen en BFS. Mark Lekkerkerker. 24 februari 2014"

Transcriptie

1 Grafen en BFS Mark Lekkerkerker 24 februari 2014

2 1 Grafen Wat is een graaf? Hoe representeer je een graaf? 2 Breadth-First Search Het Breadth-First Search Algoritme Schillen De BFS boom 3 Toepassingen Bipartitie Cykel zoeken Samenhangend test Mark Lekkerkerker Grafen en BFS 24 februari / 16

3 Wat is een graaf? Het abstracte concept van een graaf Modelleert (binaire) relaties tussen objecten Mark Lekkerkerker Grafen en BFS 24 februari / 16

4 Wat is een graaf? Het abstracte/visuele concept van een graaf Modelleert (binaire) relaties tussen objecten Punten (knopen) zijn objecten Strepen zijn relaties Geometrie niet belangrijk Mark Lekkerkerker Grafen en BFS 24 februari / 16

5 Geometrie niet belangrijk?! Het gaat om de relatie! A B C D E F G H I J K L M N O = A B C N O D E F G H I J K L M Mark Lekkerkerker Grafen en BFS 24 februari / 16

6 Wat kun je modelleren? De mogelijkheden zijn ongekend Elektrische schakeling Quoridor Wie wie de hand schudt op een feestje Internetverbindingen Facebook vrienden (Spoor)wegennet Finite state automatons Mark Lekkerkerker Grafen en BFS 24 februari / 16

7 Uitbreidingen op de graaf Je kunt het zo gek niet bedenken Gerichte graaf Gewogen graaf Mark Lekkerkerker Grafen en BFS 24 februari / 16

8 Wiskunde Hoe beschrijf je een graaf? Definitie van een graaf: G = (E, V ) m = E (aantal elementen in E) n = V (aantal elementen in V ) Graad van een knoop Mark Lekkerkerker Grafen en BFS 24 februari / 16

9 Wiskunde Hoe beschrijf je een graaf? Definitie van een graaf: G = (E, V ) m = E (aantal elementen in E) n = V (aantal elementen in V ) Graad van een knoop Een (simpel) pad Een (simpele) cykel Mark Lekkerkerker Grafen en BFS 24 februari / 16

10 Wiskunde Hoe beschrijf je een graaf? Definitie van een graaf: G = (E, V ) m = E (aantal elementen in E) n = V (aantal elementen in V ) Graad van een knoop Een (simpel) pad Een (simpele) cykel Samenhang (m n 1) Afstand tussen knopen x en y: δ(x, y) Mark Lekkerkerker Grafen en BFS 24 februari / 16

11 Representatie van grafen Hoe slaat de computer ze op? Matrixrepresentatie Lijstrepresentatie Adj[A] = {B, G} Adj[B] = {A, C, F } Adj[C] = {B, D, G} Adj[D] = {C, E, F } Adj[E] = {D, F } Adj[F ] = {B, D, E, G} Adj[G] = {A, C, F } Adj[X ] = {Y } Adj[Y ] = {X } Mark Lekkerkerker Grafen en BFS 24 februari / 16

12 Representatie van grafen Wat is de complexiteit van deze representaties? Actie Matrices Lijsten Geheugen n 2 m (mits m > n) Is xy een kant? O(1) O(n) Geef een buur van x O(n) O(1) Doe S voor all buren van x n graad Mark Lekkerkerker Grafen en BFS 24 februari / 16

13 Het Breadth-First Search Algoritme Eigenschappen van BFS Onderzoek een graaf Exploreer dichtstbijzijnde knopen eerst Heel algemeen Vind het kortste pad in een ongewogen graaf Mark Lekkerkerker Grafen en BFS 24 februari / 16

14 Het Breadth-First Search Algoritme Idee achter BFS Onderzoek eerst de beginknoop. Onderzoek dan eerst al zijn aangrenzende knopen. Onderzoek dan al de aangrenzende knopen van deze knopen. Onderzoek daarna alle aangrenzende knopen van deze knopen. Herhaal dit principe... Mark Lekkerkerker Grafen en BFS 24 februari / 16

15 Het Breadth-First Search Algoritme Bereken in O(n + m) een BFS boom! Q lege Queue; foreach v in V do color[v] wit; d[v] ; π[v] nil; color[s] grijs; d[s] 0; Q.Enqueue(s); while Q is niet leeg do u Q.Dequeue(); foreach v in u.adjacent do if color[v] = wit then color[v] grijs; d[v] d[u] + 1; π[v] u; Q.Enqueue(v); end end color[u] zwart; end Mark Lekkerkerker Grafen en BFS 24 februari / 16

16 Schil de graaf door BFS Eigenschappen van de BFS Schil i bevat alle knopen x waarvoor geldt δ(x, s) = i. Mark Lekkerkerker Grafen en BFS 24 februari / 16

17 Schil de graaf door BFS Eigenschappen van de BFS Schil i bevat alle knopen x waarvoor geldt δ(x, s) = i. Buur v van knoop u in schil i zit in schil i 1, i of i + 1. Mark Lekkerkerker Grafen en BFS 24 februari / 16

18 Schil de graaf door BFS Eigenschappen van de BFS Schil i bevat alle knopen x waarvoor geldt δ(x, s) = i. Buur v van knoop u in schil i zit in schil i 1, i of i + 1. Knoop u in schil i > 0 heeft tenminste 1 buur in schil i 1. Mark Lekkerkerker Grafen en BFS 24 februari / 16

19 Schil de graaf door BFS Eigenschappen van de BFS Schil i bevat alle knopen x waarvoor geldt δ(x, s) = i. Buur v van knoop u in schil i zit in schil i 1, i of i + 1. Knoop u in schil i > 0 heeft tenminste 1 buur in schil i 1. Als schil i geen knopen bevat, dan bevat schil i + 1 er ook geen. Mark Lekkerkerker Grafen en BFS 24 februari / 16

20 Schil de graaf door BFS Eigenschappen van de BFS Schil i bevat alle knopen x waarvoor geldt δ(x, s) = i. Buur v van knoop u in schil i zit in schil i 1, i of i + 1. Knoop u in schil i > 0 heeft tenminste 1 buur in schil i 1. Als schil i geen knopen bevat, dan bevat schil i + 1 er ook geen. Het algoritme exploreert de graaf schil voor schil Mark Lekkerkerker Grafen en BFS 24 februari / 16

21 Schil de graaf door BFS Eigenschappen van de BFS Schil i bevat alle knopen x waarvoor geldt δ(x, s) = i. Buur v van knoop u in schil i zit in schil i 1, i of i + 1. Knoop u in schil i > 0 heeft tenminste 1 buur in schil i 1. Als schil i geen knopen bevat, dan bevat schil i + 1 er ook geen. Het algoritme exploreert de graaf schil voor schil Na terminatie: d[u] = δ(s, u). Mark Lekkerkerker Grafen en BFS 24 februari / 16

22 De BFS boom De predecessor graaf, gemaakt door BFS Voorganger-subgraaf gedefinieerd in π Uitkomst π non-deterministisch Niet elke BFS boom kan gemaakt worden door BFS Mark Lekkerkerker Grafen en BFS 24 februari / 16

23 Bipartitie Deel de graaf op in twee Mark Lekkerkerker Grafen en BFS 24 februari / 16

24 Cykel zoeken Zoek een cykel in een graaf Door π kunnen we cykels detecteren. Hierdoor kunnen we bekijken of een graaf een boom is Mark Lekkerkerker Grafen en BFS 24 februari / 16

25 Samenhangend test Quoridor; is een locatie nog bereikbaar? Mark Lekkerkerker Grafen en BFS 24 februari / 16

26 Samenvatting Wat hebben we vandaag behandeld? Het concept van grafen Computer representatie van grafen Non determinisme door representatie BFS Mark Lekkerkerker Grafen en BFS 24 februari / 16

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

Tiende college algoritmiek. 26 april Gretige algoritmen

Tiende college algoritmiek. 26 april Gretige algoritmen Algoritmiek 01/10 College 10 Tiende college algoritmiek april 01 Gretige algoritmen 1 Algoritmiek 01/10 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag

Nadere informatie

Tree traversal. Bomen zijn overal. Ferd van Odenhoven. 15 november 2011

Tree traversal. Bomen zijn overal. Ferd van Odenhoven. 15 november 2011 15 november 2011 Tree traversal Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 15 november 2011 ODE/FHTBM Tree traversal 15 november 2011 1/22 1 ODE/FHTBM Tree

Nadere informatie

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle  holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/29764 holds various files of this Leiden University dissertation. Author: Takes, Frank Willem Title: Algorithms for analyzing and mining real-world graphs

Nadere informatie

Computationale Intelligentie Dirk Thierens

Computationale Intelligentie Dirk Thierens Computationale Intelligentie Dirk Thierens Organisatie Onderwijsvormen: Docent: Topic: Collegemateriaal: Boek: Beoordeling: hoorcollege, practicum, werkcollege Dirk Thierens Deel : Zoekalgoritmen Toets

Nadere informatie

Bomen. 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen

Bomen. 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen 10 Bomen 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen 1 Baarn Hilversum Soestdijk Den Dolder voorbeelden route boom beslisboom Amersfoort Soestduinen + 5 * + 5.1 5.2 5.3 5.4 2 3 * * 2 5.3.1

Nadere informatie

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden.

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden. . a) Een Fibonacci boom (niet te verwarren met een Fibonacci queue) van hoogte h is een AVL-boom van hoogte h met zo weinig mogelijk knopen. i. Geefvoorh =,,,,eenfibonacciboomvanhoogteh(eenboombestaande

Nadere informatie

Tree traversal. Ferd van Odenhoven. 15 november Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering. Doorlopen van bomen

Tree traversal. Ferd van Odenhoven. 15 november Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering. Doorlopen van bomen Tree traversal Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 15 november 2011 ODE/FHTBM Tree traversal 15 november 2011 1/22 1 ODE/FHTBM Tree traversal 15 november

Nadere informatie

Logisch programmeren 2012

Logisch programmeren 2012 Logisch programmeren 2012 Opdrachten Week 8 1 Fibonacci woorden Een Fibonacci woord is een eindig rijtje over het twee-letter alfabet {1, 2}. De rangorde van een Fibonacci woord w is de som van de samenstellende

Nadere informatie

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search Recapitulatie: Ongeïnformeerd zoeken Zoekalgoritmen (009 00) College : Ongeïnformeerd zoeken Peter de Waal, Tekst: Linda van der Gaag een algoritme voor ongeïnformeerd zoeken doorzoekt de zoekruimte van

Nadere informatie

Opgaven Kunstmatige Intelligentie 1 maart 2017

Opgaven Kunstmatige Intelligentie 1 maart 2017 Opgaven Kunstmatige Intelligentie 1 maart 2017 Opgave 1. a. Denkt een schaakprogramma? b. Denkt een (Nederlands-Engels) vertaalprogramma? c. Denkt een C ++ -compiler? d. Denkt Watson, the IBM-computer

Nadere informatie

Zoeken met beperkt geheugen. Zoekalgoritmen ( ) College 7: Zoeken met beperkt geheugen. Een representatie van het kleuringsprobleem

Zoeken met beperkt geheugen. Zoekalgoritmen ( ) College 7: Zoeken met beperkt geheugen. Een representatie van het kleuringsprobleem Zoeken met beperkt geheugen Zoekalgoritmen (2009 2010) College 7: Zoeken met beperkt geheugen Dirk Thierens, Tekst: Linda van der Gaag algoritmen voor zoeken met beperkt geheugen zijn ontwikkeld voor problemen

Nadere informatie

definities recursieve datastructuren college 13 plaatjes soorten Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten

definities recursieve datastructuren college 13 plaatjes soorten Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten recursieve datastructuren college graphs definities Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten E edges, arcs, kanten, pijlen, lijnen verbinding tussen knopen Voorbeelden steden en verbindingswegen

Nadere informatie

Het minimale aantal sleutels op niveau h is derhalve

Het minimale aantal sleutels op niveau h is derhalve 1 (a) In een B-boom van orde m bevat de wortel minimaal 1 sleutel en maximaal m 1 sleutels De andere knopen bevatten minimaal m 1 sleutels en maximaal m 1 sleutels (b) In een B-boom van orde 5 bevat elke

Nadere informatie

public boolean equaldates() post: returns true iff there if the list contains at least two BirthDay objects with the same daynumber

public boolean equaldates() post: returns true iff there if the list contains at least two BirthDay objects with the same daynumber Tentamen TI1310 Datastructuren en Algoritmen, 15 april 2011, 9.00-12.00 TU Delft, Faculteit EWI, Basiseenheid Software Engineering Bij het tentamen mag alleen de boeken van Goodrich en Tamassia worden

Nadere informatie

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen.

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen. Discrete modellen in de toegepaste wiskunde (WISB6) Uitwerkingen proeftentamen. Docent: Rob H. Bisseling april 202. Begin met een matching M = {x y, x y, x 6 y 6 } aangegeven door de vette lijnen. x De

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

Algoritmiek. 2 februari Introductie

Algoritmiek. 2 februari Introductie College 1 Algoritmiek 2 februari 2017 Introductie 1 Introductie -1- docent: Rudy van Vliet rvvliet@liacs.nl assistent werkcollege: Bart van Strien bartbes@gmail.com website: http://www.liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober 2015 1 / 25 Definitie Een boom is een samenhangende

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Vraag 1... Vraag 2... Vraag 3...

Vraag 1... Vraag 2... Vraag 3... Nota: Schrijf je antwoorden kort en bondig in de daartoe voorziene velden. Elke theorie-vraag staat ofwel op 1.5 ofwel op 2 punten, en elke oefening op 10 punten. Het geheel staat op 60. Vraag 1...[.../3]

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

4EE11 Project Programmeren voor W. College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e

4EE11 Project Programmeren voor W. College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e 4EE11 Project Programmeren voor W College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e 1 Onderwerpen Grotere programma s ontwerpen/maken Datastructuren en algoritmes 2 Evolutie,

Nadere informatie

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Giso Dal (0752975) Pagina s 5 7 1 Deelverzameling Representatie

Nadere informatie

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen Universiteit Twente 2009-2010/2 Afdeling Informatica, Faculteit EWI Tentamen dinsdag 19 januari 2010, 8.45-12.15 Algoritmen, Datastructuren en Complexiteit (214020 en 214025) Uitwerkingen Bij dit tentamen

Nadere informatie

Grafen deel 2 8/9. Zesde college

Grafen deel 2 8/9. Zesde college Grafen deel 2 8/9 Zesde college 1 Een Eulercircuit is een gesloten wandeling die elke lijn precies één keer bevat. traversable trail all edges distinct 8.5 rondwandeling zeven bruggenprobleem van Köningsbergen

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 5 juni 2007, uur

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 5 juni 2007, uur Uitgebreide uitwerking tentamen Algoritmiek Dinsdag juni 00, 0.00.00 uur Opgave. a. Een toestand bestaat hier uit een aantal stapels, met op elk van die stapels een aantal munten (hooguit n per stapel).

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Netwerkstroming Toepassingen in Logistiek Video-streaming Subroutine in algoritmen 2 Vandaag Netwerkstroming: wat was dat ook alweer? Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6.

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6. Overzicht 1. Definities 2. Basisalgoritme 3. Label setting methoden 4. Label correcting methoden 5. Ondergrenzen 6. Resultaten Kortste Pad Probleem 1 Definities Een graaf G = (V, E) bestaat uit een verzameling

Nadere informatie

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens Algoritmes in ons dagelijks leven Leve de Wiskunde! 7 April 2017 Jacobien Carstens Wat is een algoritme? Een algoritme is een eindige reeks instructies die vanuit een gegeven begintoestand naar een beoogd

Nadere informatie

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c Een Minimaal Formalisme om te Programmeren We hebben gezien dat Turing machines beschouwd kunnen worden als universele computers. D.w.z. dat iedere berekening met natuurlijke getallen die met een computer

Nadere informatie

Kortste pad algoritmen

Kortste pad algoritmen Faculteit Wetenschappen Departement Wiskunde Kortste pad algoritmen Bachelorproef 2 Lukas Boelens Promotor: Prof. Philippe Cara 1 mei 2015 Inhoudsopgave 1 Inleiding 2 2 Inleide begrippen 2 3 Eindige metrische

Nadere informatie

Computationele Intelligentie

Computationele Intelligentie Computationele Intelligentie Uitwerking werkcollege Representatie, Ongeïnformeerd zoeken, Heuristisch zoeken 1 lokkenwereld a. De zoekboom die door het dynamische breadth-first search algoritme wordt gegenereerd

Nadere informatie

Oefententamen in2505-i Algoritmiek

Oefententamen in2505-i Algoritmiek TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Oefententamen in2505-i Algoritmiek Maart 2007 Het gebruik van boek of aantekeningen tijdens dit tentamen is niet toegestaan.

Nadere informatie

Snelle algoritmen voor Min en Max filters

Snelle algoritmen voor Min en Max filters Snelle algoritmen voor Min en Max filters Michael H.F. Wilkinson Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen 27 augustus 2007 Morfologie: Dilatie en Erosie 1 of 18 Links beeld X.

Nadere informatie

Workshop FLL. Leer robots programmeren. Marieke Peelen Lennart de Graaf Daryo Verouden -

Workshop FLL. Leer robots programmeren. Marieke Peelen Lennart de Graaf Daryo Verouden - Workshop FLL Leer robots programmeren Marieke Peelen Lennart de Graaf Daryo Verouden - 1 Student-coaches 2 FIRST LEGO League 3 FLL Core values We zijn een team We doen zelf het werk met hulp van onze coaches.

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 maart 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

Opgaven bij Hoofdstuk 3 - Productiesystemen

Opgaven bij Hoofdstuk 3 - Productiesystemen Opgaven bij Hoofdstuk 3 - Productiesystemen Top-down inferentie In de opgaven in deze paragraaf over top-down inferentie wordt aangenomen dat de feitenverzameling alleen feiten bevat die als getraceerd

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede kandidatuur Informatica Academiejaar 2004 2005, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Binomiale

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet.

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet. Les C-02: Werken met Programma Structuur Diagrammen 2.0 Inleiding In deze lesbrief bekijken we een methode om een algoritme zodanig structuur te geven dat er gemakkelijk programmacode bij te schrijven

Nadere informatie

Algoritmen en programmeren: deel 1 - overzicht

Algoritmen en programmeren: deel 1 - overzicht Algoritmen en programmeren: deel 1 - overzicht Ruud van Damme Creation date: 15 maart 2005 Update: 3: september 2006, 5 november 2006, 7 augustus 2007 Overzicht 1 Inleiding 2 Algoritmen 3 Programmeertalen

Nadere informatie

Algoritmen, Datastructuren en Complexiteit (214020/5)

Algoritmen, Datastructuren en Complexiteit (214020/5) Universiteit Twente Semester 2006/1 Afdeling Informatica 2 e huiswerkserie 10 januari 2007 Uitwerking Algoritmen, Datastructuren en Complexiteit (214020/5) Er zijn 4 opgaven. Er zijn 90 punten te behalen.

Nadere informatie

Datastructuren: stapels, rijen en binaire bomen

Datastructuren: stapels, rijen en binaire bomen Programmeermethoden Datastructuren: stapels, rijen en binaire bomen week 12: 23 27 november 2015 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Inleiding In de informatica worden Abstracte DataTypen (ADT s)

Nadere informatie

Grafische ondersteuning bij programmeeronderwijs

Grafische ondersteuning bij programmeeronderwijs Grafische ondersteuning bij programmeeronderwijs Jan Kuper Universiteit Twente, Afdeling Informatica Email: jankuper@cs.utwente.nl Deze bijdrage beschrijft de ervaringen met een softwarepakket waarmee

Nadere informatie

Radboud Universiteit

Radboud Universiteit Radboud Universiteit Voorbereidend materiaal Winkunde - Geluk of Strategie? Zie voor meer informatie onze Facebookpagina Wiskundetoernooi Nijmegen, de website www.ru.nl/wiskundetoernooi en onze Wiskundetoernooi-app.

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

public boolean egualdates() post: returns true i f f there i f the l i s t contains at least two BirthDay objects with the same daynumber

public boolean egualdates() post: returns true i f f there i f the l i s t contains at least two BirthDay objects with the same daynumber Tentamen TI1310 Datastructuren en Algoritmen, 15 april 2011, 9.00-12.00 TU Delft, Faculteit EWI, Basiseenheid Software Engineering Bij het tentamen mag alleen de boeken van Goodrich en Tamassia worden

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Programmeermethoden. Recursie. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. week 11: november kosterswa/pm/ Programmeermethoden Recursie week 11: 21 25 november 2016 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Pointers Derde programmeeropgave 1 Het spel Gomoku programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

Klassieke en Kwantummechanica (EE1P11)

Klassieke en Kwantummechanica (EE1P11) Maandag 3 oktober 2016, 9.00 11.00 uur; DW-TZ 2 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Opleiding Elektrotechniek Aanwijzingen: Er zijn 2 opgaven in dit tentamen.

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

Activiteit 13. De arme cartograaf - kaarten kleuren. Samenvatting. Kerndoelen. Vaardigheden. Leeftijd. Materiaal

Activiteit 13. De arme cartograaf - kaarten kleuren. Samenvatting. Kerndoelen. Vaardigheden. Leeftijd. Materiaal Activiteit 13 De arme cartograaf - kaarten kleuren Samenvatting Veel optimalisatieproblemen hebben te maken met situaties waar bepaalde gebeurtenissen niet op hetzelfde moment mogen of kunnen gebeuren

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

- een lege verpakking van drie ijsjes - eventueel zes ijsstokjes en vijf poppetjes

- een lege verpakking van drie ijsjes - eventueel zes ijsstokjes en vijf poppetjes Titel van de les Leeftijdsgroep Kerndoel Leerstofonderdeel IJsjes kopen Ongeveer 6 tot 8 jaar Deze les levert een bijdrage aan kerndoel 1: de leerlingen leren hoeveelheidbegrippen gebruiken en herkennen

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

Rush Hour. Concurrency Opgave 3, Herfst

Rush Hour. Concurrency Opgave 3, Herfst Achtergrond Rush Hour Concurrency Opgave 3, Herfst 24 Rush Hour is een schuifpuzzel waarbij je door middel van het schuiven van andere auto s op het terrein je eigen auto moet proberen vrij te spelen.

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route Kosten Zoekalgoritmen (00 00) ollege 5: Zoeken met kosten Peter de Waal, Tekst: Linda van der aag Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd; ongemak;...

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort College 7 Zevende college complexiteit 17 maart 2008 Ondergrens sorteren, Quicksort 1 Sorteren We bekijken sorteeralgoritmen gebaseerd op het doen van vergelijkingen van de vorm A[i] < A[j]. Aannames:

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 20 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

The knight s tour. Het paard in schaken beweegt als volgt: Steeds 1 vakje in een richting en 2 in een andere richting, of omgekeerd.

The knight s tour. Het paard in schaken beweegt als volgt: Steeds 1 vakje in een richting en 2 in een andere richting, of omgekeerd. The knight s tour In het Engels heet een paard uit schaken een Knight (Ridder). In het begin zaten er namelijk ridders op de paarden. (link wiki) Stel, je bent een paard uit het schaakspel en je staat

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

heugen gebruikt, wat met name van belang is vanwege de beperkte bandbreedte van de memory bus van PCs. In het geval van een volume

heugen gebruikt, wat met name van belang is vanwege de beperkte bandbreedte van de memory bus van PCs. In het geval van een volume Samenvatting Het onderwerp van dit proefschrift is efficiënte algoritmen voor morfologische beeldverwerking. Ieder hoofdstuk behandelt een algoritme uit de mathematische morfologie. Er worden overzichten

Nadere informatie

Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015

Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015 AI Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015 www.liacs.leidenuniv.nl/ kosterswa/ai/ 1 Introductie

Nadere informatie

8. Complexiteit van algoritmen:

8. Complexiteit van algoritmen: 8. Complexiteit van algoritmen: Voorbeeld: Een gevaarlijk spel 1 Spelboom voor het wespenspel 2 8.1 Complexiteit 4 8.2 NP-problemen 6 8.3 De oplossing 7 8.4 Een vuistregel 8 In dit hoofdstuk wordt het

Nadere informatie

Automaten en Berekenbaarheid 2016 Oplossingen #4

Automaten en Berekenbaarheid 2016 Oplossingen #4 Automaten en Berekenbaarheid 2016 Oplossingen #4 28 oktober 2016 Vraag 1: Toon aan dat de klasse van context vrije talen gesloten is onder concatenatie en ster. Antwoord Meerdere manieren zijn mogelijk:

Nadere informatie

Dynamic Programming. Ferd van Odenhoven. 18 december Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering

Dynamic Programming. Ferd van Odenhoven. 18 december Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering Dynamic Programming Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 18 december 201 ODE/FHTBM Dynamic Programming 18 december 201 1/4 Dynamisch Programmeren Recursie

Nadere informatie

PRIME Hackenbush Jens Bossaert 15 oktober 2013

PRIME Hackenbush Jens Bossaert 15 oktober 2013 PRIME Hackenbush Jens Bossaert 15 oktober 2013 Introductie Winning Ways for your Mathematical Plays Elwyn Berlekamp John Conway Richard Guy Hackenbush On Numbers and Games John Conway Surreal Numbers:

Nadere informatie

Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4

Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4 Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4 Jonathan K. Vis 1 Inleiding (blz. 70 72) In dit essay behandelen we bladzijden 70 75 van Donald E. Knuth

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Project Management (H 9.8 + H 22 op CD-ROM)

Project Management (H 9.8 + H 22 op CD-ROM) Project Management (H 9.8 + H 22 op CD-ROM) CPM (Critical Path Method) Activiteiten met afhankelijkheden en vaste duur zijn gegeven. CPM bepaalt de minimale doorlooptijd van het project. PERT (Program

Nadere informatie

Planning. 1. Mini College. 2. Introductiecursus Imperatief Programmeren. 3. Crash and Compile (vanaf 17:00 uur)

Planning. 1. Mini College. 2. Introductiecursus Imperatief Programmeren. 3. Crash and Compile (vanaf 17:00 uur) Planning 1. Mini College 2. Introductiecursus Imperatief Programmeren 3. Crash and Compile (vanaf 17:00 uur) Geschiedinis van de Codemonkeys imperatief programmeren voor beginners Geschiedenis van de Codemonkey

Nadere informatie

Onderwijsbehoeften: - Korte instructie - Afhankelijk van de resultaten Test jezelf toevoegen Toepassing en Verdieping

Onderwijsbehoeften: - Korte instructie - Afhankelijk van de resultaten Test jezelf toevoegen Toepassing en Verdieping Verdiepend Basisarrange ment Naam leerlingen Groep BBL 1 Wiskunde Leertijd; 5 keer per week 45 minuten werken aan de basisdoelen. - 5 keer per week 45 minuten basisdoelen toepassen in verdiepende contexten.

Nadere informatie

Logisch en Functioneel Programmeren voor Wiskunde D

Logisch en Functioneel Programmeren voor Wiskunde D Logisch en Functioneel Programmeren voor Wiskunde D Wouter Swierstra Doaitse Swierstra Jurriën Stutterheim Technical Report UU-CS-2011-033 Sept 2011 Department of Information and Computing Sciences Utrecht

Nadere informatie

Inleiding Programmeren 2

Inleiding Programmeren 2 Inleiding Programmeren 2 Gertjan van Noord November 28, 2016 Stof week 3 nogmaals Zelle hoofdstuk 8 en recursie Brookshear hoofdstuk 5: Algoritmes Datastructuren: tuples Een geheel andere manier om te

Nadere informatie

TI-2720 Operating System Concepten. 6 november 2012, uur. docent: H.J. Sips. Dit is een tentamen met 9 open vragen

TI-2720 Operating System Concepten. 6 november 2012, uur. docent: H.J. Sips. Dit is een tentamen met 9 open vragen TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Sectie Parallelle en Gedistribueerde Systemen TUDelft TI-2720 Operating System Concepten 6 november 2012, 14.00-17.00 uur.

Nadere informatie

VirtualBox: hoe werkt het?

VirtualBox: hoe werkt het? VirtualBox: hoe werkt het? Handleiding van Auteur: ReD123NaX Oktober 2014 VirtualBox: hoe werkt het? In deze nieuwsbrief ga ik wat vertellen over virtualisatie. Virtualisatie is dé uitkomst wanneer je

Nadere informatie

String Matching. Algoritmiek

String Matching. Algoritmiek String Matching Algoritmiek String Matching Gegeven string (haystack): aabaabbabaaba zoek patroon abba (needle) 4 algoritmen: Naïef Rabin-Karp Eindige Automaat Knuth-Morris-Pratt 2 String Matching (formeel)

Nadere informatie

Vakgroep CW KAHO Sint-Lieven

Vakgroep CW KAHO Sint-Lieven Vakgroep CW KAHO Sint-Lieven Objecten Programmeren voor de Sport: Een inleiding tot JAVA objecten Wetenschapsweek 20 November 2012 Tony Wauters en Tim Vermeulen tony.wauters@kahosl.be en tim.vermeulen@kahosl.be

Nadere informatie

Kennismaking met programmeren

Kennismaking met programmeren Kennismaking met programmeren handleiding voorwaarden Project van de Pedagogische Academie, Hanzehogeschool Groningen en Groningen Programmeert in samenwerking met: Leerdoelen De kinderen begrijpen hoe

Nadere informatie

Hoofdstuk 8: Algoritmen en Complexiteit

Hoofdstuk 8: Algoritmen en Complexiteit Hoofdstuk 8: Algoritmen en Complexiteit Vandaag: Hoe meten we de performance van algoritmen? Waar ligt de grens tussen een goed en een slecht algoritme? 22 oktober 2014 1 Vandaag: Hoe meten we de performance

Nadere informatie

VAN HET PROGRAMMEREN. Inleiding

VAN HET PROGRAMMEREN. Inleiding OVERZICHT VAN HET PROGRAMMEREN Inleiding Als je leert programmeren lijkt het nogal overweldigend om die eerste stappen te doorworstelen. Er zijn dan ook heel wat programmeertalen (Java, Ruby, Python, Perl,

Nadere informatie