Netwerkstroming. Algoritmiek

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Netwerkstroming. Algoritmiek"

Transcriptie

1 Netwerkstroming

2 Netwerkstroming Toepassingen in Logistiek Video-streaming Subroutine in algoritmen 2

3 Vandaag Netwerkstroming: wat was dat ook alweer? Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen 3

4 Een stromingsnetwerk Een stromingsnetwerk bestaat uit 4 Een gerichte graaf G=(N,A) Voor elke pijl (v,w) A een capaciteit c(v,w) 0. Twee speciale knopen: bron s (source) en put t (sink). s a 1 2 d 3 4 b c t

5 Meerdere bronnen/putten Introduceer superbron en superput Capaciteiten van arcs hangt af van toepassing Alleen als de goederen hetzelfde zijn! 5 s 3 a b d c a d b c 4 2 t

6 Stroming Schrijf als (v,w) A: c(v,w) = 0. Een stroming (van s naar t) is een functie f: V x V R, zodat Voor alle v,w in N: f (v,w) c(v,w). (Capaciteitseis). Voor alle v,w in N: f (v,w) = f (w,v). (Scheve symmetrie.) Voor elke knoop v in N {s,t}: (Behoud van stroming.) w N f ( v, w) = 0 6

7 Maximum stroming Waarde van stroming: Probleem dat we bekijken: Gegeven: stromingsnetwerk f = f (s, w) = f (w,t) w N Gevraagd: vind een stroming met zo groot mogelijke waarde w N 7

8 Ford-Fulkerson methode Begin met een stroming die overal 0 is. Stapsgewijs wordt de stroming verbeterd met behulp van het rest-netwerk en verbeterende paden. Intuïtie: als er een pad van s naar t is met pijlen waarvan de capaciteit nog niet volledig benut is, dan kunnen we de stroming verhogen via dit pad MAAR: dit is niet altijd genoeg Soms moeten we oude stromen her-routeren: verminder stroming in tegenovergestelde richting 8

9 9 Een verbeterend pad: simpeler versie Stel, we hebben een stromingsnetwerk G=(N,A), met capaciteiten c, en een stroming f van s naar t. Stel, er is een pad van s naar t in G met voor elke pijl (v,w) op het pad: f (v,w) < c(v,w). Dan kunnen we de stroming verbeteren met behulp van dit pad. Bereken x= min {c(v,w) f(v,w) (v,w) op pad}. Voor elke pijl (v,w) op pad, zet f (v,w) = f (v,w)+x, en zet f (w,v) = f (w,v) x. Voor elk ander paar knopen v, w, zet f (v,w) = f (v,w). Dit is weer een stroming, en de waarde is x>0 hoger geworden!

10 Helpt, maar niet genoeg om altijd een maximum stroming te vinden Hier wel: s 2 1 a 2 d b c t Hier niet: s 1 a 2 2 t 2 d 2 10

11 Verbeteren door in tegenovergestelde richting te verminderen s 2 1 a d t s 0/1 2/2 a d 2/2 2/2 t 0/2 a d 2/2 a d 1/1 a 2/2 1/2 s 1/2 t 2/2 d 1/2 11

12 Rest-netwerk Stel f is een stroming in netwerk G=(N,A) met capaciteiten c. Definieer het rest-netwerk (residual network) G f : Voor elke pijl (v,w) in A: Als f (v,w) < c(v,w), dan is (v,w) een pijl in G f. Als f (v,w) > 0, dan is (w,v) een pijl in G f. Voor elk paar knopen v, w: c f (v,w) = c(v,w) f (v,w) Rest-netwerk laat mogelijke verbeteringen zien. Er is een pijl, d.e.s.d. als restcapaciteit c f positief. 12

13 Een lemma en een opmerking Stel f is een stroming in G, en g is een stroming in het restnetwerk G f. Dan is f +g een stroming in G met waarde f + g. Volgt snel uit definitie. Als we een pad van s naar t in G f hebben maken we een stroming in G f. Een pad van s naar t in G f heet een verbeterend pad. 13

14 Ford-Fulkerson Begin met een stroming f zodat voor alle v, w: f (v,w) = 0. repeat Maak het rest-netwerk G f. Vind een pad p in G f van s naar t. Bereken x = min { c f (v,w) (v,w) op p}. for all (v,w) op p do f(v,w) = f(v,w) + x; f(w,v) = f(v,w); until (er is geen pad van s naar t in G f ) Output f. 14

15 Over Ford-Fulkerson algoritme FF gebruikt soort greedy aanpak. Geeft FF ook een maximum stroming? Ja, maar er is wel een interessant bewijs voor nodig. 15

16 Sneden Een s-t-snede in een netwerk G=(N,A) is een partitie van de knopen in twee verzamelingen S en T, zodat S T = N S T = s S; t T Haal je pijlen tussen S en T weg, dan zijn s en t niet meer verbonden 16

17 17 Sneden Een s-t-snede (S,T) met S T = N S T = s S; t T. De capaciteit van een snede (S,T) is De stroming over een snede (S,T) is = T w S v w v c T S c, ), ( ), ( = T w S v w v f T S f, ), ( ), (

18 Voorbeeld S s 1/3 a 1/2 2/2 b 1/3 1/4 0/2 1/2 t 1/2 d 1/4 c 18

19 Over sneden en stromingen Voor elke s-t-snede (S,T): f(s,t) c(s,t) f(s,t) = f Volgt uit de definities Dus f c(s,t) 19

20 20 Maximum stroming minimum snede stelling De volgende uitspraken zijn equivalent 1. f is een maximum stroming in G. 2. Het restnetwerk G f bevat geen verbeterende paden (paden van s naar t). 3. f = c(s,t) voor een s-t-snede (S,T) in G. Bewijs 1 2. Als G f wel een verbeterend pad bevat, dan kunnen we een stroming met hogere waarde maken: f is dan niet maximum We zagen net: f c(s,t) voor elke s-t-snede (S,T). Als f = c(s,t) dan bestaat er dus geen stroming met een hogere waarde dan f.

21 Slot bewijs MSMS-stelling 2 3: Stel G f bevat geen verbeterend pad. Schrijf S = { v er is een pad van s naar v in G f }, en T = N S. (S,T) is een snede. (t T anders is er een verbeterend pad.) Voor elk paar knopen v S, w T: f(v,w) = c(v,w) want anders zit w ook in S. Dus is f = f (S,T) = c(s,t). s S v w 21

22 Over de maximum-stroming minimum-snede-stelling Bewijst correctheid van Ford-Fulkerson algoritme Looptijd: hebben we het later nog over 22

23 Vinden van sneden Stromingsalgoritmen kunnen ook gebruikt worden voor het vinden van sneden. Toepassing o.a. voor bepalen van betrouwbaarheid van netwerken. Algoritme komt uit bewijs 23

24 Vinden van minimum snede Gegeven: gerichte graaf G=(N,A), knopen s, t. Gevraagd: wat is het minimum aantal pijlen dat we uit G moeten halen zodat er geen pad meer is van s naar t? Geef alle pijlen capaciteit 1. Vind maximum stroming, bijv. met FF. Bepaal S: alle knopen bereikbaar uit s. Neem alle pijlen tussen S en N S. 24

25 Weglaten van knopen Gegeven: gerichte graaf G=(N,A), knopen s, t. Gevraagd: wat is het minimum aantal knopen dat we uit G moeten halen zodat er geen pad meer is van s naar t (we mogen s en t niet weglaten)? oftewel: verzameling W van minimum formaat, zodat W deelverzameling van N-{s,t} en elk pad van s naar t een knoop in W gebruikt 25

26 Oplossing: vertaal probleem naar vraag over pijlen Vervang elke knoop als in plaatje: v v 1 v 2 Minimum knoop-separator van s naar t in oorspronkelijke graaf correspondeert met minimum snede van s 2 naar t 1 in nieuwe graaf Er is altijd een optimale oplossing die alleen de nieuwe kanten weglaat -> neem de bijbehorende knopen 26

27 Ongerichte grafen Gegeven: ongerichte graaf G=(N,A), knopen s, t. Gevraagd: wat is het minimum aantal kanten dat we uit G moeten halen zodat er geen pad meer is van s naar t? Vervang elke kant door twee pijlen en gebruik algoritme voor gerichte grafen Knoop-samenhang van ongerichte grafen: combineer de stappen 27

28 Een verbetering: Edmonds-Karp Probleem van FF: geen grens op looptijd (in het algemeen). Edmonds-Karp: gebruik kortste verbeterende pad. Begin met een stroming f zodat voor alle v, w: f (v,w) = 0. repeat Maak het rest-netwerk G f. Vind het kortste pad p in G f van s naar t. (Met BFS.) Bereken x = min { c f (v,w) (v,w) op p}. 28 for all (v,w) op p do f(v,w) = f(v,w) + x; f(w,v) = f(v,w); until (er is geen pad van s naar t in G f ) Output f. Gebruikt O(na 2 ) tijd. Zonder bewijs hier.

29 Variant Stel: stroming over pijl kost geld Maximum stroming met minimum kosten Kan ook in polynomiale tijd Gebruikt weer verbeterende paden, maar in een ander rest-netwerk Vak: Algoritmen en netwerken 29

30 KOPPELINGEN EN TOEWIJZINGEN 30

31 Toewijzingen en koppelingen Welke fabriek levert aan welke klant? Welke colleges volg je deze periode? Orgaandonatie Feestje! Maar wie danst met wie? Hoe modelleer je dit d.m.v. een graaf? 31

32 Model: bipartite grafen Bipartite graaf G = (N M, F) Elke kant heeft een eindpunt in N en een eindpunt in M. ( F N x M ) 32

33 Koppeling Koppeling: Verzameling kanten die geen eindpunt gemeenschappelijk hebben. Koppeling F is een maximum koppeling als er geen koppeling met meer kanten bestaat. Koppeling F is een maximale koppeling als er geen kant e F bestaat met F {e} ook een 33 koppeling. koppeling, niet maximaal, niet maximum maximum maximaal, niet maximum

34 Maximum bipartite koppeling probleem Gegeven: bipartite graaf G. Gevraagd: zoek een maximum koppeling in G. Toepassingen o.a.: Roostering Taak toewijzen bij Personen in bedrijf Machines Orgaandonatie Traditioneel: het huwelijksprobleem 34

35 Oplossingsmethode Modelleer als stromingsprobleem. Neem twee extra knopen, s en t, met pijlen (s,v) voor elke v N, en (w,t) voor elke w in M, en richt alle kanten in F van N naar M. Geef alle kanten capaciteit 1. Gebruik Ford-Fulkerson (of iets anders) s t 35

36 Stroming en koppeling 1 Als we een koppeling hebben: Stuur 1 stroom van s naar elk beginpunt van een kant in koppeling Stuur 1 stroom over elke kant in de koppeling Stuur 1 stroom van elk eindpunt van kant in koppeling naar t. Alle andere pijlen krijgen 0 stroom. s t 36

37 Correctheid 1 Dit is een stroming. De waarde van de stroming is die over de snede ({s} N, M {t}): precies gelijk aan het aantal kanten in de koppeling. Of: Als we x kanten in koppeling, dan zijn er x knopen in N beginpunt van kant in koppeling, dus gaat er x stroom uit s. 37

38 Stroming en koppeling 2 Als we een integer stroming hebben: Over elke pijl gaat 0 of 1 stroom, want capaciteiten allemaal 1. Neem kant in koppeling als 1 stroom over corresponderende pijl. s t 38

39 Correctheid 2 Laat K de gevonden verzameling kanten zijn. K is een koppeling: Elke knoop in N krijgt hooguit 1 stroom binnen uit s. Dus er gaat ook hooguit 1 stroom uit Dus, knopen in N zijn eindpunt van hooguit 1 kant in K. Net zo voor de knopen in M. (Gebruik t.) Als de stroming waarde x heeft, dan: Is de stroming over de snede ({s} N, M {t}) x. Zijn er x pijlen van N naar M met 1 stroom. Zitten er x kanten in K. 39

40 Integer stroming Waarom krijgen we hier een integer stroming? Als alle capaciteiten gehele getallen zijn, dan Is er een maximum stroming waarbij alle stromingswaarden gehele getallen zijn Wordt zo n maximum stroming door Ford- Fulkerson (en de meeste andere algoritmen voor het stromingsprobleem) gevonden 40

41 FF vindt integer stroming? De rest-capaciteit van een pijl in het rest-netwerk is c(v,w)-f(v,w) Als alle capaciteiten gehele getallen zijn, en stroming is integer, dan zijn de rest-capaciteiten integer In het bijzonder de rest-capaciteit van het verbeterende pad De nieuwe stroming is dan ook weer integer 41 De kleinste rest-capaciteit op het pad bepaalt hoeveel de stroming toeneemt

42 Looptijd Ford-Fulkerson Als alle capaciteiten gehele getallen zijn, dan neemt de stroming in iedere iteratie van FF met een integer toe (tenminste 1) Dus hoogstens F iteraties (waarbij F de waarde van de maximum stroming is), of Hoogstens de capaciteit van de kleinste snede Of hoogstens de capaciteit van de uitgaande pijlen van s (ingaande pijlen van t) Looptijd: O(F (n+a)) 42

43 Looptijd koppeling Schrijf n = N + M. Aantal uitgaande pijlen van s of ingaande pijlen van t: min( N, M ) < n kanten, dus is de maximum stromingswaarde kleiner dan n. Totale tijd is O(n (n+a)) = O(na). Merk op: FF is sneller hier dan Edmonds-Karp 43

44 Algoritme voor maximum bipartite koppeling Bouw stromingsnetwerk. Vind maximum stroming van s naar t met stromingsalgoritme dat integer stroming oplevert; bijvoorbeeld Ford-Fulkerson. Vertaal stroming terug naar koppeling. 44

45 Belangrijk bij gebruik stroming Bewijs dat stroming idd je probleem oplost Koppeling geeft maximum stroming Maximum stroming geeft koppeling Analyseer je looptijd precies! Ook bij rationele capaciteiten heeft FF nog steeds beperkt aantal iteraties Vermenigvuldig met kleinste noemer om integers te krijgen Bij irrationele capaciteiten: willekeurig lang 45

46 Variaties (1) Gegeneraliseerde koppeling: Gegeven: bipartite graaf G=(N M, F) met voor elke knoop v in N M een capaciteit c(v) in N Gevraagd: de grootste verzameling kanten F F zodat iedere knoop v in N M van maximaal c(v) kanten in F eindpunt is Voorbeeld toepassing: N zijn personen die c(v) taken kunnen uitvoeren. M zijn taken met c(w)=1 46

47 Oplossen van gegeneraliseerde koppeling Verander bipartite graaf in stromingsnetwerk met handig/juist kiezen van capaciteiten van kanten c(v) v 1 w c(w) s t 47

48 Koppelingen in algemene grafen Vertaling naar stroming werkt niet meer! Wel oplosbaar in polynomiale tijd Idee is vergelijkbaar: verbeterend pad Vak: Algoritmen en netwerken 48

49 Stabiele koppelingen Huwelijksprobleem: hoe ga je om met voorkeuren? Stabiele koppeling: bij partner-wissel is er iemand slechter af, dus partners willen niet wisselen Belangrijke toepassing: load balancing, studievoorkeuren Algoritme van Gale-Shapley: Nobelprijs

50 Fabriekslocaties Zo min mogelijk fabrieken openen zodat je iedere klant kan bedienen? Generaliseert gegeneraliseerde koppelingen Geen polynomiaal-tijd algoritme bekend Bestaat mogelijk ook niet Wel veel benaderingsalgoritmen Beide vraagstukken komen later in dit vak terug 50

51 Samenvatting Algoritmen voor stroming in netwerken Ford-Fulkerson, verbetering Edmonds-Karp Toepassing in allerlei koppelingsvragen door modellering als netwerkprobleem 51

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 21 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 21 oktober 2015 1 / 20 Deze week: algoritmes en complexiteit

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober 2015 1 / 25 Definitie Een boom is een samenhangende

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde II op donderdag 6 juli 2017, 13.30-16.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde op donderdag 13 april 2017, 14.30-17.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Hoofdstuk 8: Algoritmen en Complexiteit

Hoofdstuk 8: Algoritmen en Complexiteit Hoofdstuk 8: Algoritmen en Complexiteit Vandaag: Hoe meten we de performance van algoritmen? Waar ligt de grens tussen een goed en een slecht algoritme? 22 oktober 2014 1 Vandaag: Hoe meten we de performance

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 maart 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

Hoofdstuk 13: Integer Lineair Programmeren

Hoofdstuk 13: Integer Lineair Programmeren Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

Oefententamen in2505-i Algoritmiek

Oefententamen in2505-i Algoritmiek TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Oefententamen in2505-i Algoritmiek Maart 2007 Het gebruik van boek of aantekeningen tijdens dit tentamen is niet toegestaan.

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Fundamentele Informatica

Fundamentele Informatica Fundamentele Informatica (IN3120 en IN3005 DOI nwe stijl) 20 augustus 2004, 9.00 11.00 uur Het tentamen IN3120 bestaat uit 10 meerkeuzevragen en 2 open vragen. Voor de meerkeuzevragen kunt u maximaal 65

Nadere informatie

Algorithms for Max-Flow

Algorithms for Max-Flow Algorithms for Max-Flow Consider a network with given upper bounds for the capacities of the arcs, and one entry and one exit node. The max-flow problem consists in finding a maximal flow through the network

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

Samenvatting college 1-12

Samenvatting college 1-12 Samenvatting college 1-12 Probleemformulering Duidelijk definiëren van beslissingsvariabelen Zinvolle namen voor variabelen bv x ij voor ingrediënt i voor product j, niet x 1,..., x 20 Beschrijving van

Nadere informatie

1 Vervangingsstrategie auto

1 Vervangingsstrategie auto Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2002 1 Vervangingsstrategie auto Onderdeel a Zij V = {0, 1, 2, 3, 4, 5, 6}, waarbij knoop i staat voor het einde

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december 2015 1 / 13 Vraag Wat moet ik kennen en kunnen voor

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

Lijstkleuring van grafen

Lijstkleuring van grafen C.J. Meerman Lijstkleuring van grafen Bachelorscriptie 10 juni 2010 Email: cjmeerman@gmail.com Scriptiebegeleider: Dr. D. C. Gijswijt Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 1 Inhoudsopgave 1 Transport problemen 3 2 Definities en stellingen

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 20 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6.

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6. Overzicht 1. Definities 2. Basisalgoritme 3. Label setting methoden 4. Label correcting methoden 5. Ondergrenzen 6. Resultaten Kortste Pad Probleem 1 Definities Een graaf G = (V, E) bestaat uit een verzameling

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur Faculteit Elektrotechniek, Wiskunde en Informatica Ti Delft Tentamen IN3105 Complexiteitstheorie 16 april 2012, 9.00-12.00 uur Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 11 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 11 november 2015 1 / 22 Mededelingen Huiswerk 2 nagekeken Terug

Nadere informatie

OptimalisereninNetwerken

OptimalisereninNetwerken OptimalisereninNetwerken Kees Roos e-mail: C.Roos@tudelft.nl, croos@otct.eu URL: http://www.isa.ewi.tudelft.nl/ roos HOVO cursus Wiskunde: zuurstof voor de wereld (deel I) 18 februari, A.D. 2009 Optimization

Nadere informatie

Stabiele koppelingen (Engelse titel: Stable Matchings)

Stabiele koppelingen (Engelse titel: Stable Matchings) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Stabiele koppelingen (Engelse titel: Stable Matchings) Verslag ten behoeve van het

Nadere informatie

De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica

De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica College 7: Resolutie Tomas Klos Algoritmiek Groep De Resolutiemethode De resolutiemethode is een methode waarmee je

Nadere informatie

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden.

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden. Antwoorden Doeboek 4 Grafen.. De middelste en de rechtergraaf.. Een onsamenhangende graaf met vijf punten en vijf lijnen: Teken een vierhoek met één diagonaal. Het vijfde punt is niet verbonden met een

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen

Nadere informatie

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur. Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi NP-Volledigheid Wil zo snel mogelijke algoritmes om problemen op te lossen Gezien: selectie [O(n)], DFS [O(n + m)], MaxFlow [O nm n + m ], MST [O(n + m)], etc De looptijd is polynomiaal: O n k - dat is

Nadere informatie

3 De stelling van Kleene

3 De stelling van Kleene 18 3 De stelling van Kleene Definitie 3.1 Een formele taal heet regulier als hij wordt herkend door een deterministische eindige automaat. Talen van de vorm L(r) met r een reguliere expressie noemen we

Nadere informatie

Netwerkoptimalisatie

Netwerkoptimalisatie 1 Yvette Kleinherenbrink Netwerkoptimalisatie Master thesis, defended on 11 September 2009 Thesis advisor: L.Kallenberg & P. Kop Mathematisch Instituut, Universiteit Leiden Voorwoord Dagelijks reizen er

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Workshop DisWis, De Start 13/06/2007 Bladzijde 1 van 7. Sudoku. Sudoku

Workshop DisWis, De Start 13/06/2007 Bladzijde 1 van 7. Sudoku. Sudoku DisWis DisWis is een lessenserie discrete wiskunde die De Praktijk vorig jaar in samenwerking met prof.dr. Alexander Schrijver heeft opgezet. Gedurende vier weken komt een wiskundestudent twee blokuren

Nadere informatie

De huwelijksstelling van Hall

De huwelijksstelling van Hall Thema Discrete wiskunde In de vorige twee afleveringen heb je al kennis kunnen maken met het begrip graaf en hoe grafen worden gebruikt door Google s zoekmachine en door de NS bij het maken van een optimale

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

Tentamen in2505-i Algoritmiek

Tentamen in2505-i Algoritmiek TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen in2505-i Algoritmiek 5 april 2007, 14.00-17.00 Het gebruik van boek of aantekeningen tijdens dit tentamen is niet

Nadere informatie

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Giso Dal (0752975) Pagina s 5 7 1 Deelverzameling Representatie

Nadere informatie

1 Kettingbreuken van rationale getallen

1 Kettingbreuken van rationale getallen Kettingbreuken van rationale getallen Laten we eens starten met een breuk bijvoorbeeld 37/3 Laten we hier ons kettingbreuk algoritme op los, We concluderen hieruit dat 37 3 3 + 3 + + 37 3 + + + hetgeen

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

Optimalisering/Besliskunde 1. College 1 2 september, 2015

Optimalisering/Besliskunde 1. College 1 2 september, 2015 Optimalisering/Besliskunde 1 College 1 2 september, 2015 Algemene informatie College: woensdag 13:45-15:30: Leiden C1 en C2: Gorlaeus gebouw Zaal DS: De Sitterzaal, Oort gebouw Werkcollege: vrijdag: Leiden

Nadere informatie

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? me:

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes?  me: Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? Email me: peter.vdd@telenet.be 1. Het aantal knoop-tak overgangen is altijd even. De totaalsom

Nadere informatie

Hoofdstuk 1. Afspraken en notaties

Hoofdstuk 1. Afspraken en notaties Hoofdstuk 1 Afspraken en notaties In deze tekst onderzoeken we een eenvoudig dobbelspel: twee spelers hebben een dobbelsteen, gooien deze, en wie het hoogst aantal ogen gooit wint. Er blijken setjes dobbelstenen

Nadere informatie

Module 3. Maximale stromen

Module 3. Maximale stromen Module In november 00 legde een stroomstoring een gedeelte van Europa plat. Overal moesten de kaarsen aan. oordat een gedeelte van het elektriciteitsnet uitviel, was er te weinig capaciteit om aan de vraag

Nadere informatie

Local search. Han Hoogeveen. 21 november, 2011

Local search. Han Hoogeveen. 21 november, 2011 1 Local search Han Hoogeveen 21 november, 2011 Inhoud vandaag 2 Inhoud: Uitleg methode Bespreking oude opdrachten: ˆ Bezorgen wenskaarten ˆ Roosteren tentamens Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

Tiende college algoritmiek. 26 april Gretige algoritmen

Tiende college algoritmiek. 26 april Gretige algoritmen Algoritmiek 01/10 College 10 Tiende college algoritmiek april 01 Gretige algoritmen 1 Algoritmiek 01/10 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

8. Complexiteit van algoritmen:

8. Complexiteit van algoritmen: 8. Complexiteit van algoritmen: Voorbeeld: Een gevaarlijk spel 1 Spelboom voor het wespenspel 2 8.1 Complexiteit 4 8.2 NP-problemen 6 8.3 De oplossing 7 8.4 Een vuistregel 8 In dit hoofdstuk wordt het

Nadere informatie

Chinese postbodeprobleem

Chinese postbodeprobleem Chinese postbodeprobleem Dorthe Van Waarden 9 juli 2010 Eindverslag Bachelorproject Begeleiding: dr. Marcel van de Vel KdV Instituut voor wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Nadere informatie

Elliptische krommen en hun topologische aspecten

Elliptische krommen en hun topologische aspecten Elliptische krommen en hun topologische aspecten René Pannekoek 25 januari 2011 Dit is een korte introductie tot elliptische krommen voor het bachelorseminarium van de Universiteit Leiden. De bespreking

Nadere informatie

Lijst-kleuringen in de grafentheorie

Lijst-kleuringen in de grafentheorie Lijst-kleuringen in de grafentheorie Berrie Bottelier 16 juli 2014 Bachelorscriptie Begeleiding: dr. Guus Regts 4 5 6 1 2 3 Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen,

Nadere informatie

Grafen en BFS. Mark Lekkerkerker. 24 februari 2014

Grafen en BFS. Mark Lekkerkerker. 24 februari 2014 Grafen en BFS Mark Lekkerkerker 24 februari 2014 1 Grafen Wat is een graaf? Hoe representeer je een graaf? 2 Breadth-First Search Het Breadth-First Search Algoritme Schillen De BFS boom 3 Toepassingen

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

Het duivenhokprincipe

Het duivenhokprincipe Tijdens de sneeuwstormen van 5 november j.l. hebben duizenden leerlingen zich gebogen over de opdracht in het kader van de wiskunde B-dag. Op het Jac P Thijsse College worden de werkstukken beoordeeld

Nadere informatie

Grafen deel 2 8/9. Zesde college

Grafen deel 2 8/9. Zesde college Grafen deel 2 8/9 Zesde college 1 Een Eulercircuit is een gesloten wandeling die elke lijn precies één keer bevat. traversable trail all edges distinct 8.5 rondwandeling zeven bruggenprobleem van Köningsbergen

Nadere informatie

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden:

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden: Wiskunde voor kunstmatige intelligentie, 24 Les 5 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin een aantal knopen acties aangeeft en opdrachten langs verbindingen tussen de

Nadere informatie

1.2 Bomen Algemeen 1.2. BOMEN 7

1.2 Bomen Algemeen 1.2. BOMEN 7 1.2. BOMEN 7 1.2 Bomen 1.2.1 Algemeen Beschouw eerst een niet-gerichte graaf. Een boom is een samenhangende graaf die geen kringen bevat. Een boom wordt meestal genoteerd met de letter T (tree). Een bos

Nadere informatie

Uitwerkingen Sum of Us

Uitwerkingen Sum of Us Instant Insanity Uitwerkingen Sum of Us Opgave A: - Opgave B: Voor elk van de vier kubussen kun je een graaf maken die correspondeert met de desbetreffende kubus. Elk van deze grafen bevat drie lijnen.

Nadere informatie

Overzicht. Inleiding. Modellering. Duaal probleem. αβ-algoritme. Maximale stroom probleem. Voorbeeld. Transportprobleem 1

Overzicht. Inleiding. Modellering. Duaal probleem. αβ-algoritme. Maximale stroom probleem. Voorbeeld. Transportprobleem 1 Overzicht Inleiding Modellering Duaal probleem αβ-algoritme Maximale stroom probleem Voorbeeld Transportprobleem 1 Inleiding W 1 b 1 a 1 D 1 W 2 b 2 a 2 D 2 a m Dm W n b n depots warenhuizen c ij zijn

Nadere informatie

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen.

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen. Discrete modellen in de toegepaste wiskunde (WISB6) Uitwerkingen proeftentamen. Docent: Rob H. Bisseling april 202. Begin met een matching M = {x y, x y, x 6 y 6 } aangegeven door de vette lijnen. x De

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

5 Automatische partitionering van softwaresystemen

5 Automatische partitionering van softwaresystemen 26 Proceedings of the 52 nd European Study Group with Industry 5 Automatische partitionering van softwaresystemen Rob Bisseling, Jarosław Byrka, Selin Cerav-Erbas, Nebojša Gvozdenović, Mathias Lorenz,

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA?

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA? Algoritmes en Priemgetallen Hoe maak je een sleutelpaar voor RSA? Het recept van RSA Kies p q priemgetallen en bepaal N = pq Kies e Z N (publieke sleutel) Bepaal d e 1 mod φ N (privésleutel) x ed x kφ

Nadere informatie

Uitleg. Welkom bij de Beverwedstrijd 2006. Je krijgt 15 vragen, die je in maximaal 45 minuten moet beantwoorden.

Uitleg. Welkom bij de Beverwedstrijd 2006. Je krijgt 15 vragen, die je in maximaal 45 minuten moet beantwoorden. Uitleg Welkom bij de Beverwedstrijd 2006 Je krijgt 15 vragen, die je in maximaal 45 minuten moet beantwoorden. Je krijgt 5 vragen van niveau A, 5 vragen van niveau B en 5 vragen van niveau C. Wij denken

Nadere informatie

Uitwerkingen eerste serie inleveropgaven

Uitwerkingen eerste serie inleveropgaven Uitwerkingen eerste serie inleveropgaven (1) Gegeven het 4 4 grid bestaande uit de 16 punten (i, j) met i, j = 0,..., 3. Bepaal het aantal driehoeken dat je kunt vinden zodanig dat ieder hoekpunt samenvalt

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 2012

Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 2012 Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 202 Cor Kraaikamp August 24, 202 Cor Kraaikamp () Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 9 september 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 september 2015 1 / 23 Huiswerk Huiswerk 1 is beschikbaar op

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

Grafen: Kleuren en Routeren

Grafen: Kleuren en Routeren Grafen: Kleuren en Routeren door Alexander Schrijver. Inleiding Grafen.. Wat zijn grafen?.. Graden en reguliere grafen 5.. Volledige grafen 8.. Volledig bipartiete grafen 8.5. Complement 9.6. De lijngraaf

Nadere informatie

Dynamisch Programmeren III. Algoritmiek

Dynamisch Programmeren III. Algoritmiek Dynamisch Programmeren III Vandaag Dynamisch programmeren met wat lastiger voorbeelden: Handelsreiziger Longest common subsequence Optimale zoekbomen Knapsack 2 - DP2 Handelsreiziger Een handelsreiziger

Nadere informatie

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 10 Begrensde variabelen Han Hoogeveen, Utrecht University Begrensde variabelen (1) In veel toepassingen hebben variabelen zowel een ondergrens als een bovengrens:

Nadere informatie