TW2020 Optimalisering

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "TW2020 Optimalisering"

Transcriptie

1 TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

2 Vandaag Vraag Voor welke problemen bestaat er waarschijnlijk geen polynomiaal algoritme? Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

3 Snelle en langzame algoritmes Polynomiale-tijd algoritmes: Algoritme van Dijkstra voor Kortste Pad; Algoritmes voor Minimum Opspannende Boom; Interior Point Methods voor LP; Max Flow algoritme met kortste stroom-vermeerderende paden. Exponentiële-tijd algoritmes: Brute Force (alle oplossingen afgaan); Branch & Bound algoritme voor ILP. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

4 Definitie P is de klasse van beslissingsproblemen die in polynomiale tijd oplosbaar zijn. Definitie NP is de klasse van beslissingsproblemen waarvoor voor elke ja-instantie een certificaat bestaat waarmee in polynomiale tijd geverifiëerd kan worden dat het antwoord ja is. Intuïtief: NP bestaat uit de problemen waarvoor een oplossing in polynomiale tijd geverifiëerd kan worden. NP staat voor niet-deterministisch polynomiaal P NP Één van de zeven millennium problemen: P = NP? Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

5 Optimaliseringsprobleem bestuderen via geassocieerd beslissingsprobleem Een Hamilton circuit van een graaf is een circuit dat elk punt precies één keer doorloopt. Probleem TSP (Travelling Salesman Problem) Gegeven: volledige graaf G = (V, E) en lengtefunctie l : E Z. Gevraagd: een Hamilton circuit in G van minimale lengte. Probleem TSP-beslis Gegeven: volledige graaf G = (V, E), lengtefunctie l : E Z en bovengrens k Z. Beslis: heeft G een Hamilton circuit van lengte hoogstens k? Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

6 Voorbeeld Welke van de onderstaande beslissingsproblemen zitten met zekerheid in de klasse NP? 1 Gegeven een graaf G = (V, E), heeft G een Hamilton circuit? 2 Gegeven een graaf G = (V, E) met lengtefunctie l : E Z en k Z, heeft G een Hamilton circuit van lengte hoogstens k? 3 Gegeven een graaf G = (V, E) met lengtefunctie l : E Z en k Z, heeft G geen Hamilton circuit van lengte hoogstens k? 4 Gegeven een graaf G = (V, E) met lengtefunctie l : E Z en k Z, heeft het kortste Hamilton circuit van G lengte k? Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

7 Definitie Een reductie van een beslissingsprobleem Π 1 naar een beslissingsprobleem Π 2 is een functie die aan elke instantie I van Π 1 een instantie f (I ) van Π 2 toewijst, zodanig dat: 1 er een algoritme bestaat dat f berekent in polynomiale tijd; 2 voor elke instantie van I van Π 1 geldt: I is een ja-instantie van Π 1 f (I ) is een ja-instantie van Π 2. De notatie Π 1 Π 2 betekent: er bestaat een reductie van Π 1 naar Π 2. Dit betekent (intuïtief): probleem Π1 is een speciaal geval (special case) van probleem Π 2 ; probleem Π1 is makkelijker of net zo moeilijk als Π 2. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

8 Lemma Als Π 1 Π 2 and Π 2 P, dan Π 1 P. Definitie Een beslissingsprobleem Π is NP-moeilijk (NP-hard) als voor elke Π NP geldt dat Π Π. Dus als er een polynomiale-tijd algoritme bestaat voor één NP-moeilijk probleem, dan bestaat er een polynomiale-tijd algoritme voor elk probleem in NP (dus dan is P = NP). Dus als een probleem NP-moeilijk is, dan is het onwaarschijnlijk dat het opgelost kan worden in polynomiale tijd. Intuïtief: een probleem is NP-moeilijk als het minstens zo moeilijk is als elk probleem in NP. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

9 Definitie Een beslissingsprobleem Π is NP-volledig (NP-complete) als 1 Π is NP-hard is en 2 Π in NP zit. Intuïtief: NP-volledige problemen zijn de moeilijkste problemen in NP. Vraag Bestaan er NP-volledige problemen? Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

10 Definitie Een boolean expressie is een formule bestaande uit boolean variabelen x 1, x 2,... (variabelen die de waarden TRUE en FALSE kunnen aannemen) en de symbolen,, x die de volgende betekenis hebben: Definitie x 1 is TRUE x 1 is FALSE; x 1 x 2 is TRUE tenminste één van x 1 en x 2 is TRUE; x 1 x 2 is TRUE x 1 en x 2 zijn beiden TRUE. Een literal is een boolean variabele (x i ) of een negatie van een boolean variabele (x i ). Een clause is een disjunctie van literals, bijv: (x 1 x 2 x 4 x 9 ). Een conjunctie van clauses C 1, C 2,..., C k is: C 1 C 2... C k. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

11 Definitie Een waarde toekenning voor een verzameling U van boolean variabelen is een functie t : U {TRUE, FALSE}. Stelling Elke boolean expressie kan geschreven worden als een conjunctie van clauses (Conjunctive Normal Form (CNF)). Probleem Satisfiability (SAT) Gegeven: een verzameling U van boolean variabelen en een conjunctie C = C 1... C k van clauses over U. Beslis: bestaat er een waardetoekenning voor U die de expressie C TRUE maakt? C is TRUE elke clause van C is TRUE Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

12 Voorbeeld Bestaat er een waardetoekenning die de volgende expressie TRUE maakt? (x 1 x 2 x 3 ) (x 1 x 4 ) (x 4 x 5 ) (x 1 x 4 x 5 ) Voorbeeld Bestaat er een waardetoekenning die de volgende expressie TRUE maakt? (x 1 x 2 ) (x 1 x 3 ) (x 2 x 3 ) (x 1 x 4 ) (x 2 x 4 ) (x 3 x 4 ) Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

13 Stelling (Cook, 1971) SAT is NP-volledig. Bewijs (idee) SAT NP want een waardekenning die de expressie TRUE maakt is een certificaat dat gecontroleerd kan worden in polynomiale tijd. Laat Π NP. Te bewijzen: Π SAT. Er bestaat een polynomiale-tijd algoritme A dat gegeven een instantie I en een certificaat C(I ) beslist of C(I ) inderdaad bewijst dat I een ja-instantie is. Idee achter het bewijs van Cook: codeer A als een boolean expressie, met boolean variabelen die o.a. het certificaat coderen. Er is een waardetoekenning die de boolean expressie TRUE maakt er bestaat een certificaat dat bewijst dat I een ja-instantie is I is een ja-instantie. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

14 Lemma (transitiviteit) Als Π 1 Π 2 en Π 2 Π 3 dan Π 1 Π 3. Lemma Als Π 1 NP-moeilijk is en Π 1 Π 2 dan is Π 2 ook NP-moeilijk. Om te bewijzen dat een probleem Π in P zit: geef een reductie van Π naar een probleem in P. Om te bewijzen dat een probleem Π NP-moeilijk is: geef een reductie van een NP-moeilijk probleem naar Π. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

15 Vraag Stel Π 1, Π 2 NP en Π 1 Π 2. 1 Als Π 2 P, wat zegt dit over Π 1? 2 Als Π 1 NP-volledig is, wat zegt dit over Π 2? 3 Als Π 2 NP-volledig is, wat zegt dit over Π 1? 4 Als Π 1 P, wat zegt dit over Π 2? Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

16 Om te bewijzen dat een beslissingsprobleem Π NP-volledig is: 1 laat zien dat Π NP; 2 kies een NP-hard probleem Π en geef een reductie van Π naar Π d.w.z. laat zien dat een willekeurige instantie I van Π getransformeerd kan worden in een instantie f (I ) van Π zodanig dat: (a) I ja-instantie f (I ) ja-instantie; (b) f (I ) ja-instantie I ja-instantie; (c) transformatie kan uitgevoerd worden in polynomiale tijd. Let op: instantie f (I ) mag niet exponentiëel veel groter zijn dan instantie I (volgt uit (c)). Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

17 Geheeltallig programmeren (IP) is NP-volledig. Probleem 0,1-IP Stelling Gegeven: geheeltallige m n matrix A en vector b Z m Beslis: is er een x {0, 1} n met Ax b? 0,1-IP is NP-volledig 0,1-IP zit duidelijk in NP. Reductie: SAT 0,1-IP. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

18 SAT 0,1-IP Bewijs Neem een algemene instantie van SAT: Variabelen U = {u1,..., u n } Conjunctie van clauses: C = C1 C 2... C m. Creëer een instantie van 0,1-IP als volgt: Voor elke variabele u i van de SAT instantie, creëer binaire variabelen x i en y i voor de 0,1-IP instantie en een restrictie x i + y i = 1. Voor elke clause C k, zeg van de vorm C k = i I u i j J u j met I, J {1,..., n} creëer een restrictie: x i + y j 1. i I j J Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

19 Bewijs (vervolg) Neem eerst aan dat er een waardetoekenning t : U {TRUE, FALSE} bestaat die de expressie TRUE maakt. Dan kunnen we als volgt een toegelaten oplossing van het IP vinden: voor elke ui U met t(u i ) = TRUE, kies x i = 1 en y i = 0; voor elke u i U met t(u i ) = FALSE, kies x i = 0 en y i = 1; dan wordt aan alle restricties voldaan. Neem nu aan dat er een toegelaten oplossing van het IP bestaat. Dan kunnen we als volgt een waardetoekenning vinden: als xi = 1 en y i = 0, kies t(u i ) = TRUE; als x i = 0 en y i = 1, kies t(u i ) = FALSE; dit zijn de enige mogelijkheden door de restricties x i + y i = 1; aan elke clause wordt voldaan door de restricties x i + y j 1. j J i I dus maakt de waardetoekenning de expressie TRUE. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

20 Een clique in een graaf is een deelgraaf waarin elk tweetal punten met elkaar verbonden is. Voorbeeld Vind de grootste clique in de onderstaande graaf. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

21 Probleem CLIQUE Stelling Gegeven: een graaf G = (V, E) en een geheel getal k. Beslis: heeft G een clique met tenminste k punten? Het probleem CLIQUE is NP-volledig. CLIQUE zit duidelijk in NP. Reductie: SAT CLIQUE. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

22 Bewijs (SAT CLIQUE) Neem een algemene instantie van SAT: Variabelen U = {u 1,..., u n } Conjunctie van clauses: C = C 1 C 2... C m. Creëer een instantie G = (V, E), k van CLIQUE als volgt: k = m V := {(σ, C i ) σ is een literal in C i } E := {{(σ, C i ), (τ, C j )} i j en τ σ} Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

23 Bewijs (vervolg) Stel eerst dat er een waardetoekenning is die de expressie TRUE maakt. Dan kunnen we zo k punten in G vinden die een clique vormen: Elke clause C i bevat tenminste één literal die TRUE is. Kies zo n literal en noem hem σ i. Dan is {(σ i, C i ) i = 1,..., m} een clique van G met m = k punten. Stel nu dat G een clique K heeft bestaande uit k punten. Dan kunnen we zo een waardetoekenning vinden die C TRUE maakt: Voor elk punt (σ, C i ) K zet σ op TRUE. Het is niet mogelijk dat σ en σ beiden op TRUE zijn gezet omdat de bijbehorende punten niet met elkaar verbonden zijn. Maak de waardetoekenning op een willekeurige manier af. Per clause zit precies één punt in K, want er zitten k punten in K en de punten behorende bij dezelfde clause zijn niet met elkaar verbonden. Dus bevat K precies één punt (σ, C i ) voor elke clause C i en die σ is op TRUE gezet, dus wordt aan elke clause C i voldaan. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

24 Definitie co-np is de klasse van beslissingsproblemen waarvoor voor elke nee-instantie een certificaat bestaat waarmee in polynomiale tijd geverifiëerd kan worden dat het antwoord nee is. Stelling P (NP co NP) Niet bekend: is NP = co-np? Vermoedens: P NP NP co-np Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

25 Vraag Welke van de onderstaande beslissingsproblemen zitten met zekerheid in de klasse co-np? 1 Gegeven een graaf G = (V, E), heeft G een Hamilton circuit? 2 Gegeven een graaf G = (V, E), heeft G geen Hamilton ciruit? 3 Gegeven een gerichte graaf D = (V, A) met een capaciteit b ij 0 voor elke pijl (i, j) A, twee speciale punten s, t V en een getal F, is er een stroom van s naar t met waarde tenminste F? 4 Gegeven een m n matrix A en een vector b Z m, bestaat er een x R n waarvoor Ax = b en x 0? Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

26 De meeste problemen in NP co-np blijken in P te zitten. Het volgende probleem is wel bewezen in NP co-np te zitten, maar het is niet bekend of het in P zit: Probleem Integer Factorization Gegeven: m, n N Gevraagd: heeft m een deler kleiner dan n en groter dan 1? Van het probleem PRIMES (gegeven een geheel getal, is het een priemgetal) is recent wel bewezen dat het in P zit. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

27 Stelling (Ladner, 1975) Als P NP, dan zijn er problemen die niet in P zitten en ook niet NP-volledig zijn. Van de meeste bekende problemen is echter ofwel bekend dat ze in P zitten ofwel dat ze NP-volledig zijn. Uitzonderingen zijn Integer Factorization en: Probleem Graph Isomorphism Gegeven: twee grafen G = (V, E), H = (V, E ). Gevraagd: zijn G en H isomorf? D.w.z. bestaat er een bijectie f : V V zodanig dat {u, v} E {f (u), f (v)} E Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

28 Volkskrant, 17 november 2015: Babai heeft laten zien dat Graph Isomorphism oplosbaar is in O(2 poly(log(n)) ) tijd, bijna polynomiaal. Leo van Iersel (TUD) TW2020 Optimalisering 25 november / 28

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 21 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 21 oktober 2015 1 / 20 Deze week: algoritmes en complexiteit

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december 2015 1 / 13 Vraag Wat moet ik kennen en kunnen voor

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 11 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 11 november 2015 1 / 22 Mededelingen Huiswerk 2 nagekeken Terug

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober 2015 1 / 25 Definitie Een boom is een samenhangende

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi NP-Volledigheid Wil zo snel mogelijke algoritmes om problemen op te lossen Gezien: selectie [O(n)], DFS [O(n + m)], MaxFlow [O nm n + m ], MST [O(n + m)], etc De looptijd is polynomiaal: O n k - dat is

Nadere informatie

Hoofdstuk 13: Integer Lineair Programmeren

Hoofdstuk 13: Integer Lineair Programmeren Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem

Nadere informatie

Fundamentele Informatica

Fundamentele Informatica Fundamentele Informatica (IN3120 en IN3005 DOI nwe stijl) 20 augustus 2004, 9.00 11.00 uur Het tentamen IN3120 bestaat uit 10 meerkeuzevragen en 2 open vragen. Voor de meerkeuzevragen kunt u maximaal 65

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 1 Leo van Iersel Technische Universiteit Delft 7 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 september 2016 1 / 40 Opzet vak Woensdag: hoorcollege 13:45-15:30

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur Faculteit Elektrotechniek, Wiskunde en Informatica Ti Delft Tentamen IN3105 Complexiteitstheorie 16 april 2012, 9.00-12.00 uur Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open

Nadere informatie

Samenvatting college 1-12

Samenvatting college 1-12 Samenvatting college 1-12 Probleemformulering Duidelijk definiëren van beslissingsvariabelen Zinvolle namen voor variabelen bv x ij voor ingrediënt i voor product j, niet x 1,..., x 20 Beschrijving van

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 maart 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Branch-and-Bound en Cutting Planes

Branch-and-Bound en Cutting Planes Branch-and-Bound en Cutting Planes Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme

Nadere informatie

De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica

De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica College 7: Resolutie Tomas Klos Algoritmiek Groep De Resolutiemethode De resolutiemethode is een methode waarmee je

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 9 september 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 september 2015 1 / 23 Huiswerk Huiswerk 1 is beschikbaar op

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

Hoofdstuk 8: Algoritmen en Complexiteit

Hoofdstuk 8: Algoritmen en Complexiteit Hoofdstuk 8: Algoritmen en Complexiteit Vandaag: Hoe meten we de performance van algoritmen? Waar ligt de grens tussen een goed en een slecht algoritme? 22 oktober 2014 1 Vandaag: Hoe meten we de performance

Nadere informatie

Tentamen IN3105 Complexiteitstheorie

Tentamen IN3105 Complexiteitstheorie Tentamen IN3105 Complexiteitstheorie 31 maart, 9.00 12.00 uur - Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open vragen. - Per meerkeuzevraag kunnen 0 tot 4 alternatieven juist

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 20 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Tentamen TI3300 / IN3105 Complexiteitstheorie

Tentamen TI3300 / IN3105 Complexiteitstheorie Tentamen TI3300 / IN3105 Complexiteitstheorie 24 juni 2013, 9.00-12.00 uur - Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open vragen. - Voor de meerkeuzevragen kunt u maximaal

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

Credit cards, computationele complexiteit en consistentie uitspraken

Credit cards, computationele complexiteit en consistentie uitspraken Credit cards, computationele complexiteit en consistentie uitspraken Joost J. Joosten 14 december 2005 Praag en bier Sinds enkele maanden werk ik als post-doc aan de Czech Academy of Sciences in Praag.

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde II op donderdag 6 juli 2017, 13.30-16.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Stelling. SAT is NP-compleet.

Stelling. SAT is NP-compleet. Het bewijs van de stelling van Cook Levin zoals gegeven in het boek van Sipser gebruikt niet-deterministische turing machines. Het is inderdaad mogelijk de klasse NP op een alternatieve wijze te definiëren

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

Optimalisering/Besliskunde 1. College 1 2 september, 2015

Optimalisering/Besliskunde 1. College 1 2 september, 2015 Optimalisering/Besliskunde 1 College 1 2 september, 2015 Algemene informatie College: woensdag 13:45-15:30: Leiden C1 en C2: Gorlaeus gebouw Zaal DS: De Sitterzaal, Oort gebouw Werkcollege: vrijdag: Leiden

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Inhoudsopgave. 1 COMPLEXITEITSTHEORIE Inleiding De klassen P en N P Opgaven... 16

Inhoudsopgave. 1 COMPLEXITEITSTHEORIE Inleiding De klassen P en N P Opgaven... 16 Inhoudsopgave 1 COMPLEXITEITSTHEORIE 1 1.1 Inleiding.......................................... 1 1.2 De klassen P en N P................................... 8 1.3 Opgaven..........................................

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde op donderdag 13 april 2017, 14.30-17.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur. Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Netwerkstroming Toepassingen in Logistiek Video-streaming Subroutine in algoritmen 2 Vandaag Netwerkstroming: wat was dat ook alweer? Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Tussentoets: 26 november, tijdens de instructies Tentamenstof: LP; Simplex; dualiteit (= colleges 1 4) Bij de tussentoets mag een eenvoudige (niet programmeerbare)

Nadere informatie

Puzzels en wiskunde. Inleiding. Algoritme. Sudoku. 22 Puzzels en wiskunde

Puzzels en wiskunde. Inleiding. Algoritme. Sudoku. 22 Puzzels en wiskunde Een miljoen dollar verdienen in de kerstvakantie? Het enige dat u hoeft te doen, is een polynomiaal algoritme te vinden om een sudoku mee op te lossen. Niels Oosterling schetst waar u dan rekening mee

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede kandidatuur Informatica Academiejaar 2004 2005, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Binomiale

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Tentamen algebra 1 Woensdag 24 juni 2015, 10:00 13:00 Snelliusgebouw B1 (extra tijd), B2, B3, 312

Tentamen algebra 1 Woensdag 24 juni 2015, 10:00 13:00 Snelliusgebouw B1 (extra tijd), B2, B3, 312 Tentamen algebra 1 Woensdag 24 juni 2015, 10:00 13:00 Snelliusgebouw B1 (extra tijd), B2, B3, 312 Je mag de syllabus en aantekeningen gebruiken, maar geen rekenmachine. Je mag opgaven 2.46, 2.49 en 8.13

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

Spider Solitaire is NP-Compleet

Spider Solitaire is NP-Compleet Spider Solitaire is NP-Compleet Kenneth Verstraete 21 april 2016 1 Inleiding Spider Solitaire is een populair kaartspel dat alleen gespeeld wordt. Het werd/wordt standaard bij o.a. Microsoft Windows meegeleverd.

Nadere informatie

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden.

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden. Antwoorden Doeboek 4 Grafen.. De middelste en de rechtergraaf.. Een onsamenhangende graaf met vijf punten en vijf lijnen: Teken een vierhoek met één diagonaal. Het vijfde punt is niet verbonden met een

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

Stabiele koppelingen (Engelse titel: Stable Matchings)

Stabiele koppelingen (Engelse titel: Stable Matchings) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Stabiele koppelingen (Engelse titel: Stable Matchings) Verslag ten behoeve van het

Nadere informatie

Geheeltallige programmering

Geheeltallige programmering Geheeltallige programmering In een LP probleem zijn alle variabelen reëel. In een geheeltallig probleem blijven doelfunctie en constraints lineair, maar zijn de variabelen geheeltallig. LP: IP: BIP: MIP:

Nadere informatie

Vorig college. IN2505-II Berekenbaarheidstheorie College 4. Opsommers versus herkenners (Th. 3.21) Opsommers

Vorig college. IN2505-II Berekenbaarheidstheorie College 4. Opsommers versus herkenners (Th. 3.21) Opsommers Vorig college College 4 Algoritmiekgroep Faculteit EWI TU Delft Vervolg NDTM s Vergelijking rekenkracht TM s en NDTM s Voorbeelden NDTM s 20 april 2009 1 2 Opsommers Opsommers versus herkenners (Th. 3.21)

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

Tentamen: Operationele Research 1D (4016)

Tentamen: Operationele Research 1D (4016) UITWERKINGEN Tentamen: Operationele Research 1D (4016) Tentamendatum: 12-1-2010 Duur van het tentamen: 3 uur (maximaal) Opgave 1 (15 punten) Beschouw het volgende lineaire programmeringsprobleem P: max

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA?

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA? Algoritmes en Priemgetallen Hoe maak je een sleutelpaar voor RSA? Het recept van RSA Kies p q priemgetallen en bepaal N = pq Kies e Z N (publieke sleutel) Bepaal d e 1 mod φ N (privésleutel) x ed x kφ

Nadere informatie

Semantiek (2IT40) Jos Baeten. HG 7.19 tel.: Hoorcollege 3 (12 april 2007)

Semantiek (2IT40) Jos Baeten.  HG 7.19 tel.: Hoorcollege 3 (12 april 2007) Jos Baeten josb@wintuenl http://wwwwintuenl/~josb/ HG 719 tel: 040 247 5155 Hoorcollege 3 (12 april 2007) Voorbeeld [Bewijstechniek 2 niet altijd succesvol] Executie van commands is deterministisch: c

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

1 Vervangingsstrategie auto

1 Vervangingsstrategie auto Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2002 1 Vervangingsstrategie auto Onderdeel a Zij V = {0, 1, 2, 3, 4, 5, 6}, waarbij knoop i staat voor het einde

Nadere informatie

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 1 Inhoudsopgave 1 Transport problemen 3 2 Definities en stellingen

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Inleiding logica Inleveropgave 3

Inleiding logica Inleveropgave 3 Inleiding logica Inleveropgave 3 Lientje Maas 30 september 2013 Ik (Rijk) heb verbeteringen in rood vermeld. Deze verbeteringen meegenomen zijn dit correcte uitwerkingen van de derde inleveropgaven. 1

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

3 De stelling van Kleene

3 De stelling van Kleene 18 3 De stelling van Kleene Definitie 3.1 Een formele taal heet regulier als hij wordt herkend door een deterministische eindige automaat. Talen van de vorm L(r) met r een reguliere expressie noemen we

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Tiende college algoritmiek. 26 april Gretige algoritmen

Tiende college algoritmiek. 26 april Gretige algoritmen Algoritmiek 01/10 College 10 Tiende college algoritmiek april 01 Gretige algoritmen 1 Algoritmiek 01/10 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0 Voorbeeldtentamen Deterministische Modellen in de OR (158075) Opmerking vooraf: Geef bij elke opgave een volledige en duidelijke uitwerking inclusief argumentatie! Gebruik van de rekenmachine is niet toegestaan.

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Opgaven Fibonacci-getallen Datastructuren, 23 juni 2017, Werkgroep.

Opgaven Fibonacci-getallen Datastructuren, 23 juni 2017, Werkgroep. Opgaven Fibonacci-getallen Datastructuren, 3 juni 017, Werkgroep Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege Cijfer: Op een toets krijg je meestal zes tot acht

Nadere informatie

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen Universiteit Twente 2009-2010/2 Afdeling Informatica, Faculteit EWI Tentamen dinsdag 19 januari 2010, 8.45-12.15 Algoritmen, Datastructuren en Complexiteit (214020 en 214025) Uitwerkingen Bij dit tentamen

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen.

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen. college 4 collegejaar college build slides Vandaag : : : : 16-17 4 29 maart 217 38 1 2 3.16-17[4] 1 vandaag Vectoren De notatie (x 1, x 2,..., x n ) wordt gebruikt voor het punt P met coördinaten (x 1,

Nadere informatie

Complexiteit van berekeningen

Complexiteit van berekeningen Logica in actie H O O F D S T U K 7 Complexiteit van berekeningen We hebben nu al een paar keer gezien dat logica nauw verbonden is met processen die informatie bewerken en overdragen. Het proces bij uitstek

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d.

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. 1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. een toewijzingsprobleem. 2. Het aantal toegelaten hoekpunten in een

Nadere informatie