TW2020 Optimalisering

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "TW2020 Optimalisering"

Transcriptie

1 TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

2 Deze week: analyseren van algoritmes Hoe meten we de performance van algoritmes? Waar ligt de grens tussen een goed en een slecht algoritme? Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

3 Problemen Een (algoritmisch) probleem bestaat uit karakterisaties van toegelaten invoer (input) en gewenste uitvoer (output) als functie van de invoer. Een instantie ontstaat als één toegelaten invoer gekozen wordt. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

4 Problemen Een (algoritmisch) probleem bestaat uit karakterisaties van toegelaten invoer (input) en gewenste uitvoer (output) als functie van de invoer. Een instantie ontstaat als één toegelaten invoer gekozen wordt. Voorbeeld Probleem: Travelling Salesman Problem (TSP) Gegeven: een volledige graaf G = (V, E) en een kostenfunctie c : E R +. Gevraagd: een circuit in G dat elk punt precies één keer bevat en minimale kosten heeft. TSP is een optimaliseringsprobleem. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

5 Een beslissingsprobleem vraagt om een ja- of nee-antwoord. Elk optimaliseringsprobleem heeft een bijbehorend beslissingsprobleem. Voorbeeld Probleem: TSP-beslis Gegeven: een volledige graaf G = (V, E), een kostenfunctie c : E R + en een bovengrens B R. Gevraagd: is er een circuit in G dat elk punt precies één keer bevat en waarvan de kosten maximaal B zijn? Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

6 Definitie Een algoritme (algorithm) voor een probleem is een reeks van instructies waarmee elke mogelijke instantie van het probleem opgelost kan worden in eindige tijd. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

7 Definitie Een algoritme (algorithm) voor een probleem is een reeks van instructies waarmee elke mogelijke instantie van het probleem opgelost kan worden in eindige tijd. Definitie De (tijds)complexiteit (time complexity) of looptijd (running time) van een algoritme A is de functie f : N N met f (n) het aantal elementaire stappen dat A in het ergste geval ( worst-case ) nodig heeft om een instantie met invoerlengte n op te lossen. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

8 Definitie Een algoritme (algorithm) voor een probleem is een reeks van instructies waarmee elke mogelijke instantie van het probleem opgelost kan worden in eindige tijd. Definitie De (tijds)complexiteit (time complexity) of looptijd (running time) van een algoritme A is de functie f : N N met f (n) het aantal elementaire stappen dat A in het ergste geval ( worst-case ) nodig heeft om een instantie met invoerlengte n op te lossen. de invoerlengte van een instantie is het aantal bits dat nodig is om de invoer van de instantie te representeren; elementaire stappen zijn o.a. rekenkundige bewerkingen van getallen (optellen, vermenigvuldigen, enz.), vergelijken van getallen, lezen en schrijven van een geheugenplaats, volgen van pointer. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

9 Om complexiteit (of andere functies) af te schatten wordt vaak de volgende big-o notatie gebruikt: Definitie Laten f en g twee functies van N naar R + zijn, dan is f (n) = O(g(n)) als er c > 0 en n 0 N bestaan zodanig dat f (n) c g(n) voor alle n n 0 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

10 Om complexiteit (of andere functies) af te schatten wordt vaak de volgende big-o notatie gebruikt: Definitie Laten f en g twee functies van N naar R + zijn, dan is f (n) = O(g(n)) als er c > 0 en n 0 N bestaan zodanig dat f (n) c g(n) voor alle n n 0 f (n) = Ω(g(n)) als als er c > 0 en n 0 N bestaan zodanig dat f (n) c g(n) voor alle n n 0 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

11 Om complexiteit (of andere functies) af te schatten wordt vaak de volgende big-o notatie gebruikt: Definitie Laten f en g twee functies van N naar R + zijn, dan is f (n) = O(g(n)) als er c > 0 en n 0 N bestaan zodanig dat f (n) c g(n) voor alle n n 0 f (n) = Ω(g(n)) als als er c > 0 en n 0 N bestaan zodanig dat f (n) c g(n) voor alle n n 0 f (n) = Θ(g(n)) als f (n) = O(g(n)) en f (n) = Ω(g(n)) Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

12 Om complexiteit (of andere functies) af te schatten wordt vaak de volgende big-o notatie gebruikt: Definitie Laten f en g twee functies van N naar R + zijn, dan is f (n) = O(g(n)) als er c > 0 en n 0 N bestaan zodanig dat f (n) c g(n) voor alle n n 0 f (n) = Ω(g(n)) als als er c > 0 en n 0 N bestaan zodanig dat f (n) c g(n) voor alle n n 0 f (n) = Θ(g(n)) als f (n) = O(g(n)) en f (n) = Ω(g(n)) Nuttige eigenschappen: f (n) als lim n g(n) = 0 dan f (n) = O(g(n)) f (n) als lim n g(n) = c > 0 dan f (n) = Θ(g(n)) f (n) als lim n g(n) = dan f (n) = Ω(g(n)) Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

13 Vraag (1) Wat is de invoerlengte als de invoer een getal n is? Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

14 Vraag (1) Wat is de invoerlengte als de invoer een getal n is? Vraag (2) Wat is de invoerlengte van een LP? Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

15 Vraag (1) Wat is de invoerlengte als de invoer een getal n is? Vraag (2) Wat is de invoerlengte van een LP? Vraag (3) Wat is de invoerlengte als de invoer een graaf is? Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

16 Representaties van een ongerichte graaf: Adjacency matrix: Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

17 Representaties van een ongerichte graaf: Adjacency matrix: Incidence matrix: Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

18 Representaties van een ongerichte graaf: Adjacency matrix: Incidence matrix: Adjacency lists: A 1 = [2, 4] A 3 = [2, 4] A 2 = [1, 3, 4] A 4 = [1, 2, 3] Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

19 Representatie van een gerichte graaf: Adjacency matrix: Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

20 Representatie van een gerichte graaf: Adjacency matrix: Incidence matrix: Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

21 Representatie van een gerichte graaf: Adjacency matrix: Incidence matrix: In- ad out-lists: A in 1 = [] Aout 1 = [2, 4] A in 2 = [1, 4] Aout 2 = [3] A in 3 = [2] Aout 3 = [4] A in 4 = [1, 3] Aout 4 = [2] Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

22 Definitie Een algoritme is polynomiaal als het tijdscomplexiteit O(p(n)) heeft met p(n) een polynoom. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

23 Definitie Een algoritme is polynomiaal als het tijdscomplexiteit O(p(n)) heeft met p(n) een polynoom. Definitie Een algoritme is exponentieel als het tijdscomplexiteit Ω(f (n)) heeft met f (n) een exponentiële functie (f (n) = a n voor een constante a > 1). Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

24 Definitie Een algoritme is polynomiaal als het tijdscomplexiteit O(p(n)) heeft met p(n) een polynoom. Definitie Een algoritme is exponentieel als het tijdscomplexiteit Ω(f (n)) heeft met f (n) een exponentiële functie (f (n) = a n voor een constante a > 1). Definitie De klasse P is de klasse van alle (beslissings)problemen waarvoor een polynomiaal algoritme bestaat. Problemen in P worden makkelijke problemen genoemd. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

25 Definitie De klasse N P is de klasse van alle beslissingsproblemen waarvoor een ja-antwoord in polynomiale-tijd geverifiëerd kan worden, m.b.v. een certificaat van polynomiale lengte. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

26 Definitie De klasse N P is de klasse van alle beslissingsproblemen waarvoor een ja-antwoord in polynomiale-tijd geverifiëerd kan worden, m.b.v. een certificaat van polynomiale lengte. Voorbeeld TSP-beslis N P. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

27 Definitie De klasse N P is de klasse van alle beslissingsproblemen waarvoor een ja-antwoord in polynomiale-tijd geverifiëerd kan worden, m.b.v. een certificaat van polynomiale lengte. Voorbeeld TSP-beslis N P. Eén van de zeven millennium problemen ($ ): is P = N P? Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

28 Definitie De klasse N P is de klasse van alle beslissingsproblemen waarvoor een ja-antwoord in polynomiale-tijd geverifiëerd kan worden, m.b.v. een certificaat van polynomiale lengte. Voorbeeld TSP-beslis N P. Eén van de zeven millennium problemen ($ ): is P = N P? Voor TSP bestaat geen polynomiaal algoritme tenzij P = N P. TSP wordt daarom een moeilijk probleem genoemd. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

29 Schaalbaarheid Polynomiale algoritmes schalen veel beter dan exponentiële algoritmes. Tabel: Groei van polynomiale en exponeniële functies n n log(n) n ,000, n n x x n log(n) x x10 29 n! 3,628, x Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

30 Profijt van technologische ontwikkeling Polynomiale algoritmes profiteren meer van technologische ontwikkelingen. Tabel: Maximale instantiegrootte op te lossen in 1 dag Functie Huidige technologie 10x snellere computer n n log(n) 0.948x x10 12 n x10 6 n x n n n n log(n) n! Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

31 Voorbeeld Wat is de complexiteit van het algoritme van Dijkstra voor het vinden van een kortste pad van s naar t in een gerichte graaf D = (V, A) met een lengte c uv 0 voor elke pijl (u, v) A en met s, t V. Algoritme W := {s} ρ(s) := 0 ρ(v) := c sv voor elk punt v V \ {s} (met c sv = wanneer (s, v) / A) Herhaal totdat W = V : 1 Vind u V \ W met minimale ρ(u) 2 W := W {u} 3 Voor elke v V \ W met (u, v) A ρ(v) := min{ρ(v), ρ(u) + cuv } Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

32 Voorbeeld Wat is de complexiteit van het algoritme van Ford-Fulkerson voor het vinden van een maximum stroom, als alle capaciteiten geheeltallig zijn? Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

33 Algoritme (Ford-Fulkerson) 1 Begin met f ij = 0 voor alle (i, j) A 2 Maak een gerichte hulpgraaf D f met dezelfde punten als D en voor elke pijl (i, j) van D: als f ij < b ij dan krijgt D f een pijl (i, j) met capaciteit c ij = b ij f ij als f ij > 0 dan krijgt D f een pijl (j, i) met capaciteit c ji = f ij 3 Geval 1: er bestaat een gericht pad P van s naar t in D f. α := min{c ij (i, j) ligt op P} Vermeerder stroom f als volgt: f ij := f ij + α f ij := f ij α Ga naar (2). als (i, j) op P ligt als (j, i) op P ligt 4 Geval 2: er bestaat geen pad van s naar t in D f. Definieer: U := {u V er bestaat een pad van s naar u in D f } Dan is (U, V \ U) een s-t snede met C(U, V \ U) =waarde(f ). Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

34 Voorbeeld Het aantal iteraties van het algoritme van Ford-Fulkerson kan exponentiëel zijn in de invoergrootte. u s 1000 v t Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

35 Voorbeeld Het aantal iteraties van het algoritme van Ford-Fulkerson kan exponentiëel zijn in de invoergrootte. Eerste iteratie: vermeerder stroom over pad (s, u, v, t): u 1/1000 0/1000 s 1/1 t Dit geeft een stroom met waarde 1. 0/1000 1/1000 v Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

36 Voorbeeld Het aantal iteraties van het algoritme van Ford-Fulkerson kan exponentiëel zijn in de invoergrootte. Tweede iteratie: vermeerder stroom over pad (s, v, u, t): u 1/1000 1/1000 s 0/1 t Dit geeft een stroom met waarde 2. 1/1000 1/1000 v Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

37 Voorbeeld Het aantal iteraties van het algoritme van Ford-Fulkerson kan exponentiëel zijn in de invoergrootte. Derde iteratie: vermeerder stroom over pad (s, u, v, t): u 2/1000 1/1000 s 1/1 t Dit geeft een stroom met waarde 3. 1/1000 2/1000 v Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

38 Voorbeeld Het aantal iteraties van het algoritme van Ford-Fulkerson kan exponentiëel zijn in de invoergrootte. Vierde iteratie: vermeerder stroom over pad (s, v, u, t): u 2/1000 2/1000 s 0/1 t Dit geeft een stroom met waarde 4. 2/1000 2/1000 v Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

39 Voorbeeld Het aantal iteraties van het algoritme van Ford-Fulkerson kan exponentiëel zijn in de invoergrootte. Vijfde iteratie: vermeerder stroom over pad (s, u, v, t): u 3/1000 2/1000 s 1/1 t Dit geeft een stroom met waarde 5. 2/1000 3/1000 v Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

40 Voorbeeld Het aantal iteraties van het algoritme van Ford-Fulkerson kan exponentiëel zijn in de invoergrootte. Na 2000 iteraties: 1000/ /1000 u s 0/1 t 1000/ /1000 v Krijgen we eindelijk een optimale stroom met waarde Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

41 Als we 1000 vervangen door N dan hebben we 2N iteraties nodig en is de invoergrootte O(log(N)). Maar N is exponentieel veel groter dan log(n). Dus is het algoritme van Ford-Fulkerson is niet polynomiaal. Vraag Hoe kunnen we het algoritme verbeteren? Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

42 Stelling (Dinits en Edmonds-Karp) Het Ford-Fulkerson algoritme heeft polynomiale looptijd als elke iteratie een kortste stroomvermeerderende pad gekozen wordt. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

43 Stelling (Dinits en Edmonds-Karp) Het Ford-Fulkerson algoritme heeft polynomiale looptijd als elke iteratie een kortste stroomvermeerderende pad gekozen wordt. µ(d) := lengte kortste s-t-pad in gerichte graaf D α(d) := verzameling van pijlen die op minstens één kortste s-t-pad liggen α(d) := {(v, u) (u, v) α(d)} Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

44 Stelling (Dinits en Edmonds-Karp) Het Ford-Fulkerson algoritme heeft polynomiale looptijd als elke iteratie een kortste stroomvermeerderende pad gekozen wordt. Lemma µ(d) := lengte kortste s-t-pad in gerichte graaf D α(d) := verzameling van pijlen die op minstens één kortste s-t-pad liggen α(d) := {(v, u) (u, v) α(d)} Als D = (V, A) en D = (V, A α(d)) dan is µ(d) = µ(d ) en α(d) = α(d ). Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

45 Simplex algoritme Aantal iteraties kan exponentieel zijn. Minimale voorwaarden voor voorbeeld: Exponentieel aantal hoekpunten. Serie van exponentieel veel hoekpunten met toenemende doelstellingswaarde. Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

46 Simplex algoritme Aantal iteraties kan exponentieel zijn. Minimale voorwaarden voor voorbeeld: Exponentieel aantal hoekpunten. Serie van exponentieel veel hoekpunten met toenemende doelstellingswaarde. Opm: Een d-dimensionale kubus heeft 2d facetten en 2 d hoekpunten Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

47 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

48 De Simplex methode is niet polynomiaal (in de worst case). Voor vrijwel alle praktische instanties is het algoritme heel snel. Algoritmes voor LP: Simplex algoritme (1947): niet polynomiaal, snel in praktijk Ellipsoid method (1979): wel polynomiaal, langzaam in praktijk Interior Point Method (1984): wel polynomiaal, snel in praktijk Open vragen: Is er een pivotregel voor de Simplex methode die wel leidt tot een polynomiaal algoritme? Hoe kunnen we het verschil tussen de theoretische en praktische efficiëntie van algoritmes als de Simplex methode verklaren? Wat zijn goede alternatieven voor de worst-case analyse van algoritmes? Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober / 28

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 21 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 21 oktober 2015 1 / 20 Deze week: algoritmes en complexiteit

Nadere informatie

Hoofdstuk 8: Algoritmen en Complexiteit

Hoofdstuk 8: Algoritmen en Complexiteit Hoofdstuk 8: Algoritmen en Complexiteit Vandaag: Hoe meten we de performance van algoritmen? Waar ligt de grens tussen een goed en een slecht algoritme? 22 oktober 2014 1 Vandaag: Hoe meten we de performance

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 20 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december 2015 1 / 13 Vraag Wat moet ik kennen en kunnen voor

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 11 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 11 november 2015 1 / 22 Mededelingen Huiswerk 2 nagekeken Terug

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

Samenvatting college 1-12

Samenvatting college 1-12 Samenvatting college 1-12 Probleemformulering Duidelijk definiëren van beslissingsvariabelen Zinvolle namen voor variabelen bv x ij voor ingrediënt i voor product j, niet x 1,..., x 20 Beschrijving van

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober 2015 1 / 25 Definitie Een boom is een samenhangende

Nadere informatie

Hoofdstuk 13: Integer Lineair Programmeren

Hoofdstuk 13: Integer Lineair Programmeren Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Netwerkstroming Toepassingen in Logistiek Video-streaming Subroutine in algoritmen 2 Vandaag Netwerkstroming: wat was dat ook alweer? Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 1 Leo van Iersel Technische Universiteit Delft 7 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 september 2016 1 / 40 Opzet vak Woensdag: hoorcollege 13:45-15:30

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 9 september 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 september 2015 1 / 23 Huiswerk Huiswerk 1 is beschikbaar op

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 maart 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Fundamentele Informatica

Fundamentele Informatica Fundamentele Informatica (IN3120 en IN3005 DOI nwe stijl) 20 augustus 2004, 9.00 11.00 uur Het tentamen IN3120 bestaat uit 10 meerkeuzevragen en 2 open vragen. Voor de meerkeuzevragen kunt u maximaal 65

Nadere informatie

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 1 Inhoudsopgave 1 Transport problemen 3 2 Definities en stellingen

Nadere informatie

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi NP-Volledigheid Wil zo snel mogelijke algoritmes om problemen op te lossen Gezien: selectie [O(n)], DFS [O(n + m)], MaxFlow [O nm n + m ], MST [O(n + m)], etc De looptijd is polynomiaal: O n k - dat is

Nadere informatie

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren Analyse van algoritmen José Lagerberg FNWI, UvA José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren en Algoritmen Datastructuren, 6 ECTS eerstejaars Bachelor INF Datastructuren,

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde II op donderdag 6 juli 2017, 13.30-16.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Logische Complexiteit Hoorcollege 12

Logische Complexiteit Hoorcollege 12 Logische Complexiteit Hoorcollege 12 Jacob Vosmaer Bachelor CKI, Universiteit Utrecht 22 maart 2011 Tijdscomplexiteit Inleiding Grote O en kleine o Complexiteitsanalyse van een simpele taal Complexiteitsverschillen

Nadere informatie

Optimalisering/Besliskunde 1. College 1 2 september, 2015

Optimalisering/Besliskunde 1. College 1 2 september, 2015 Optimalisering/Besliskunde 1 College 1 2 september, 2015 Algemene informatie College: woensdag 13:45-15:30: Leiden C1 en C2: Gorlaeus gebouw Zaal DS: De Sitterzaal, Oort gebouw Werkcollege: vrijdag: Leiden

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur Faculteit Elektrotechniek, Wiskunde en Informatica Ti Delft Tentamen IN3105 Complexiteitstheorie 16 april 2012, 9.00-12.00 uur Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Puzzels en wiskunde. Inleiding. Algoritme. Sudoku. 22 Puzzels en wiskunde

Puzzels en wiskunde. Inleiding. Algoritme. Sudoku. 22 Puzzels en wiskunde Een miljoen dollar verdienen in de kerstvakantie? Het enige dat u hoeft te doen, is een polynomiaal algoritme te vinden om een sudoku mee op te lossen. Niels Oosterling schetst waar u dan rekening mee

Nadere informatie

Inhoudsopgave. 1 COMPLEXITEITSTHEORIE Inleiding De klassen P en N P Opgaven... 16

Inhoudsopgave. 1 COMPLEXITEITSTHEORIE Inleiding De klassen P en N P Opgaven... 16 Inhoudsopgave 1 COMPLEXITEITSTHEORIE 1 1.1 Inleiding.......................................... 1 1.2 De klassen P en N P................................... 8 1.3 Opgaven..........................................

Nadere informatie

1 Rekenen in eindige precisie

1 Rekenen in eindige precisie Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

12 september 2012 Complexiteit. Analyse van algoritmen (doelen) Empirische analyse : Voorbeeld Gevolgen

12 september 2012 Complexiteit. Analyse van algoritmen (doelen) Empirische analyse : Voorbeeld Gevolgen Complexiteit van Algoritmen Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 12 september 2012 ODE/FHTBM Complexiteit van Algoritmen 12 september 2012 1/41 Efficientie-analyse

Nadere informatie

Branch-and-Bound en Cutting Planes

Branch-and-Bound en Cutting Planes Branch-and-Bound en Cutting Planes Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme

Nadere informatie

1 Vervangingsstrategie auto

1 Vervangingsstrategie auto Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2002 1 Vervangingsstrategie auto Onderdeel a Zij V = {0, 1, 2, 3, 4, 5, 6}, waarbij knoop i staat voor het einde

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

OptimalisereninNetwerken

OptimalisereninNetwerken OptimalisereninNetwerken Kees Roos e-mail: C.Roos@tudelft.nl, croos@otct.eu URL: http://www.isa.ewi.tudelft.nl/ roos HOVO cursus Wiskunde: zuurstof voor de wereld (deel I) 18 februari, A.D. 2009 Optimization

Nadere informatie

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 10 Begrensde variabelen Han Hoogeveen, Utrecht University Begrensde variabelen (1) In veel toepassingen hebben variabelen zowel een ondergrens als een bovengrens:

Nadere informatie

Credit cards, computationele complexiteit en consistentie uitspraken

Credit cards, computationele complexiteit en consistentie uitspraken Credit cards, computationele complexiteit en consistentie uitspraken Joost J. Joosten 14 december 2005 Praag en bier Sinds enkele maanden werk ik als post-doc aan de Czech Academy of Sciences in Praag.

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde op donderdag 13 april 2017, 14.30-17.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Tentamen IN3105 Complexiteitstheorie

Tentamen IN3105 Complexiteitstheorie Tentamen IN3105 Complexiteitstheorie 31 maart, 9.00 12.00 uur - Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open vragen. - Per meerkeuzevraag kunnen 0 tot 4 alternatieven juist

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Local search. Han Hoogeveen. 21 november, 2011

Local search. Han Hoogeveen. 21 november, 2011 1 Local search Han Hoogeveen 21 november, 2011 Inhoud vandaag 2 Inhoud: Uitleg methode Bespreking oude opdrachten: ˆ Bezorgen wenskaarten ˆ Roosteren tentamens Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Inleiding Programmeren 2

Inleiding Programmeren 2 Inleiding Programmeren 2 Gertjan van Noord November 28, 2016 Stof week 3 nogmaals Zelle hoofdstuk 8 en recursie Brookshear hoofdstuk 5: Algoritmes Datastructuren: tuples Een geheel andere manier om te

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA?

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA? Algoritmes en Priemgetallen Hoe maak je een sleutelpaar voor RSA? Het recept van RSA Kies p q priemgetallen en bepaal N = pq Kies e Z N (publieke sleutel) Bepaal d e 1 mod φ N (privésleutel) x ed x kφ

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Algoritmiek. 2 februari Introductie

Algoritmiek. 2 februari Introductie College 1 Algoritmiek 2 februari 2017 Introductie 1 Introductie -1- docent: Rudy van Vliet rvvliet@liacs.nl assistent werkcollege: Bart van Strien bartbes@gmail.com website: http://www.liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

3. Structuren in de taal

3. Structuren in de taal 3. Structuren in de taal In dit hoofdstuk behandelen we de belangrijkst econtrolestructuren die in de algoritmiek gebruikt worden. Dit zijn o.a. de opeenvolging, selectie en lussen (herhaling). Vóór we

Nadere informatie

Optimalisering en Complexiteit, College 2. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 2. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 2 Han Hoogeveen, Utrecht University Inhoud vandaag Inhoud: Uitleg methode Bespreking oude opdracht: Bezorgen wenskaarten Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur. Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens Algoritmes in ons dagelijks leven Leve de Wiskunde! 7 April 2017 Jacobien Carstens Wat is een algoritme? Een algoritme is een eindige reeks instructies die vanuit een gegeven begintoestand naar een beoogd

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Wiskunde D assignment problem. Hier stonden ooit namen

Wiskunde D assignment problem. Hier stonden ooit namen Wiskunde D assignment problem Hier stonden ooit namen Inhoud Wat? Pagina Het probleem 2 Probleem analyse 3 4 Oplossing adjacency assignment 5 6 Oplossing gerneral assignment via hungarian algorithm Oplossing

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

8. Complexiteit van algoritmen:

8. Complexiteit van algoritmen: 8. Complexiteit van algoritmen: Voorbeeld: Een gevaarlijk spel 1 Spelboom voor het wespenspel 2 8.1 Complexiteit 4 8.2 NP-problemen 6 8.3 De oplossing 7 8.4 Een vuistregel 8 In dit hoofdstuk wordt het

Nadere informatie

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk

Nadere informatie

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument Complexiteit 2017/05 College 5 Vijfde college complexiteit 21 februari 2017 Selectie Toernooimethode Adversary argument 1 Complexiteit 2017/05 Opgave 28 Gegeven twee oplopend gesorteerde even lange rijen

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c Een Minimaal Formalisme om te Programmeren We hebben gezien dat Turing machines beschouwd kunnen worden als universele computers. D.w.z. dat iedere berekening met natuurlijke getallen die met een computer

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

Modellen en Simulatie Simulated Annealing

Modellen en Simulatie Simulated Annealing Utrecht, 14 juni 2012 Modellen en Simulatie Simulated Annealing Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ In deze les een toepassing van Markov ketens: p n+1 =

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

Vorig college. IN2505-II Berekenbaarheidstheorie College 4. Opsommers versus herkenners (Th. 3.21) Opsommers

Vorig college. IN2505-II Berekenbaarheidstheorie College 4. Opsommers versus herkenners (Th. 3.21) Opsommers Vorig college College 4 Algoritmiekgroep Faculteit EWI TU Delft Vervolg NDTM s Vergelijking rekenkracht TM s en NDTM s Voorbeelden NDTM s 20 april 2009 1 2 Opsommers Opsommers versus herkenners (Th. 3.21)

Nadere informatie

Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, uur

Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, uur Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, 14.00-17.00 uur Het tentamen bestaat uit 6 opgaven. Motiveer je antwoorden duidelijk. De normering van de opgaves staat steeds

Nadere informatie

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle  holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/29764 holds various files of this Leiden University dissertation. Author: Takes, Frank Willem Title: Algorithms for analyzing and mining real-world graphs

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

BESLISKUNDE 1 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 1 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE 1 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN Voorwoord In het college Besliskunde 1 worden verschillende onderdelen van de discrete wiskunde, de deterministische en de stochastische besliskunde

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede kandidatuur Informatica Academiejaar 2004 2005, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Binomiale

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

F. Optimaliseren in netwerken

F. Optimaliseren in netwerken F. Optimaliseren in netwerken Inleiding Optimalisering is het deelgebied van de wiskunde waarbij het gaat het om de ontwikkeling en analyse van algoritmen voor het oplossen van problemen waarbij een functie

Nadere informatie

Spider Solitaire is NP-Compleet

Spider Solitaire is NP-Compleet Spider Solitaire is NP-Compleet Kenneth Verstraete 21 april 2016 1 Inleiding Spider Solitaire is een populair kaartspel dat alleen gespeeld wordt. Het werd/wordt standaard bij o.a. Microsoft Windows meegeleverd.

Nadere informatie

Algorithms for Max-Flow

Algorithms for Max-Flow Algorithms for Max-Flow Consider a network with given upper bounds for the capacities of the arcs, and one entry and one exit node. The max-flow problem consists in finding a maximal flow through the network

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Giso Dal (0752975) Pagina s 5 7 1 Deelverzameling Representatie

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud college 6 en lineaire collegejaar college build slides Vandaag : : : : 6-7 6 9 juni 27 3 2 3 van een matrix Toepassing: oppervlakte en inhoud.6-7[6] vandaag van de 2 2-matrix a b c d is gelijk aan ad bc.

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Opgaven Fibonacci-getallen Datastructuren, 23 juni 2017, Werkgroep.

Opgaven Fibonacci-getallen Datastructuren, 23 juni 2017, Werkgroep. Opgaven Fibonacci-getallen Datastructuren, 3 juni 017, Werkgroep Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege Cijfer: Op een toets krijg je meestal zes tot acht

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie