TW2020 Optimalisering

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "TW2020 Optimalisering"

Transcriptie

1 TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

2 Vraag Wat moet ik kennen en kunnen voor het tentamen? Let op! Dit is niet een uitputtende lijst van mogelijke tentamenopgaven! Modelleren van optimaliseringsprobleem als LP of ILP probleem. Oplossen van LP probleem met de Simplex methode. Formuleren van de duale van een LP probleem. De dualiteitsstellingen kennen en begrijpen en weten wat de mogelijke combinaties zijn voor het primale/duale paar (niet-toegelaten, onbegrensd, begrensd optimum). Gebruiken van de Complementary Slackness condities. Variant van Farkas lemma afleiden uit de standaard vorm. Oplossen van LP probleem met de Duale Simplex methode. Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

3 De Max Flow Min Cut stelling kennen en begrijpen. Toepassen van Ford-Fulkerson algoritme om een maximum stroom te vinden. Formuleren van probleem als maximum stroom probleem. Toepassen van algoritme van Dijkstra voor het vinden van een kortste pad. Toepassen van algoritmes van Prim-Dijkstra, Kruskal en Borůvka voor het vinden van een minimum opspannende boom. De looptijd van een algoritme afschatten. De big-oh notatie gebruiken. Bepalen of een matrix totaal unimodulair is, en de gevolgen daarvan kennen. Oplossen van een ILP probleem met de Branch & Bound methode. Vinden van Gomory cutting planes, en nieuwe LP-relaxatie oplossen met duale Simplex methode. Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

4 Bewijzen dat een beslissingsprobleem NP-volledig is. Toepassen van het boomalgoritme voor TSP. De prestatiegarantie van een approximatiealgoritme bepalen. Beweringen bewijzen die lijken op de huiswerkopgaven en deeltentamenopgaven. Begrippen kennen en begrijpen zoals: toegelaten oplossing, optimale oplossing, buurruimte, lokaal optimaal, globaal optimaal, basisoplossing, duaal-toegelaten, gedegenereerd, polyeder, polytoop, standaardvorm (van een LP), onbegrensd, P, NP, NP-moeilijk, NP-volledig, reductie, invoergrootte, polynomiaal, exponentiëel, totaal unimodulair, cutting plane, prestatiegarantie. Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

5 Vraag Wat is de beste manier om te leren voor het tentamen? Maak alle werkcollegeopgaven, huiswerkopgaven en deeltentamenopgaven en zorg dat je deze begrijpt. Lees de slides en je aantekeningen door en zorg dat je deze begrijpt. Voor meer uitleg over modelleren met (I)LP, kun je het dictaat op de website lezen. Voor extra informatie of uitleg van de theorie kun je het boek raadplegen. Voor extra oefening kun je oude tentamens maken (staan op de website). Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

6 Vraag Wat hoef ik niet te doen? Bewijzen uit je hoofd leren. (Zorg dat je de bewijzen begrijpt.) Alle details uit het boek kennen of begrijpen. (Alle verplichte stof staat op de slides en in je collegeaantekeningen, mits je die gemaakt hebt, van wat ik op het bord behandeld heb.) Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

7 Voorbeeld Beschouw het volgende LP probleem. min z = x 1 + 2x 2 o.d.v. x 1 + x 2 2 2x 1 + x 2 3 x 1, x 2 0 (a) Los dit probleem op met de Simplex methode. (b) Formuleer de duale van dit LP probleem. (c) Geef een optimale oplossing van het duale probleem. (d) Los het primale LP probleem nogmaals op, nu met de duale Simplex methode. Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

8 Deeltentamen Opgave (2) Gegeven is het volgende Simplex tableaux voor een minimaliseringsprobleem. basis b x1 x 2 x 3 x 4 x 5 x 6 x 7 x x x z d Geef aan wanneer het bijbehorende (primale) probleem onbegrensd is, geen toegelaten oplossing heeft, één optimale oplossing heeft, of meerdere optimale oplossingen heeft, afhankelijk van de waarde van d. Dit kan zonder motivatie. Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

9 Huiswerk 3 Opgave (2) Stel je bevindt je in een kamer midden in een labyrint en wilt de uitgang vinden. Je bedenkt daarvoor het volgende algoritme: Elke keer als je een gang inloopt markeer je die gang met een. Wanneer je een kamer voor de eerste keer binnenloopt, markeer je de gang waardoor je binnenkomt met een. Wanneer je een kamer verlaat: 1 loop je nooit een gang in die al gemarkeerd is met een ; 2 loop je alleen een gang in die gemarkeerd is met een als er geen andere opties zijn (d.w.z. als alle andere gangen gemarkeerd zijn met een ). (a) Bewijs dat je altijd een weg naar de uitgang vindt, mits die bestaat. (b) Geef de looptijd van dit algoritme in termen van het aantal kamers en het aantal gangen. Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

10 Huiswerk 3 Oplossing (niet volledig) Je loopt nooit twee keer door dezelfde gang in dezelfde richting. Dus in eindige tijd zul je ofwel de uitgang vinden of vast komen te zitten. Stel dat je vast komt te zitten. Dan bevind je je in de beginkamer en heb je alle aanliggende gangen al in beide richtingen doorlopen. Als je van de i-de bezochte kamer alle aanliggende gangen in beide richtingen doorlopen hebt, dan ook de gang naar de (i + 1)-de kamer. Dus heb je de (i + 1)-de kamer verlaten door de gang met een. Dus heb je van (i + 1)-de kamer elke aanliggende gangen in beide richtingen doorlopen. Met volledige inductie volgt nu dat als je vast komt te zitten, je alle gangen die bereikbaar zijn vanuit de beginkamer al in beide richtingen doorlopen hebt. Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

11 Opgave (4) We bestuderen n patiënten die aan een bepaalde ziekte lijden en m genen. We vermoeden dat in elk van de patiënten de ziekte veroorzaakt wordt door een mutatie van één van deze genen. Gegeven is een n m matrix M waarin M i,j = 1 als in patiënt i gen j gemuteerd is en anders is M i,j = 0. We willen er achter komen welke genen de ziekte veroorzaken. Daarom zoeken we een zo klein mogelijke verzameling J van genen zodanig dat in elke patiënt tenminste één gen uit J gemuteerd is. (a) Formuleer dit probleem als een ILP probleem. (b) De beslissingsvariant van dit probleem is als volgt: GENES Gegeven: n m matrix M met M i,j {0, 1} en k Z. Beslis: bestaat er een J {1,..., m} met J k zodanig dat voor alle i {1,..., n} er tenminste één j J bestaat met M i,j = 1. Bewijs dat GENES NP-volledig is. Je mag hierbij gebruiken dat het onderstaande VERTEX COVER probleem NP-volledig is. Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

12 Oplossing (niet volledig) (b) GENES NP omdat, gegeven een J {1,..., m}, in polynomiale tijd gecontroleerd kan worden of aan de voorwaarden wordt voldaan. We laten zien dat GENES NP-moeilijk is d.m.v. een reductie vanuit VERTEX-COVER. Laat G = (V, E), B een instantie van VERTEX-COVER zijn. Laat M de getransponeerde van de node-edge incidentiematrix van G zijn en k := B. Dan heeft G een vertex cover van cardinaliteit B dan en slechts dan als er een verzameling J {1,..., m} van cardinaliteit k bestaat zodanig dat voor alle i {1,..., n} er tenminste één j J bestaat met M i,j = 1. Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

13 Deeltentamen Opgave (4) Gegeven is Farkas lemma: Stelling Voor elke m n matrix A en vector b R m is precies één van de volgende twee beweringen waar: (a) {x R n Ax = b, x 0} (b) {π R m π T A 0, π T b < 0} Gebruik Farkas lemma om te bewijzen dat voor een m n matrix A, een m k matrix B en een vector b R m precies één van de volgende twee beweringen waar is: (i) x R n, y R k zodanig dat Ax + By = b en x 0; (ii) π R m zodanig dat π T A 0, π T B = 0 en π T b < 0. Leo van Iersel (TUD) TW2020 Optimalisering 9 december / 13

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk

Nadere informatie

Branch-and-Bound en Cutting Planes

Branch-and-Bound en Cutting Planes Branch-and-Bound en Cutting Planes Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 maart 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Tussentoets: 26 november, tijdens de instructies Tentamenstof: LP; Simplex; dualiteit (= colleges 1 4) Bij de tussentoets mag een eenvoudige (niet programmeerbare)

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 20 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

Optimalisering/Besliskunde 1. College 1 2 september, 2015

Optimalisering/Besliskunde 1. College 1 2 september, 2015 Optimalisering/Besliskunde 1 College 1 2 september, 2015 Algemene informatie College: woensdag 13:45-15:30: Leiden C1 en C2: Gorlaeus gebouw Zaal DS: De Sitterzaal, Oort gebouw Werkcollege: vrijdag: Leiden

Nadere informatie

Faculteit der Economie en Bedrijfskunde

Faculteit der Economie en Bedrijfskunde Faculteit der Economie en Bedrijfskunde Op dit voorblad vindt u belangrijke informatie omtrent het tentamen. Lees dit voorblad voordat u met het tentamen begint! Tentamen: Operational Research 1D (4016)

Nadere informatie

Overzicht. Inleiding. Modellering. Duaal probleem. αβ-algoritme. Maximale stroom probleem. Voorbeeld. Transportprobleem 1

Overzicht. Inleiding. Modellering. Duaal probleem. αβ-algoritme. Maximale stroom probleem. Voorbeeld. Transportprobleem 1 Overzicht Inleiding Modellering Duaal probleem αβ-algoritme Maximale stroom probleem Voorbeeld Transportprobleem 1 Inleiding W 1 b 1 a 1 D 1 W 2 b 2 a 2 D 2 a m Dm W n b n depots warenhuizen c ij zijn

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN Voorwoord Dit vak is een voortzetting van het tweedejaarscollege Besliskunde. Een aantal andere mathematische beslissingsproblemen komt aan de orde en

Nadere informatie

Tentamen IN3105 Complexiteitstheorie

Tentamen IN3105 Complexiteitstheorie Tentamen IN3105 Complexiteitstheorie 31 maart, 9.00 12.00 uur - Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open vragen. - Per meerkeuzevraag kunnen 0 tot 4 alternatieven juist

Nadere informatie

Geheeltallige programmering

Geheeltallige programmering Geheeltallige programmering In een LP probleem zijn alle variabelen reëel. In een geheeltallig probleem blijven doelfunctie en constraints lineair, maar zijn de variabelen geheeltallig. LP: IP: BIP: MIP:

Nadere informatie

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 10 Begrensde variabelen Han Hoogeveen, Utrecht University Begrensde variabelen (1) In veel toepassingen hebben variabelen zowel een ondergrens als een bovengrens:

Nadere informatie

Local search. Han Hoogeveen. 21 november, 2011

Local search. Han Hoogeveen. 21 november, 2011 1 Local search Han Hoogeveen 21 november, 2011 Inhoud vandaag 2 Inhoud: Uitleg methode Bespreking oude opdrachten: ˆ Bezorgen wenskaarten ˆ Roosteren tentamens Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Lineaire Optimilizatie Extra sessie. 19 augustus 2010

Lineaire Optimilizatie Extra sessie. 19 augustus 2010 Lineaire Optimilizatie Extra sessie 19 augustus 2010 De leerstof Handboek: hoofdstuk 2 t.e.m. 8 (incl. errata) Slides (zie toledo) Extra opgaven (zie toledo) Computersessie: Lindo syntax en output Wat

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

Stabiele koppelingen (Engelse titel: Stable Matchings)

Stabiele koppelingen (Engelse titel: Stable Matchings) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Stabiele koppelingen (Engelse titel: Stable Matchings) Verslag ten behoeve van het

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

1 Vervangingsstrategie auto

1 Vervangingsstrategie auto Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2002 1 Vervangingsstrategie auto Onderdeel a Zij V = {0, 1, 2, 3, 4, 5, 6}, waarbij knoop i staat voor het einde

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 () Tussentoets 26 november, tijdens de instructies Zaal: paviljoen (study hub) Time: 90min Tentamenstof: colleges 4 (LP; Simplex; dualiteit; complementaire slackness) Oude tentamens:

Nadere informatie

Inhoud. Introductie tot de cursus

Inhoud. Introductie tot de cursus Inhoud Introductie tot de cursus 1 Inleiding 7 2 Voorkennis 7 3 Het cursusmateriaal 7 4 Structuur, symbolen en taalgebruik 8 5 De cursus bestuderen 9 6 Studiebegeleiding 10 7 Huiswerkopgaven 10 8 Het tentamen

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede kandidatuur Informatica Academiejaar 2004 2005, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Binomiale

Nadere informatie

Examenvragen D0H45 (Lineaire optimalizatie)

Examenvragen D0H45 (Lineaire optimalizatie) Examenvragen D0H45 (Lineaire optimalizatie) Tijdstip: Vrijdag 3 februari 2012 vanaf 09.00 uur tot 12.00 uur Er zijn vier opgaven. Achter de opgaven zitten de bladzijden die u kunt gebruiken om uw antwoord

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Optimalisering en Complexiteit, College 2. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 2. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 2 Han Hoogeveen, Utrecht University Inhoud vandaag Inhoud: Uitleg methode Bespreking oude opdracht: Bezorgen wenskaarten Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen Universiteit Twente 2009-2010/2 Afdeling Informatica, Faculteit EWI Tentamen dinsdag 19 januari 2010, 8.45-12.15 Algoritmen, Datastructuren en Complexiteit (214020 en 214025) Uitwerkingen Bij dit tentamen

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

1.2 Bomen Algemeen 1.2. BOMEN 7

1.2 Bomen Algemeen 1.2. BOMEN 7 1.2. BOMEN 7 1.2 Bomen 1.2.1 Algemeen Beschouw eerst een niet-gerichte graaf. Een boom is een samenhangende graaf die geen kringen bevat. Een boom wordt meestal genoteerd met de letter T (tree). Een bos

Nadere informatie

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Instructies (vandaag, 10:45 12:30) in vier zalen: Zaal Aud 10 Pav b2 Pav m23 Ipo 0.98 voor studenten met achternaam beginnend met letters A tot en met D met letters

Nadere informatie

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0 Voorbeeldtentamen Deterministische Modellen in de OR (158075) Opmerking vooraf: Geef bij elke opgave een volledige en duidelijke uitwerking inclusief argumentatie! Gebruik van de rekenmachine is niet toegestaan.

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten: Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+1 = j X n = i, X n 1,...,

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6.

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6. Overzicht 1. Definities 2. Basisalgoritme 3. Label setting methoden 4. Label correcting methoden 5. Ondergrenzen 6. Resultaten Kortste Pad Probleem 1 Definities Een graaf G = (V, E) bestaat uit een verzameling

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

2 beslissen in netwerken. Wiskunde D. Keuzevak beslissen onderdeel: beslissen in netwerken. versie 4 vrijdag 16 november 2007

2 beslissen in netwerken. Wiskunde D. Keuzevak beslissen onderdeel: beslissen in netwerken. versie 4 vrijdag 16 november 2007 eslissen beslissen in netwerken Wiskunde Keuzevak beslissen onderdeel: beslissen in netwerken versie vrijdag november 00 Samenstelling Jan ssers ism Kerngroep Wiskunde indhoven ontys voorkennis: optimaliseren.

Nadere informatie

Beheerregeling bij het afnemen van tentamens in gemeenschappelijke tentamenruimtes.

Beheerregeling bij het afnemen van tentamens in gemeenschappelijke tentamenruimtes. Beheerregeling bij het afnemen van tentamens in gemeenschappelijke tentamenruimtes. Gemeenschappelijke tentamenruimtes, zoals de tentamenhal de TenT, kunnen worden gereserveerd voor tentamens van alle

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Optimalisering en Complexiteit, College 14. Geheeltallige LPs en Planning bij Grolsch. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 14. Geheeltallige LPs en Planning bij Grolsch. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 14 Geheeltallige LPs en Planning bij Grolsch Han Hoogeveen, Utrecht University Branch-and-bound voor algemene ILPs (1) Neem even aan dat je een minimaliseringsprobleem

Nadere informatie

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN VOORJAAR 2003 Inhoudsopgave 1 Inleiding 1 1.1 Wat is Operations Research?.............................. 1 1.2 Overzicht van de te behandelen

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

Puzzels en wiskunde. Inleiding. Algoritme. Sudoku. 22 Puzzels en wiskunde

Puzzels en wiskunde. Inleiding. Algoritme. Sudoku. 22 Puzzels en wiskunde Een miljoen dollar verdienen in de kerstvakantie? Het enige dat u hoeft te doen, is een polynomiaal algoritme te vinden om een sudoku mee op te lossen. Niels Oosterling schetst waar u dan rekening mee

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Uitwerkingen Sum of Us

Uitwerkingen Sum of Us Instant Insanity Uitwerkingen Sum of Us Opgave A: - Opgave B: Voor elk van de vier kubussen kun je een graaf maken die correspondeert met de desbetreffende kubus. Elk van deze grafen bevat drie lijnen.

Nadere informatie

Tentamen TI3300 / IN3105 Complexiteitstheorie

Tentamen TI3300 / IN3105 Complexiteitstheorie Tentamen TI3300 / IN3105 Complexiteitstheorie 24 juni 2013, 9.00-12.00 uur - Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open vragen. - Voor de meerkeuzevragen kunt u maximaal

Nadere informatie

Project Management (H 9.8 + H 22 op CD-ROM)

Project Management (H 9.8 + H 22 op CD-ROM) Project Management (H 9.8 + H 22 op CD-ROM) CPM (Critical Path Method) Activiteiten met afhankelijkheden en vaste duur zijn gegeven. CPM bepaalt de minimale doorlooptijd van het project. PERT (Program

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Programming a CNC-machine using ILP

Programming a CNC-machine using ILP Programming a CNC-machine using ILP Maarten Bos Discrete Mathematics and Mathematical Programming Department of Applied Mathematics University of Twente Date: 15-12-2011 Graduation committee: dr. W. Kern

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Module 3. Maximale stromen

Module 3. Maximale stromen Module In november 00 legde een stroomstoring een gedeelte van Europa plat. Overal moesten de kaarsen aan. oordat een gedeelte van het elektriciteitsnet uitviel, was er te weinig capaciteit om aan de vraag

Nadere informatie

NETWERKEN VAN WACHTRIJEN

NETWERKEN VAN WACHTRIJEN NETWERKEN VAN WACHTRIJEN Tot nog toe keken we naar wachtrijmodellen bestaande uit 1 station. Klanten komen aan bij het station,... staan (al dan niet) een tijdje in de wachtrij,... worden bediend door

Nadere informatie

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? me:

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes?  me: Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? Email me: peter.vdd@telenet.be 1. Het aantal knoop-tak overgangen is altijd even. De totaalsom

Nadere informatie

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen.

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen. Discrete modellen in de toegepaste wiskunde (WISB6) Uitwerkingen proeftentamen. Docent: Rob H. Bisseling april 202. Begin met een matching M = {x y, x y, x 6 y 6 } aangegeven door de vette lijnen. x De

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

OptimalisereninNetwerken

OptimalisereninNetwerken OptimalisereninNetwerken Kees Roos e-mail: C.Roos@tudelft.nl, croos@otct.eu URL: http://www.isa.ewi.tudelft.nl/ roos HOVO cursus Wiskunde: zuurstof voor de wereld (deel I) 18 februari, A.D. 2009 Optimization

Nadere informatie

Het Steiner boom probleem

Het Steiner boom probleem Het Steiner boom probleem Enkele gangbare algoritmes en heuristieken Roy Visser, BSc. Werkstuk Bedrijfswiskunde en Informatica Vrije Universiteit, Amsterdam Faculteit Exacte Wetenschappen Bedrijfswiskunde

Nadere informatie

Toepassingen van Operationeel Onderzoek Samenvatting

Toepassingen van Operationeel Onderzoek Samenvatting Toepassingen van Operationeel Onderzoek Samenvatting 18-1-2011 KUL, Prof. Spieksma Lynn.gyselen@student.kuleuven.be, indien u aanpassingen, opmerkingen, extra opgaven of oplossingen heeft, gelieve deze

Nadere informatie

0.97 0.03 0 0 0.008 0.982 0.01 0 0.02 0 0.975 0.005 0.01 0 0 0.99

0.97 0.03 0 0 0.008 0.982 0.01 0 0.02 0 0.975 0.005 0.01 0 0 0.99 COHORTE MODELLEN Markov ketens worden vaak gebruikt bij de bestudering van een groep van personen of objecten. We spreken dan meestal over Cohorte modellen. Een voorbeeld van zo n situatie is het personeelsplanning

Nadere informatie

VERZAMELINGEN EN AFBEELDINGEN

VERZAMELINGEN EN AFBEELDINGEN I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen

Nadere informatie

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren Overzicht TI1300: Redeneren en Logica College 10: Verzamelingenleer Tomas Klos Algoritmiek Groep Colleges 1 2: Bewijstechnieken Colleges 3 9: Propositielogica Vandaag en morgen: Verzamelingenleer Colleges

Nadere informatie

Introductie tot de cursus

Introductie tot de cursus Inhoud introductietalen en ontleders Introductie tot de cursus 1 Plaats en functie van de cursus 7 2 Inhoud van de cursus 7 2.1 Voorkennis 7 2.2 Leerdoelen 8 2.3 Opbouw van de cursus 8 3 Leermiddelen en

Nadere informatie

1 Lineaire Algebra 2015 - organisatie van het vak

1 Lineaire Algebra 2015 - organisatie van het vak 1 Lineaire Algebra 2015 - organisatie van het vak Het vak Lineaire Algebra uit het eerste semester van de Bachelor Wiskunde van de Universiteit van Amsterdam telt 6 EC, en dat staat voor 168 uur studie.

Nadere informatie

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen.

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. voorraadmodel: voorraadkosten personeelsplanningmodel: salariskosten machineonderhoudsmodel: reparatiekosten

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

INHOUD MODULE voor WISKUNDE D voor het vwo

INHOUD MODULE voor WISKUNDE D voor het vwo INHOUD MODULE voor WISKUNDE D voor het vwo DISCRETE WISKUNDE Hoofdstuk 1 Minimaal opspannende bomen blz 2 Hoofdstuk 2 Kortste pad (nog toe te voegen) blz 14 Hoofdstuk 3 TSP-probleem blz 15 3.1 Inleiding

Nadere informatie

TI1300: Redeneren en Logica. TI1300 Redeneren en Logica College 1: Inleiding en Bewijstechnieken. Blackboard: enroll!

TI1300: Redeneren en Logica. TI1300 Redeneren en Logica College 1: Inleiding en Bewijstechnieken. Blackboard: enroll! TI1300: Redeneren en Logica TI1300 Redeneren en Logica College 1: Inleiding en Bewijstechnieken Tomas Klos TI1300 bestaat uit 2 delen: Th: Theorie, Tomas Klos Pr: Practicum, Tomas Klos plus student-assistenten

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 7.080 e-mail: j.b.m.melissen@ewi.tudelft.nl tel: 015-2782547 Studiemateriaal op : http://www.isa.ewi.tudelft.nl/~melissen (kijk bij onderwijs WI

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die

Nadere informatie

3 De stelling van Kleene

3 De stelling van Kleene 18 3 De stelling van Kleene Definitie 3.1 Een formele taal heet regulier als hij wordt herkend door een deterministische eindige automaat. Talen van de vorm L(r) met r een reguliere expressie noemen we

Nadere informatie

Inhoud voor vandaag. Knapzak probleem (2) Knapzak probleem. Geheeltallige lineaire programmeringsproblemen en hun toepassingen

Inhoud voor vandaag. Knapzak probleem (2) Knapzak probleem. Geheeltallige lineaire programmeringsproblemen en hun toepassingen Inhoud voor vandaag Geheeltallige lineaire programmeringproblemen en hun toepaingen Inleiding geheeltallig lineaire programmering Modellen: Toewijzing Depot locatie Inkoop met kwantum korting Marjan van

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica

Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica Tentamen Optimalisering (2DD15) Vrijdag 24 juni 2011, 9:00 12:00 uur Het tentamen bestaat uit zeven opgaven. Bij elke opgave staat het

Nadere informatie