Branch-and-Bound en Cutting Planes

Maat: px
Weergave met pagina beginnen:

Download "Branch-and-Bound en Cutting Planes"

Transcriptie

1 Branch-and-Bound en Cutting Planes

2 Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme dat niet-optimale oplossing geeft 19 november

3 Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft (VANDAAG) 2 Polynomiaal algoritme dat niet-optimale oplossing geeft (College 12) 19 november

4 Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft (VANDAAG) 2 Polynomiaal algoritme dat niet-optimale oplossing geeft (College 12) Vandaag 2 methoden: 1 Branch-and-Bound 2 Cutting planes (geldige ongelijkheden) 19 november

5 Branch-and-Bound Idee: ILP s zijn moeilijk, LP s zijn makkelijk. We gebruiken LP om ILP op te lossen. Belangrijke relatie: Z TOEG Z IP Z LP Z LP Z IP Z TOEG (Maximalisatie) (Minimalisatie) Branchen: Het probleem opsplitsen in deelproblemen, zdd elke toegelaten oplossing bevindt zich in exact één deelprobleem. Bounden: Boven- en ondergrens bijhouden voor oplossing. Gebruik deze grenzen voor het snoeien van zoekboom. Snoeien: Concluderen dat een deelprobleem niet verder onderzocht hoeft te worden 19 november

6 Branch-and-Bound (Minimalisatie) Lijst met nog te beschouwen deelproblemen Bovengrens voor hele boom Ondergrens per deelprobleem In geval van geheeltallige doelstellingscoëfficiënten: ondergrens naar boven afronden 19 november

7 Voorbeeld Branch-and-Bound Z IP = min 4x 1 + x 2 odv 7x 1 2x 2 14 x 2 3 2x 1 2x 2 3 x 1, x 2 0, geheeltallig 19 november

8 Wanneer kunnen we snoeien? (Maximalisatie) 1 Niet-toegelaten LP-relaxatie deelprobleem Geen geheeltallige oplossingen in dit deelprobleem 2 Geheeltallige LP-relaxatie in deelprobleem Toegelaten (integer) oplossing gevonden. Globale ondergrens updaten 3 Bovengrens deelprobleem kleiner dan globale ondergrens Er is geen betere oplossing in dit deelprobleem dan de al gevonden integer oplossing Merk op: Ondergrenzen zijn globaal, terwijl bovengrenzen alleen geldig in deelprobleem 19 november

9 Wanneer kunnen we snoeien? (Minimalisatie) 1 Niet-toegelaten LP-relaxatie deelprobleem Geen geheeltallige oplossingen in dit deelprobleem 2 Geheeltallige LP-relaxatie in deelprobleem Toegelaten (integer) oplossing gevonden. Globale bovengrens updaten 3 Ondergrens deelprobleem kleiner dan globale bovengrens Er is geen betere oplossing in dit deelprobleem dan de al gevonden integer oplossing Merk op: Bovengrenzen zijn globaal, terwijl ondergrenzen alleen geldig in deelprobleem 19 november

10 Implementatieaspecten 1 Welke variabele kiezen we om te branchen? Fractie het dichtst bij Welke deelprobleem beschouwen we eerst? Depth-first search: Deelprobleem zo diep mogelijk in de boom Best-node first: Deelprobleem met beste waarde van de LP-relaxatie Vaak mengsel van beide 19 november

11 Rekentijd Branch-and-Bound Stel alle variabelen zijn 0-1 variabelen. Maximaal aantal eindpunten: 2 n Maximaal aantal knopen/deelproblemen: n = 1 2n = 2 n+1 1 Exponentiëel aantal deelproblemen Werkcollege: voorbeeld waarin inderdaad exponentiëel veel deelproblemen opgelost moeten worden 19 november

12 Cutting Planes z IP = min odv c T x Ax b x 0, geheeltallig Laat S de verzameling toegelaten punten zijn. Definitie: Een polyeder P = {x R n 0 A x b } noemen we een formulering voor S als geldt P Z n = S. Vorige week gezien dat er meerdere formuleringen bestaan voor een gegeven verzameling S. Er bestaan zelfs oneindig veel formuleringen voor S 19 november

13 Sterkte van een formulering Een formulering P is tenminste even sterk als een formulering P als geldt P P Definitie: Een ongelijkheid αx β is geldig voor S als αx β voor iedere x S. Het toevoegen van een geldige ongelijkheid aan P resulteert in een formulering P die tenminste even sterk is. Wat is de sterkst mogelijke formulering? Conv(S), het convexe omhulsel van de toegelaten punten S. Merk op: Met een expliciete omschrijving van Conv(S) kunnen we ILP oplossen met LP. Het vinden van conv(s) kan echter niet in polynomiale tijd 19 november

14 Gomory s cutting planes We zoeken niet het volledige convexe omhulsel Fractioneel deel van optimale oplossing LP-relaxatie geeft geldige ongelijkheid Stop wanneer LP-relaxatie geheeltallig optimum heeft Alle snedes zijn geldig, dus ook optimum voor IP 19 november

15 Voorbeeld Gomory s cutting planes Z IP = max 4x 1 x 2 odv 7x 1 2x 2 14 x 2 3 2x 1 2x 2 3 x 1, x 2 0, geheeltallig (Zelfde voorbeeld als voor Branch-and-Bound) 19 november

16 Duale simplex algoritme Zowel bij B&B als bij cutting planes moet herhaaldelijk een LP-relaxatie worden opgelost Moeten we iedere keer opnieuw beginnen met simplex? Nee, we gebruiken duale simplex algoritme Oude oplossing blijft duaal toegelaten na toevoeging van extra voorwaarde. 19 november

17 Voorbeeld duale simplex 19 november

18 Duale simplex algoritme Initialisatie: Basisoplossing, niet-noodzakelijk toegelaten, met c j 0 j (maximalisatie) c j 0 j (minimalisatie) Uittredende variabele: x B(i ) zdd b i = min{ b i b i < 0} Als b i 0 optimaal. i, STOP, huidige basisoplossing is toegelaten en Intredende variabele: x j zdd c j ā = min{ c j i j ā : ā i j i j < 0} Als ā i j 0 j, STOP, probleem heeft geen toegelaten oplossing. Anders, voer pivot uit en ga naar 1 19 november

Geheeltallige programmering

Geheeltallige programmering Geheeltallige programmering In een LP probleem zijn alle variabelen reëel. In een geheeltallig probleem blijven doelfunctie en constraints lineair, maar zijn de variabelen geheeltallig. LP: IP: BIP: MIP:

Nadere informatie

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN Voorwoord Dit vak is een voortzetting van het tweedejaarscollege Besliskunde. Een aantal andere mathematische beslissingsproblemen komt aan de orde en

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 10 Begrensde variabelen Han Hoogeveen, Utrecht University Begrensde variabelen (1) In veel toepassingen hebben variabelen zowel een ondergrens als een bovengrens:

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Tussentoets: 26 november, tijdens de instructies Tentamenstof: LP; Simplex; dualiteit (= colleges 1 4) Bij de tussentoets mag een eenvoudige (niet programmeerbare)

Nadere informatie

Enkele basismodellen uit operationeel onderzoek

Enkele basismodellen uit operationeel onderzoek Enkele baimodellen uit operationeel onderzoek Roel Leu Roel.Leu@econ.kuleuven.be Studiedag Wikunde e graad ASO 6 mei Inleiding Operationeel onderzoek (O.O.) = het gebruik van wikundige technieken voor

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Instructies (vandaag, 10:45 12:30) in vier zalen: Zaal Aud 10 Pav b2 Pav m23 Ipo 0.98 voor studenten met achternaam beginnend met letters A tot en met D met letters

Nadere informatie

Faculteit der Economie en Bedrijfskunde

Faculteit der Economie en Bedrijfskunde Faculteit der Economie en Bedrijfskunde Op dit voorblad vindt u belangrijke informatie omtrent het tentamen. Lees dit voorblad voordat u met het tentamen begint! Tentamen: Operational Research 1D (4016)

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route Kosten Zoekalgoritmen (00 00) ollege 5: Zoeken met kosten Peter de Waal, Tekst: Linda van der aag Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd; ongemak;...

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Optimalisering en Complexiteit, College 14. Geheeltallige LPs en Planning bij Grolsch. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 14. Geheeltallige LPs en Planning bij Grolsch. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 14 Geheeltallige LPs en Planning bij Grolsch Han Hoogeveen, Utrecht University Branch-and-bound voor algemene ILPs (1) Neem even aan dat je een minimaliseringsprobleem

Nadere informatie

Een voorbeeld. Computationele Intelligentie Zoeken met een tegenstander. Een voorbeeld vervolg. Een zoekprobleem met een tegenstander

Een voorbeeld. Computationele Intelligentie Zoeken met een tegenstander. Een voorbeeld vervolg. Een zoekprobleem met een tegenstander Computationele Intelligentie Zoeken met een tegenstander Beschouw het boter-kaas-en-eieren spel: een probleemtoestand is een plaatsing van i kruisjes en j nulletjes in de vakjes van het raam, met i j en

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, uur

Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, uur Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, 14.00-17.00 uur Het tentamen bestaat uit 6 opgaven. Motiveer je antwoorden duidelijk. De normering van de opgaves staat steeds

Nadere informatie

Optimalisering/Besliskunde 1. College 1 2 september, 2015

Optimalisering/Besliskunde 1. College 1 2 september, 2015 Optimalisering/Besliskunde 1 College 1 2 september, 2015 Algemene informatie College: woensdag 13:45-15:30: Leiden C1 en C2: Gorlaeus gebouw Zaal DS: De Sitterzaal, Oort gebouw Werkcollege: vrijdag: Leiden

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 () Tussentoets 26 november, tijdens de instructies Zaal: paviljoen (study hub) Time: 90min Tentamenstof: colleges 4 (LP; Simplex; dualiteit; complementaire slackness) Oude tentamens:

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede kandidatuur Informatica Academiejaar 2004 2005, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Binomiale

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica

Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica Tentamen Optimalisering (2DD15) Vrijdag 24 juni 2011, 9:00 12:00 uur Het tentamen bestaat uit zeven opgaven. Bij elke opgave staat het

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

De Branch-and-Bound methode

De Branch-and-Bound methode De Branch-and-Bound methode Een eigenschap van het ILP probleem is dat er meestal maar een eindig aantal mogelijke oplossingen toegelaten zijn, of op zijn slechtst zijn de oplossingen aftelbaar (eventueel

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 7.080 e-mail: j.b.m.melissen@ewi.tudelft.nl tel: 015-2782547 Studiemateriaal op : http://www.isa.ewi.tudelft.nl/~melissen (kijk bij onderwijs WI

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search Recapitulatie: Ongeïnformeerd zoeken Zoekalgoritmen (009 00) College : Ongeïnformeerd zoeken Peter de Waal, Tekst: Linda van der Gaag een algoritme voor ongeïnformeerd zoeken doorzoekt de zoekruimte van

Nadere informatie

Inhoudsopgave. 1 COMPLEXITEITSTHEORIE Inleiding De klassen P en N P Opgaven... 16

Inhoudsopgave. 1 COMPLEXITEITSTHEORIE Inleiding De klassen P en N P Opgaven... 16 Inhoudsopgave 1 COMPLEXITEITSTHEORIE 1 1.1 Inleiding.......................................... 1 1.2 De klassen P en N P................................... 8 1.3 Opgaven..........................................

Nadere informatie

Lineaire Optimilizatie Extra sessie. 19 augustus 2010

Lineaire Optimilizatie Extra sessie. 19 augustus 2010 Lineaire Optimilizatie Extra sessie 19 augustus 2010 De leerstof Handboek: hoofdstuk 2 t.e.m. 8 (incl. errata) Slides (zie toledo) Extra opgaven (zie toledo) Computersessie: Lindo syntax en output Wat

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0 Voorbeeldtentamen Deterministische Modellen in de OR (158075) Opmerking vooraf: Geef bij elke opgave een volledige en duidelijke uitwerking inclusief argumentatie! Gebruik van de rekenmachine is niet toegestaan.

Nadere informatie

Inhoud voor vandaag. Knapzak probleem (2) Knapzak probleem. Geheeltallige lineaire programmeringsproblemen en hun toepassingen

Inhoud voor vandaag. Knapzak probleem (2) Knapzak probleem. Geheeltallige lineaire programmeringsproblemen en hun toepassingen Inhoud voor vandaag Geheeltallige lineaire programmeringproblemen en hun toepaingen Inleiding geheeltallig lineaire programmering Modellen: Toewijzing Depot locatie Inkoop met kwantum korting Marjan van

Nadere informatie

8. Complexiteit van algoritmen:

8. Complexiteit van algoritmen: 8. Complexiteit van algoritmen: Voorbeeld: Een gevaarlijk spel 1 Spelboom voor het wespenspel 2 8.1 Complexiteit 4 8.2 NP-problemen 6 8.3 De oplossing 7 8.4 Een vuistregel 8 In dit hoofdstuk wordt het

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 4.150 e-mail: j.b.m.melissen@tudelft.nl tel: 015-2782547 Het project is een verplicht onderdeel van het vak Het project start in week 5. Nadere informatie

Nadere informatie

LP-problemen modelleren. Inleiding

LP-problemen modelleren. Inleiding LP-problemen modelleren Inleiding 1 Assumpties 2 LP-problemen oplossen Grafische oplossing 3 4 Onthoud: Iso-winstcurve = niveaucurve Alle iso-winstcurves ( niveaucurves ) lopen evenwijdig Hoe tekenen we

Nadere informatie

Planning van Materieelomlopen. A. Schrijver

Planning van Materieelomlopen. A. Schrijver Planning van Materieelomlopen A. Schrijver Centrum voor Wiskunde en Informatica Amsterdam januari 2003 Inhoud 1. Inleiding 3 2. Uitgebreidere beschrijving van het probleem 3 3. Het model 6 4. De criteriumfunctie

Nadere informatie

Zoeken met beperkt geheugen. Zoekalgoritmen ( ) College 7: Zoeken met beperkt geheugen. Een representatie van het kleuringsprobleem

Zoeken met beperkt geheugen. Zoekalgoritmen ( ) College 7: Zoeken met beperkt geheugen. Een representatie van het kleuringsprobleem Zoeken met beperkt geheugen Zoekalgoritmen (2009 2010) College 7: Zoeken met beperkt geheugen Dirk Thierens, Tekst: Linda van der Gaag algoritmen voor zoeken met beperkt geheugen zijn ontwikkeld voor problemen

Nadere informatie

Personeelsplanning en Kolomgeneratie

Personeelsplanning en Kolomgeneratie Personeelsplanning en Kolomgeneratie BWI Werkstuk Annemieke van Dongen Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen De Boelelaan 1081a 1081 HV Amsterdam Amsterdam, 1 december 2005 Begeleider:

Nadere informatie

Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder

Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder BWI Werkstuk Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder BWI Werkstuk Vrije Universiteit Faculteit der Exacte

Nadere informatie

Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep.

Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep. Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal

Nadere informatie

Examenvragen D0H45 (Lineaire optimalizatie)

Examenvragen D0H45 (Lineaire optimalizatie) Examenvragen D0H45 (Lineaire optimalizatie) Tijdstip: Vrijdag 3 februari 2012 vanaf 09.00 uur tot 12.00 uur Er zijn vier opgaven. Achter de opgaven zitten de bladzijden die u kunt gebruiken om uw antwoord

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Voorbeeld van herschrijven als transportprobleem

Voorbeeld van herschrijven als transportprobleem Voorbeeld van herschrijven als transportprobleem Het water van 3 rivieren moet worden verdeeld over 4 steden. Daar zijn kosten aan verbonden per eenheid water (zie tabel). De steden hebben minimumbehoeften

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6.

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6. Overzicht 1. Definities 2. Basisalgoritme 3. Label setting methoden 4. Label correcting methoden 5. Ondergrenzen 6. Resultaten Kortste Pad Probleem 1 Definities Een graaf G = (V, E) bestaat uit een verzameling

Nadere informatie

Credit cards, computationele complexiteit en consistentie uitspraken

Credit cards, computationele complexiteit en consistentie uitspraken Credit cards, computationele complexiteit en consistentie uitspraken Joost J. Joosten 14 december 2005 Praag en bier Sinds enkele maanden werk ik als post-doc aan de Czech Academy of Sciences in Praag.

Nadere informatie

1 Vervangingsstrategie auto

1 Vervangingsstrategie auto Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2002 1 Vervangingsstrategie auto Onderdeel a Zij V = {0, 1, 2, 3, 4, 5, 6}, waarbij knoop i staat voor het einde

Nadere informatie

Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015

Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015 AI Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015 www.liacs.leidenuniv.nl/ kosterswa/ai/ 1 Introductie

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Routeren van treinstellen op knooppunten

Routeren van treinstellen op knooppunten Routeren van treinstellen op knooppunten John van den Broek 2 februari 2007 Nationale Wiskunde Dagen Algemene gegevens NS 1.100.000 reizigers per werkdag 15.000.000.000 reizigers kilometers per jaar 5200

Nadere informatie

Programming a CNC-machine using ILP

Programming a CNC-machine using ILP Programming a CNC-machine using ILP Maarten Bos Discrete Mathematics and Mathematical Programming Department of Applied Mathematics University of Twente Date: 15-12-2011 Graduation committee: dr. W. Kern

Nadere informatie

INHOUDSOPGAVE LEERGANG BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

INHOUDSOPGAVE LEERGANG BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN INHOUDSOPGAVE LEERGANG BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN TEN GELEIDE Deze Leergang Besliskunde bevat de dictaten die ik heb geschreven voor de diverse besliskundecolleges die door mij

Nadere informatie

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN VOORJAAR 2003 Inhoudsopgave 1 Inleiding 1 1.1 Wat is Operations Research?.............................. 1 1.2 Overzicht van de te behandelen

Nadere informatie

Stabiele koppelingen (Engelse titel: Stable Matchings)

Stabiele koppelingen (Engelse titel: Stable Matchings) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Stabiele koppelingen (Engelse titel: Stable Matchings) Verslag ten behoeve van het

Nadere informatie

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Giso Dal (0752975) Pagina s 5 7 1 Deelverzameling Representatie

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Normering en schaallengte

Normering en schaallengte Bron: www.citogroep.nl Welk cijfer krijg ik met mijn score? Als je weet welke score je ongeveer hebt gehaald, weet je nog niet welk cijfer je hebt. Voor het merendeel van de scores wordt het cijfer bepaald

Nadere informatie

Samenvatting Optimalisatietechnieken

Samenvatting Optimalisatietechnieken Samenvatting Optimalisatietechnieken Dumon Willem - Van Haute Tom 2009-2010 1 Terminologie Feasible = oplosbaar, voldoen a alle harde beperkingen Harde beperking = beperking wr e oplossing aan moet voldoen

Nadere informatie

Wiskunde achter het Spoorboekje

Wiskunde achter het Spoorboekje Wiskunde achter het Spoorboekje Lex Schrijver Centrum voor Wiskunde en Informatica (CWI) en Universiteit van Amsterdam 1 Spoorboekje 2007 In december 2006 werd bij de Nederlandse Spoorwegen het Spoorboekje

Nadere informatie

Tentamen IN3105 Complexiteitstheorie

Tentamen IN3105 Complexiteitstheorie Tentamen IN3105 Complexiteitstheorie 31 maart, 9.00 12.00 uur - Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open vragen. - Per meerkeuzevraag kunnen 0 tot 4 alternatieven juist

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N460) op donderdag 23 juni 2011, 1400-1700 uur Deel 1: Van 1400 uur tot uiterlijk

Nadere informatie

Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder

Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder BWI Werkstuk Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder BWI Werkstuk Vrije Universiteit Faculteit der Exacte

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Containers stapelen. M.L. Koning april 2013

Containers stapelen. M.L. Koning april 2013 Technische Universiteit Eindhoven 2WH03 - Modelleren C Containers stapelen L. van Hees 0769244 M.L. Koning 0781346 2 april 2013 Y.W.A Meeuwenberg 0769217 1 Inleiding De NS vervoert dagelijks grote hoeveelheden

Nadere informatie

Negende college algoritmiek. 15 april Dynamisch Programmeren

Negende college algoritmiek. 15 april Dynamisch Programmeren Negende college algoritmiek 15 april 2016 Dynamisch Programmeren 1 algemeen Uit college 8: DP: - nuttig bij problemen met overlappende deelproblemen - druk een oplossing van het probleem uit in oplossingen

Nadere informatie

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ.

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ. Tweede Toets Datastructuren 29 juni 2016, 13.30 15.30, Educ-Γ. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Convexe functies op R (niet in het boek)

Convexe functies op R (niet in het boek) Convee uncties op R (niet in het boe Een unctie : R R heet conve, als voor alle, R en ele λ [0,] geldt dat (λ + (-λ λ( + (-λ(. Voor een unctie op R beteent dit dat als je twee willeeurige punten op de

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

1.2 Bomen Algemeen 1.2. BOMEN 7

1.2 Bomen Algemeen 1.2. BOMEN 7 1.2. BOMEN 7 1.2 Bomen 1.2.1 Algemeen Beschouw eerst een niet-gerichte graaf. Een boom is een samenhangende graaf die geen kringen bevat. Een boom wordt meestal genoteerd met de letter T (tree). Een bos

Nadere informatie

Grafieken van veeltermfuncties

Grafieken van veeltermfuncties (HOOFDSTUK 43, uit College Mathematics, door Frank Ayres, Jr. and Philip A. Schmidt, Schaum s Series, McGraw-Hill, New York; dit is de voorbereiding voor een uit te geven Nederlandse vertaling). Grafieken

Nadere informatie

Algorithms for Max-Flow

Algorithms for Max-Flow Algorithms for Max-Flow Consider a network with given upper bounds for the capacities of the arcs, and one entry and one exit node. The max-flow problem consists in finding a maximal flow through the network

Nadere informatie

Toepassingen van Operationeel Onderzoek Samenvatting

Toepassingen van Operationeel Onderzoek Samenvatting Toepassingen van Operationeel Onderzoek Samenvatting 18-1-2011 KUL, Prof. Spieksma Lynn.gyselen@student.kuleuven.be, indien u aanpassingen, opmerkingen, extra opgaven of oplossingen heeft, gelieve deze

Nadere informatie

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? me:

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes?  me: Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? Email me: peter.vdd@telenet.be 1. Het aantal knoop-tak overgangen is altijd even. De totaalsom

Nadere informatie

Puzzels en wiskunde. Inleiding. Algoritme. Sudoku. 22 Puzzels en wiskunde

Puzzels en wiskunde. Inleiding. Algoritme. Sudoku. 22 Puzzels en wiskunde Een miljoen dollar verdienen in de kerstvakantie? Het enige dat u hoeft te doen, is een polynomiaal algoritme te vinden om een sudoku mee op te lossen. Niels Oosterling schetst waar u dan rekening mee

Nadere informatie

De ijnmanager. Cartoons maart Luc Timmers

De ijnmanager. Cartoons maart Luc Timmers De ijnmanager Cartoons maart 2015 Luc Timmers Heel erg democratisch was het niet Men heeft mìj gekozen Ìk heb er niet voor gekozen Minste stemmen gelden Voor wat hoort wat Als ik beloof dat ik efficiënt

Nadere informatie

Uitwerkingen Wiskunde A HAVO

Uitwerkingen Wiskunde A HAVO Uitwerkingen Wiskunde A HAVO Nederlands Mathematisch Instituut December 28, 2012 Supersize me Opgave 1. De formule voor de dagelijkse energiebehoefte is E b = 33,6 G. Als we dit invullen dan krijgen we

Nadere informatie

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1.

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. LIMIETGEDRAG VAN REDUCIBELE MARKOV KETEN In het voorgaande hebben we gezien hoe we de limietverdeling van een irreducibele, aperiodieke Markov keten kunnen berekenen: Voorbeeld 1: Zoek de unieke oplossing

Nadere informatie

Project Management (H 9.8 + H 22 op CD-ROM)

Project Management (H 9.8 + H 22 op CD-ROM) Project Management (H 9.8 + H 22 op CD-ROM) CPM (Critical Path Method) Activiteiten met afhankelijkheden en vaste duur zijn gegeven. CPM bepaalt de minimale doorlooptijd van het project. PERT (Program

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 13 november 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Bijlage A Simplex-methode

Bijlage A Simplex-methode Dee bijlage hoort bij Beter beslissen, Bijlage A Simplex-methode Verreweg de meeste LP-problemen worden opgelost met behulp van het ogenoemde Simplex-algoritme, in ontwikkeld door G.B. Dantig. De meeste

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie