Branch-and-Bound en Cutting Planes

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Branch-and-Bound en Cutting Planes"

Transcriptie

1 Branch-and-Bound en Cutting Planes

2 Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme dat niet-optimale oplossing geeft 19 november

3 Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft (VANDAAG) 2 Polynomiaal algoritme dat niet-optimale oplossing geeft (College 12) 19 november

4 Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft (VANDAAG) 2 Polynomiaal algoritme dat niet-optimale oplossing geeft (College 12) Vandaag 2 methoden: 1 Branch-and-Bound 2 Cutting planes (geldige ongelijkheden) 19 november

5 Branch-and-Bound Idee: ILP s zijn moeilijk, LP s zijn makkelijk. We gebruiken LP om ILP op te lossen. Belangrijke relatie: Z TOEG Z IP Z LP Z LP Z IP Z TOEG (Maximalisatie) (Minimalisatie) Branchen: Het probleem opsplitsen in deelproblemen, zdd elke toegelaten oplossing bevindt zich in exact één deelprobleem. Bounden: Boven- en ondergrens bijhouden voor oplossing. Gebruik deze grenzen voor het snoeien van zoekboom. Snoeien: Concluderen dat een deelprobleem niet verder onderzocht hoeft te worden 19 november

6 Branch-and-Bound (Minimalisatie) Lijst met nog te beschouwen deelproblemen Bovengrens voor hele boom Ondergrens per deelprobleem In geval van geheeltallige doelstellingscoëfficiënten: ondergrens naar boven afronden 19 november

7 Voorbeeld Branch-and-Bound Z IP = min 4x 1 + x 2 odv 7x 1 2x 2 14 x 2 3 2x 1 2x 2 3 x 1, x 2 0, geheeltallig 19 november

8 Wanneer kunnen we snoeien? (Maximalisatie) 1 Niet-toegelaten LP-relaxatie deelprobleem Geen geheeltallige oplossingen in dit deelprobleem 2 Geheeltallige LP-relaxatie in deelprobleem Toegelaten (integer) oplossing gevonden. Globale ondergrens updaten 3 Bovengrens deelprobleem kleiner dan globale ondergrens Er is geen betere oplossing in dit deelprobleem dan de al gevonden integer oplossing Merk op: Ondergrenzen zijn globaal, terwijl bovengrenzen alleen geldig in deelprobleem 19 november

9 Wanneer kunnen we snoeien? (Minimalisatie) 1 Niet-toegelaten LP-relaxatie deelprobleem Geen geheeltallige oplossingen in dit deelprobleem 2 Geheeltallige LP-relaxatie in deelprobleem Toegelaten (integer) oplossing gevonden. Globale bovengrens updaten 3 Ondergrens deelprobleem kleiner dan globale bovengrens Er is geen betere oplossing in dit deelprobleem dan de al gevonden integer oplossing Merk op: Bovengrenzen zijn globaal, terwijl ondergrenzen alleen geldig in deelprobleem 19 november

10 Implementatieaspecten 1 Welke variabele kiezen we om te branchen? Fractie het dichtst bij Welke deelprobleem beschouwen we eerst? Depth-first search: Deelprobleem zo diep mogelijk in de boom Best-node first: Deelprobleem met beste waarde van de LP-relaxatie Vaak mengsel van beide 19 november

11 Rekentijd Branch-and-Bound Stel alle variabelen zijn 0-1 variabelen. Maximaal aantal eindpunten: 2 n Maximaal aantal knopen/deelproblemen: n = 1 2n = 2 n+1 1 Exponentiëel aantal deelproblemen Werkcollege: voorbeeld waarin inderdaad exponentiëel veel deelproblemen opgelost moeten worden 19 november

12 Cutting Planes z IP = min odv c T x Ax b x 0, geheeltallig Laat S de verzameling toegelaten punten zijn. Definitie: Een polyeder P = {x R n 0 A x b } noemen we een formulering voor S als geldt P Z n = S. Vorige week gezien dat er meerdere formuleringen bestaan voor een gegeven verzameling S. Er bestaan zelfs oneindig veel formuleringen voor S 19 november

13 Sterkte van een formulering Een formulering P is tenminste even sterk als een formulering P als geldt P P Definitie: Een ongelijkheid αx β is geldig voor S als αx β voor iedere x S. Het toevoegen van een geldige ongelijkheid aan P resulteert in een formulering P die tenminste even sterk is. Wat is de sterkst mogelijke formulering? Conv(S), het convexe omhulsel van de toegelaten punten S. Merk op: Met een expliciete omschrijving van Conv(S) kunnen we ILP oplossen met LP. Het vinden van conv(s) kan echter niet in polynomiale tijd 19 november

14 Gomory s cutting planes We zoeken niet het volledige convexe omhulsel Fractioneel deel van optimale oplossing LP-relaxatie geeft geldige ongelijkheid Stop wanneer LP-relaxatie geheeltallig optimum heeft Alle snedes zijn geldig, dus ook optimum voor IP 19 november

15 Voorbeeld Gomory s cutting planes Z IP = max 4x 1 x 2 odv 7x 1 2x 2 14 x 2 3 2x 1 2x 2 3 x 1, x 2 0, geheeltallig (Zelfde voorbeeld als voor Branch-and-Bound) 19 november

16 Duale simplex algoritme Zowel bij B&B als bij cutting planes moet herhaaldelijk een LP-relaxatie worden opgelost Moeten we iedere keer opnieuw beginnen met simplex? Nee, we gebruiken duale simplex algoritme Oude oplossing blijft duaal toegelaten na toevoeging van extra voorwaarde. 19 november

17 Voorbeeld duale simplex 19 november

18 Duale simplex algoritme Initialisatie: Basisoplossing, niet-noodzakelijk toegelaten, met c j 0 j (maximalisatie) c j 0 j (minimalisatie) Uittredende variabele: x B(i ) zdd b i = min{ b i b i < 0} Als b i 0 optimaal. i, STOP, huidige basisoplossing is toegelaten en Intredende variabele: x j zdd c j ā = min{ c j i j ā : ā i j i j < 0} Als ā i j 0 j, STOP, probleem heeft geen toegelaten oplossing. Anders, voer pivot uit en ga naar 1 19 november

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet

Nadere informatie

Samenvatting college 1-12

Samenvatting college 1-12 Samenvatting college 1-12 Probleemformulering Duidelijk definiëren van beslissingsvariabelen Zinvolle namen voor variabelen bv x ij voor ingrediënt i voor product j, niet x 1,..., x 20 Beschrijving van

Nadere informatie

Hoofdstuk 13: Integer Lineair Programmeren

Hoofdstuk 13: Integer Lineair Programmeren Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december 2015 1 / 13 Vraag Wat moet ik kennen en kunnen voor

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 11 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 11 november 2015 1 / 22 Mededelingen Huiswerk 2 nagekeken Terug

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

Geheeltallige programmering

Geheeltallige programmering Geheeltallige programmering In een LP probleem zijn alle variabelen reëel. In een geheeltallig probleem blijven doelfunctie en constraints lineair, maar zijn de variabelen geheeltallig. LP: IP: BIP: MIP:

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen

Nadere informatie

Tentamen: Operationele Research 1D (4016)

Tentamen: Operationele Research 1D (4016) UITWERKINGEN Tentamen: Operationele Research 1D (4016) Tentamendatum: 12-1-2010 Duur van het tentamen: 3 uur (maximaal) Opgave 1 (15 punten) Beschouw het volgende lineaire programmeringsprobleem P: max

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN Voorwoord Dit vak is een voortzetting van het tweedejaarscollege Besliskunde. Een aantal andere mathematische beslissingsproblemen komt aan de orde en

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

Hoofdstuk 8: Algoritmen en Complexiteit

Hoofdstuk 8: Algoritmen en Complexiteit Hoofdstuk 8: Algoritmen en Complexiteit Vandaag: Hoe meten we de performance van algoritmen? Waar ligt de grens tussen een goed en een slecht algoritme? 22 oktober 2014 1 Vandaag: Hoe meten we de performance

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 9 september 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 september 2015 1 / 23 Huiswerk Huiswerk 1 is beschikbaar op

Nadere informatie

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur. Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf

Nadere informatie

Enkele basismodellen uit operationeel onderzoek

Enkele basismodellen uit operationeel onderzoek Enkele baimodellen uit operationeel onderzoek Roel Leu Roel.Leu@econ.kuleuven.be Studiedag Wikunde e graad ASO 6 mei Inleiding Operationeel onderzoek (O.O.) = het gebruik van wikundige technieken voor

Nadere informatie

1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3.

1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. 1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. Een LP probleem heeft n>2 variabelen en n+2 constraints.

Nadere informatie

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 10 Begrensde variabelen Han Hoogeveen, Utrecht University Begrensde variabelen (1) In veel toepassingen hebben variabelen zowel een ondergrens als een bovengrens:

Nadere informatie

Faculteit der Economie en Bedrijfskunde

Faculteit der Economie en Bedrijfskunde Faculteit der Economie en Bedrijfskunde Op dit voorblad vindt u belangrijke informatie omtrent het tentamen. Lees dit voorblad voordat u met het tentamen begint! Tentamen: Operational Research 1D (4016)

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Tussentoets: 26 november, tijdens de instructies Tentamenstof: LP; Simplex; dualiteit (= colleges 1 4) Bij de tussentoets mag een eenvoudige (niet programmeerbare)

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Instructies (vandaag, 10:45 12:30) in vier zalen: Zaal Aud 10 Pav b2 Pav m23 Ipo 0.98 voor studenten met achternaam beginnend met letters A tot en met D met letters

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route Kosten Zoekalgoritmen (00 00) ollege 5: Zoeken met kosten Peter de Waal, Tekst: Linda van der aag Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd; ongemak;...

Nadere informatie

Een voorbeeld. Computationele Intelligentie Zoeken met een tegenstander. Een voorbeeld vervolg. Een zoekprobleem met een tegenstander

Een voorbeeld. Computationele Intelligentie Zoeken met een tegenstander. Een voorbeeld vervolg. Een zoekprobleem met een tegenstander Computationele Intelligentie Zoeken met een tegenstander Beschouw het boter-kaas-en-eieren spel: een probleemtoestand is een plaatsing van i kruisjes en j nulletjes in de vakjes van het raam, met i j en

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Optimalisering en Complexiteit, College 14. Geheeltallige LPs en Planning bij Grolsch. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 14. Geheeltallige LPs en Planning bij Grolsch. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 14 Geheeltallige LPs en Planning bij Grolsch Han Hoogeveen, Utrecht University Branch-and-bound voor algemene ILPs (1) Neem even aan dat je een minimaliseringsprobleem

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 21 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 21 oktober 2015 1 / 20 Deze week: algoritmes en complexiteit

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 1 Leo van Iersel Technische Universiteit Delft 7 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 september 2016 1 / 40 Opzet vak Woensdag: hoorcollege 13:45-15:30

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Er zijn 4 opgaven, daarna volgen blanco bladzijden die u kan gebruiken om te antwoorden.

Er zijn 4 opgaven, daarna volgen blanco bladzijden die u kan gebruiken om te antwoorden. Examen DH45 Lineaire Optimalizatie (D. Goossens) Vrijdag 29 januari 2010, 9 12u Richtlijnen: Er zijn 4 opgaven, daarna volgen blanco bladzijden die u kan gebruiken om te antwoorden. Lees aandachtig de

Nadere informatie

Computationele Intelligentie

Computationele Intelligentie Computationele Intelligentie Uitwerking werkcollege Representatie, Ongeïnformeerd zoeken, Heuristisch zoeken 1 lokkenwereld a. De zoekboom die door het dynamische breadth-first search algoritme wordt gegenereerd

Nadere informatie

Optimalisering/Besliskunde 1. College 1 2 september, 2015

Optimalisering/Besliskunde 1. College 1 2 september, 2015 Optimalisering/Besliskunde 1 College 1 2 september, 2015 Algemene informatie College: woensdag 13:45-15:30: Leiden C1 en C2: Gorlaeus gebouw Zaal DS: De Sitterzaal, Oort gebouw Werkcollege: vrijdag: Leiden

Nadere informatie

Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, uur

Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, uur Hertentamen Optimalisering (Delft) en Besliskunde 1 (Leiden) 15 april 2014, 14.00-17.00 uur Het tentamen bestaat uit 6 opgaven. Motiveer je antwoorden duidelijk. De normering van de opgaves staat steeds

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

Twaalfde college algoritmiek. 12 mei Branch & Bound

Twaalfde college algoritmiek. 12 mei Branch & Bound Twaalfde college algoritmiek 12 mei 2016 Branch & Bound 1 Branch and bound -1- Branch & bound is alleen toepasbaar op optimalisatieproblemen genereert oplossingen stap voor stap en houdt de tot dusver

Nadere informatie

Voorbeeld simplexmethode. Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0.

Voorbeeld simplexmethode. Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0. Voorbeeld simplexmethode Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0. Voer slackvariabelen (x 4, x 5 ) in: Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x

Nadere informatie

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d.

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. 1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. een toewijzingsprobleem. 2. Het aantal toegelaten hoekpunten in een

Nadere informatie

De Branch-and-Bound methode

De Branch-and-Bound methode De Branch-and-Bound methode Een eigenschap van het ILP probleem is dat er meestal maar een eindig aantal mogelijke oplossingen toegelaten zijn, of op zijn slechtst zijn de oplossingen aftelbaar (eventueel

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede kandidatuur Informatica Academiejaar 2004 2005, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Binomiale

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 () Tussentoets 26 november, tijdens de instructies Zaal: paviljoen (study hub) Time: 90min Tentamenstof: colleges 4 (LP; Simplex; dualiteit; complementaire slackness) Oude tentamens:

Nadere informatie

Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica

Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica Tentamen Optimalisering (2DD15) Vrijdag 24 juni 2011, 9:00 12:00 uur Het tentamen bestaat uit zeven opgaven. Bij elke opgave staat het

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 1 Inhoudsopgave 1 Transport problemen 3 2 Definities en stellingen

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 7.080 e-mail: j.b.m.melissen@ewi.tudelft.nl tel: 015-2782547 Studiemateriaal op : http://www.isa.ewi.tudelft.nl/~melissen (kijk bij onderwijs WI

Nadere informatie

Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking

Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking. Sensitiviteitsanalyse (a) Als de prijs van legering 5 daalt, kan het voordeliger worden om gebruik te maken van deze legering. Als de

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

Lineaire programmering

Lineaire programmering Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum

Nadere informatie

Lineaire Optimilizatie Extra sessie. 19 augustus 2010

Lineaire Optimilizatie Extra sessie. 19 augustus 2010 Lineaire Optimilizatie Extra sessie 19 augustus 2010 De leerstof Handboek: hoofdstuk 2 t.e.m. 8 (incl. errata) Slides (zie toledo) Extra opgaven (zie toledo) Computersessie: Lindo syntax en output Wat

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

Inhoud voor vandaag. Knapzak probleem (2) Knapzak probleem. Geheeltallige lineaire programmeringsproblemen en hun toepassingen

Inhoud voor vandaag. Knapzak probleem (2) Knapzak probleem. Geheeltallige lineaire programmeringsproblemen en hun toepassingen Inhoud voor vandaag Geheeltallige lineaire programmeringproblemen en hun toepaingen Inleiding geheeltallig lineaire programmering Modellen: Toewijzing Depot locatie Inkoop met kwantum korting Marjan van

Nadere informatie

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search Recapitulatie: Ongeïnformeerd zoeken Zoekalgoritmen (009 00) College : Ongeïnformeerd zoeken Peter de Waal, Tekst: Linda van der Gaag een algoritme voor ongeïnformeerd zoeken doorzoekt de zoekruimte van

Nadere informatie

Zoekproblemen met tegenstanders. Zoekalgoritmen ( ) College 9: Zoeken met een tegenstander (I) Een zoekprobleem met een tegenstander

Zoekproblemen met tegenstanders. Zoekalgoritmen ( ) College 9: Zoeken met een tegenstander (I) Een zoekprobleem met een tegenstander Zoekproblemen met tegenstanders Zoekalgoritmen (29 2) College 9: Zoeken met een tegenstander (I) Dirk Thierens, Tekst: Linda van der Gaag Zoekproblemen met meer dan één partij worden gekenmerkt door interventies

Nadere informatie

Enkele uitbreidingen op het simplexalgoritme

Enkele uitbreidingen op het simplexalgoritme Enkele uitbreidingen op het simplexalgoritme Stageverslag Rovecom Moniek Messink 2 oktober 2014 Enkele uitbreidingen op het simplexalgoritme Stageverslag Rovecom Masterscriptie Wiskunde 2 oktober 2014

Nadere informatie

Fundamentele Informatica

Fundamentele Informatica Fundamentele Informatica (IN3120 en IN3005 DOI nwe stijl) 20 augustus 2004, 9.00 11.00 uur Het tentamen IN3120 bestaat uit 10 meerkeuzevragen en 2 open vragen. Voor de meerkeuzevragen kunt u maximaal 65

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

Inhoudsopgave. 1 COMPLEXITEITSTHEORIE Inleiding De klassen P en N P Opgaven... 16

Inhoudsopgave. 1 COMPLEXITEITSTHEORIE Inleiding De klassen P en N P Opgaven... 16 Inhoudsopgave 1 COMPLEXITEITSTHEORIE 1 1.1 Inleiding.......................................... 1 1.2 De klassen P en N P................................... 8 1.3 Opgaven..........................................

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 4.150 e-mail: j.b.m.melissen@tudelft.nl tel: 015-2782547 Het project is een verplicht onderdeel van het vak Het project start in week 5. Nadere informatie

Nadere informatie

LP-problemen modelleren. Inleiding

LP-problemen modelleren. Inleiding LP-problemen modelleren Inleiding 1 Assumpties 2 LP-problemen oplossen Grafische oplossing 3 4 Onthoud: Iso-winstcurve = niveaucurve Alle iso-winstcurves ( niveaucurves ) lopen evenwijdig Hoe tekenen we

Nadere informatie

ffl een willekeurige LP in standaard vorm kan omzetten ffl het bij een basis toebehorend tableau en de basisoplossing kan berekenen ffl de simplex alg

ffl een willekeurige LP in standaard vorm kan omzetten ffl het bij een basis toebehorend tableau en de basisoplossing kan berekenen ffl de simplex alg Grafentheorie en Operationele Research 158070 Handout Operationele Research gedeelte 1 Inleiding 1.1 Inhoud Het Operationele Research gedeelte van het vak 'Grafentheorie en Operationele Research' houdt

Nadere informatie

Duration: 2 hrs; Total points: 100 No documents allowed. Use of electronic devices, such as calculators, smartphones, smartwatches is forbidden.

Duration: 2 hrs; Total points: 100 No documents allowed. Use of electronic devices, such as calculators, smartphones, smartwatches is forbidden. : Computationele Intelligentie (INFOBCI) Midterm Exam Duration: hrs; Total points: No documents allowed. Use of electronic devices, such as calculators, smartphones, smartwatches is forbidden. Question

Nadere informatie

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0 Voorbeeldtentamen Deterministische Modellen in de OR (158075) Opmerking vooraf: Geef bij elke opgave een volledige en duidelijke uitwerking inclusief argumentatie! Gebruik van de rekenmachine is niet toegestaan.

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

Personeelsplanning en Kolomgeneratie

Personeelsplanning en Kolomgeneratie Personeelsplanning en Kolomgeneratie BWI Werkstuk Annemieke van Dongen Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen De Boelelaan 1081a 1081 HV Amsterdam Amsterdam, 1 december 2005 Begeleider:

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde II op donderdag 6 juli 2017, 13.30-16.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

SAMENVATTING IN HET NEDERLANDS

SAMENVATTING IN HET NEDERLANDS SAMENVATTING IN HET NEDERLANDS SUMMARY IN DUTCH INTRODUCTIE In 1909 ontving de Italiaan Marconi de Nobelprijs voor zijn baanbrekende werk op het gebied van de draadloze telegraaf. Sinds het eind van de

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2009 2010, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Planning van Materieelomlopen. A. Schrijver

Planning van Materieelomlopen. A. Schrijver Planning van Materieelomlopen A. Schrijver Centrum voor Wiskunde en Informatica Amsterdam januari 2003 Inhoud 1. Inleiding 3 2. Uitgebreidere beschrijving van het probleem 3 3. Het model 6 4. De criteriumfunctie

Nadere informatie

8. Complexiteit van algoritmen:

8. Complexiteit van algoritmen: 8. Complexiteit van algoritmen: Voorbeeld: Een gevaarlijk spel 1 Spelboom voor het wespenspel 2 8.1 Complexiteit 4 8.2 NP-problemen 6 8.3 De oplossing 7 8.4 Een vuistregel 8 In dit hoofdstuk wordt het

Nadere informatie

Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep.

Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep. Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal

Nadere informatie

Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder

Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder BWI Werkstuk Crew Rostering: Een Rooster Probleem voor de Rondvaart Wouter Radder BWI Werkstuk Vrije Universiteit Faculteit der Exacte

Nadere informatie

Computationale Intelligentie Dirk Thierens

Computationale Intelligentie Dirk Thierens Computationale Intelligentie Dirk Thierens Organisatie Onderwijsvormen: Docent: Topic: Collegemateriaal: Boek: Beoordeling: hoorcollege, practicum, werkcollege Dirk Thierens Deel : Zoekalgoritmen Toets

Nadere informatie

Een selectie algoritmen voor lineair programmeren (A selection of algorithms for linear programming)

Een selectie algoritmen voor lineair programmeren (A selection of algorithms for linear programming) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Een selectie algoritmen voor lineair programmeren (A selection of algorithms for

Nadere informatie

Examenvragen D0H45 (Lineaire optimalizatie)

Examenvragen D0H45 (Lineaire optimalizatie) Examenvragen D0H45 (Lineaire optimalizatie) Tijdstip: Vrijdag 3 februari 2012 vanaf 09.00 uur tot 12.00 uur Er zijn vier opgaven. Achter de opgaven zitten de bladzijden die u kunt gebruiken om uw antwoord

Nadere informatie

Voorbeeld van herschrijven als transportprobleem

Voorbeeld van herschrijven als transportprobleem Voorbeeld van herschrijven als transportprobleem Het water van 3 rivieren moet worden verdeeld over 4 steden. Daar zijn kosten aan verbonden per eenheid water (zie tabel). De steden hebben minimumbehoeften

Nadere informatie

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur Faculteit Elektrotechniek, Wiskunde en Informatica Ti Delft Tentamen IN3105 Complexiteitstheorie 16 april 2012, 9.00-12.00 uur Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open

Nadere informatie

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 5 juni 2007, uur

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 5 juni 2007, uur Uitgebreide uitwerking tentamen Algoritmiek Dinsdag juni 00, 0.00.00 uur Opgave. a. Een toestand bestaat hier uit een aantal stapels, met op elk van die stapels een aantal munten (hooguit n per stapel).

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

SPECIALE LINEAIRE MODELLEN

SPECIALE LINEAIRE MODELLEN Hoofdstuk 7 SPECIALE LINEAIRE MODELLEN 7.1 Unimodulariteit en totale unimodulariteit Vele combinatorische optimaliseringsproblemen kunnen worden beschreven als het maximaliseren van een lineaire functie

Nadere informatie

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6.

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6. Overzicht 1. Definities 2. Basisalgoritme 3. Label setting methoden 4. Label correcting methoden 5. Ondergrenzen 6. Resultaten Kortste Pad Probleem 1 Definities Een graaf G = (V, E) bestaat uit een verzameling

Nadere informatie

Zoeken met beperkt geheugen. Zoekalgoritmen ( ) College 7: Zoeken met beperkt geheugen. Een representatie van het kleuringsprobleem

Zoeken met beperkt geheugen. Zoekalgoritmen ( ) College 7: Zoeken met beperkt geheugen. Een representatie van het kleuringsprobleem Zoeken met beperkt geheugen Zoekalgoritmen (2009 2010) College 7: Zoeken met beperkt geheugen Dirk Thierens, Tekst: Linda van der Gaag algoritmen voor zoeken met beperkt geheugen zijn ontwikkeld voor problemen

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie