Benaderingsalgoritmen

Maat: px
Weergave met pagina beginnen:

Download "Benaderingsalgoritmen"

Transcriptie

1 Benaderingsalgoritmen Eerste hulp bij NP-moeilijkheid 1

2 Herhaling NP-volledigheid (1) NP: er is een polynomiaal certificaat voor jainstanties dat in polynomiale tijd te controleren is Een probleem A is NP-moeilijk als B P A (reductie van B naar A) voor iedere B in NP Een probleem A is NP-volledig als het in NP zit en NP-moeilijk is Er bestaan NP-moeilijke problemen die niet in NP zitten, of waarvan het niet bekend is of ze in NP zitten 2

3 Herhaling NP-volledigheid (2) Belangrijke boodschap: als ook maar één NPmoeilijk probleem in polynomiale tijd oplosbaar is, dan zijn alle problemen in NP in polynomiale tijd oplosbaar Er is een sterk geloof dat geen enkel NP-moeilijk probleem in polynomiale tijd oplosbaar is Maar wat geloof jij? 3

4 Herhaling NP-volledigheid (3) Wat betekent het dat een probleem NP-moeilijk is? Heel veel, maar ook heel weinig Niet: je kunt het probleem niet oplossen Wel: je zult creatief moeten zijn om het probleem op te lossen of geluk met de invoer moeten hebben 4

5 Herhaling NP-volledigheid (4) NP-moeilijkheid/volledigheid gaat meestal over beslisproblemen Maar er zijn veel NP-moeilijke optimaliseringsproblemen Bijv. Handelsreizigersprobleem Merk op dat een polynomiale reductie gewoon kan bestaan voor optimaliseringsproblemen; zulke problemen zitten alleen niet in NP Hoe gaan we met dit soort problemen om? 5

6 Eerste Hulp bij NP-moeilijkheid Maak gebruik van/aannames over je invoer Kortste simpele pad NP-moeilijk in het algemeen (reductie van Hamiltonian Path), maar polynomiaal zonder negatieve cycles (Bellman-Ford) Heuristiek: polynomiaal algoritme dat vaak een goede oplossing geeft Genetische algoritmen, benaderingsalgoritmen, sommige greedy algoritmen Gebruik (moderaat) exponentiële tijd Vaak: alle mogelijke oplossing afgaan en beste kiezen 6

7 Stel, je werkt bij een supermarkt TOEPASSINGSGEBIED: LOGISTIEK 7

8 Boodschappenophaalpunten (1) Nieuw in supermarktland: online bestellen, en dan in de winkel afhalen Onze opdrachtgever is een grote supermarkt die een test wil doen met ophaalpunten Er is geld voor k ophaalpunten, die op willekeurige plekken in het land gebouwd mogen worden 8

9 Boodschappenophaalpunten (2) Dankzij reclames is er inmiddels een verzameling A van n adressen van klanten Zodra de k ophaalpunten gebouwd zijn, zal een klant naar het dichtsbijzijnde ophaalpunt gaan Dichtsbijzijnd: Euclidische afstand Waar bouwen we de ophaalpunten zdd de langste afstand die een klant aflegt zo klein mogelijk is? 9

10 k-center Gegeven een verzameling A van n punten in het vlak en een getal k Als P een verzameling punten in het vlak is, dan is dist(a,p) = min p in P dist(a,p) (het dichtsbijzijnde ophaalpunt) en r(p) = max a in A dist(a,p) de bedekkingsradius (maximale rij-afstand) Opdracht: vind een verzameling P met P k zdd r(p) zo klein mogelijk is P hoeft geen deelverzameling van A te zijn 10

11 k-center NP-moeilijk We moeten toch een plaatsing genereren Daar helpt NP-moeilijkheid niet bij Wat is jouw algoritme? Bijvoorbeeld greedy, maar iets anders mag ook 11

12 Een greedy aanpak Bijvoorbeeld: bouw P iteratief op, en plaats telkens een ophaalpunt op een plek die r(p) zoveel mogelijk verkleint De gevonden oplossing is niet goed in vergelijking met optimum Optimaal: r(p*) = 0 Greedy: r(p) = d/2 d A B k=2 12

13 Benaderingsfactor Gegeven invoer van een optimaliseringsprobleem Laat SOL de waarde zijn van de oplossing die jouw algoritme vindt Laat OPT de waarde zijn van het optimum Dan is de benaderingsfactor van de door jouw algoritme geleverde oplossing: max{sol/opt, OPT/SOL} Relatieve kwaliteit van de gevonden oplossing Altijd minstens 1 13

14 Benaderingsalgoritme Een algoritme is een c-benaderingsalgoritme als voor iedere probleeminvoer het algoritme een oplossing geeft met benaderingsfactor hoogstens c c kan een constante zijn, maar ook afhangen van (de grootte van) de invoer c heet de benaderingsfactor van het algoritme Benaderingsalgoritmen zijn heuristieken die een oplossing berekenen van bewijsbaar goede kwaliteit t.o.v. het optimum 14

15 k-center benaderen: Poging 1 Stel: we weten het optimum R* Kun je een plaatsing P berekenen met r(p) 2R*? Tip: gebruik greedy Werkend idee: plaats bij willekeurige onbedekte klant een ophaalpunt en verklaar alle klanten binnen afstand 2R* bedekt 15

16 Greedy algoritme 1 Markeer alle a in A onbedekt, P = while er is een onbedekte a in A do p = willekeurige onbedekte a in A plaats p in P en markeer alle punten binnen afstand 2R* van p bedekt return P 16

17 Greedy algoritme 1: eigenschappen Het algoritme heeft polynomiale looptijd r(p) 2R* per constructie P k bewijs op volgende slide Stelling: k-center heeft een polynomiale tijd, 2- benaderingsalgoritme, als het optimum bekend is 17

18 P k Stel P* heeft r(p*) = R* en P* = k, maar P > k Voor iedere p in P* is er hooguit 1 a in P met dist(a,p) R* Stel er zijn er twee, a en a Per constructie geldt dist(a,a ) > 2R* 2R* dist(a,p) + dist(p,a ) dist(a,a ) > 2R* Contradictie Iedere a in P wordt door 1 p in P* bedekt Dus P* P > k, een contradictie 18

19 k-center benaderen: Poging 2 Stel: we weten het optimum niet Gelukje: het algoritme kunnen we gebruiken om het volgende te beslissen voor gegeven R Er is een oplossing P met P k en r(p) 2R Er is geen oplossing P met P k en r(p) R Algoritme en correctheidsbewijs: zie volgende slides 19

20 Greedy algoritme 1 Invoer: verzameling klanten A, getal R Markeer alle a in A onbedekt, P = while er is een onbedekte a in A do p = willekeurige onbedekte a in A plaats p in P en markeer alle punten binnen afstand 2R van p bedekt if P k then return P else return geen oplossing met grootte k en bedekkingsradius 2R 20

21 Algoritme 1 : P k Stel P* heeft r(p*) = R en P* = k, maar P > k Voor iedere p in P* is er hooguit 1 a in P met dist(a,p) R Stel er zijn er twee, a en a Per constructie geldt dist(a,a ) > 2R 2R dist(a,p) + dist(p,a ) dist(a,a ) > 2R Contradictie Iedere a in P wordt door 1 p in P* bedekt Dus P* P > k, een contradictie 21

22 k-center benaderen: poging 2 Gebruik nu binair zoeken Algoritme 1 kunnen we gebruiken om het volgende te beslissen voor gegeven R Er is een oplossing P met P k en r(p) 2R Er is geen oplossing P met P k en r(p) R Dus iedere keer kunnen we ondergrens verhogen of bovengrens verlagen Totdat boven- en ondergrens factor 2 van elkaar liggen 22

23 k-center benaderen: Poging 3 Voorgaande algoritme is niet helemaal precies, en zelfs binair zoeken kan een tijd duren r(p) is niet per se geheeltallig Ander idee, dat ook nog simpeler is Voorheen kozen we adres met afstand > 2R* van eerder gekozen punten Idee: kies adres dat zover mogelijk weg is van eerder gekozen punten 23

24 k-center: greedy algoritme 2 P = {a} voor willekeurige a in A while P < k do p = a in A die dist(a,p) maximaliseert plaats p in P return P 24

25 Greedy algoritme 2: correctheid Lemma: r(p) 2R*, waarbij R* de bedekkingsradius van het optimum Bewijs: Stel r(p) > 2R* en dus er is a in A met dist(a,p) > 2R* Laat a i het punt gekozen in iteratie i en P i de verzameling P aan het begin van iteratie i Dan is dist(a i,p i ) dist(a,p i ) dist(a,p) > 2R*, omdat a i verst weg van P i ligt, en a minstens zo ver ligt van P i als van P 25

26 Greedy algoritme 2: correctheid Dus ieder gekozen punt is minstens 2R* weg van eerder gekozen punten Dat betekent dat we a 1,,a k ook hadden kiezen in Algoritme 1, en dan nog een extra a k+1 hadden gekozen vanwege het bestaan van a Algoritme 1 zou dus een oplossing van grootte > k vinden, en dan nee rapporteren, dwz er is geen oplossing P* met r(p*) R* en P* k Dit is een contradictie met definitie R*, dus r(p) 2R* 26

27 Greedy algoritme 2: eigenschappen Het algoritme heeft polynomiale looptijd r(p) 2R* P k per constructie Stelling: k-center heeft een polynomiale tijd, 2- benaderingsalgoritme Techniek: greedy algoritme 27

28 Verdieping (1) Algoritme werkt zolang dist redelijk is Voldoet aan driehoeksongelijkheid Symmetrisch en dist(x,x)=0 Anders wordt het probleem veel moeilijker: geen constante benaderingsfactor mogelijk in polynomiale tijd, tenzij P=NP Er bestaat geen polynomiale tijd algoritme met benaderingsfactor beter dan 2, tenzij P=NP 28

29 Verdieping (2) Stel: R ligt vast is en we willen het minimum aantal ophaalpunten bepalen: Punten bedekken met schijven van radius R Variant van bekende Set Cover probleem 29 Gegeven een verzameling U, en een verzameling F van deelverzamelingen van U, vind een kleinste deelverzameling van F zdd dat heel U bedekt wordt In dit geval, U=A en F = {door schijf S overdekte elementen in A schijven S} log U -benaderingsalgoritme in het algemeen (lees algoritme in boek)

30 Handelsreizigerprobleem LOGISTIEK DEEL 2 30

31 Handelsreizigersprobleem Gegeven: steden 1, n. Voor elk paar steden i, j, een afstand d(i,j) Gevraagd: wat is de kortste route die in stad 1 begint, elke stad precies 1 keer bezoekt en weer in stad 1 eindigt? Optimalisering

32 Geval 1: driehoeksongelijkheid Stel d(i,j) d(i,k) + d(k,i) voor alle i,j,k Stelling: Er is een polynomiale tijd, 2- benaderingsalgoritme voor Handelsreiziger met driehoeksongelijkheid Techniek: een ondergrens voor het optimum vinden Vaak impliciet in de analyse, hier expliciet Bewijs: het bord-bewijs staat in het boek ook goed uitgelegd 32

33 Geval 2: geen driehoeksong. Stelling: Voor iedere constante c: er is geen c- benaderingsalgoritme voor het Handelsreizigersprobleem zonder driehoeksong., tenzij P=NP Idee: Reductie van Hamiltonian Circuit Gegeven: Ongerichte graaf G=(N,A). Gevraagd: Is er een cycle in G, die elke knoop in G precies een keer bezoekt? Bewijs: het bord-bewijs staat in het boek ook goed uitgelegd Een graaf met een Hamiltonian circuit 33

34 Verdieping (1) Dit is een gap-introducing reduction Een gat in de benaderingsfactor ter grootte c Er bestaan ook gap-preserving reductions Speciale polynomiale reducties, specifiek om benaderingsfactoren te bewaren Er zijn veel ondergrensbewijzen 34

35 Verdieping (2) Er bestaat een mooi (3/2)-benaderingsalgoritme voor Handelsreiziger met driehoeksongelijkheid Christofides_algorithm Euclidische geval: Benaderingsfactor (1+ε) mogelijk in polynomiale tijd voor iedere vaste ε PTAS (Polynomial-Time Approximation Scheme) 35

36 Verdieping (3) Veel onderzoek naar exacte algoritmen voor Handelsreiziger Werkt zelfs met tienduizenden steden vaak zonder grote problemen Praktisch Veel bedrijven leveren software die dit doet 36

37 Verdieping (4) Er bestaan benaderingsalgoritmes die in exponentiële tijd lopen En ondergrensbewijzen voor zulke algoritmes! Er bestaan benaderingsalgoritmes voor problemen die in polynomiale tijd oplosbaar zijn Snel een redelijke oplossing op big data Er bestaan benaderingsalgoritmes met een additieve (ipv multiplicatieve) benaderingsfactor 37

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

Heuristieken en benaderingsalgoritmen. Algoritmiek

Heuristieken en benaderingsalgoritmen. Algoritmiek Heuristieken en benaderingsalgoritmen Wat te doen met `moeilijke optimaliseringsproblemen? Voor veel problemen, o.a. optimaliseringsproblemen is geen algoritme bekend dat het probleem voor alle inputs

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

Hoofdstuk 17: Approximation Algorithms

Hoofdstuk 17: Approximation Algorithms Hoofdstuk 17: Approximation Algorithms Overzicht: Vorige week: Π NP-volledig Π waarschijnlijk niet polynomiaal oplosbaar 2 opties: 1 Optimaal oplossen, niet in polynomiale tijd (B&B, Cutting planes) 2

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

Uitwerking tentamen Analyse van Algoritmen, 29 januari

Uitwerking tentamen Analyse van Algoritmen, 29 januari Uitwerking tentamen Analyse van Algoritmen, 29 januari 2007. (a) De buitenste for-lus kent N = 5 iteraties. Na iedere iteratie ziet de rij getallen er als volgt uit: i rij na i e iteratie 2 5 4 6 2 2 4

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Netwerkstroming Toepassingen in Logistiek Video-streaming Subroutine in algoritmen 2 Vandaag Netwerkstroming: wat was dat ook alweer? Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Vandaag Kortste Paden probleem All pairs / Single Source / Single Target versies DP algoritme voor All Pairs probleem (Floyd s algoritme) Dijkstra s algoritme voor Single Source Negatieve

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

NP-volledigheid. Algoritmiek

NP-volledigheid. Algoritmiek NP-volledigheid Polynomiale algoritmen of moeilijke problemen? Algoritme A is polynomiaal, als er een constante c bestaat, zodat het algoritme bij inputs van formaat n O(n c ) tijd gebruikt. Sommige problemen

Nadere informatie

Tentamen combinatorische optimalisatie Tijd:

Tentamen combinatorische optimalisatie Tijd: Tentamen combinatorische optimalisatie 26-05-2014. Tijd: 9.00-11.30 Tentamen is met gesloten boek. Beschrijf bij elke opgave steeds het belangrijkste idee. Notatie en exacte formulering is van minder belang.

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober 2015 1 / 25 Definitie Een boom is een samenhangende

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 maart 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 21 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 21 oktober 2015 1 / 20 Deze week: algoritmes en complexiteit

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi NP-Volledigheid Wil zo snel mogelijke algoritmes om problemen op te lossen Gezien: selectie [O(n)], DFS [O(n + m)], MaxFlow [O nm n + m ], MST [O(n + m)], etc De looptijd is polynomiaal: O n k - dat is

Nadere informatie

Minimum Opspannende Bomen. Algoritmiek

Minimum Opspannende Bomen. Algoritmiek Minimum Opspannende Bomen Inhoud Het minimum opspannende bomen probleem Een principe om een minimum opspannende boom te laten groeien Twee greedy algoritmen + tijd en datastructuren: Het algoritme van

Nadere informatie

Fundamentele Informatica

Fundamentele Informatica Fundamentele Informatica (IN3120 en IN3005 DOI nwe stijl) 20 augustus 2004, 9.00 11.00 uur Het tentamen IN3120 bestaat uit 10 meerkeuzevragen en 2 open vragen. Voor de meerkeuzevragen kunt u maximaal 65

Nadere informatie

Elfde college complexiteit. 23 april NP-volledigheid III

Elfde college complexiteit. 23 april NP-volledigheid III college 11 Elfde college complexiteit 23 april 2019 NP-volledigheid III 1 TSP Als voorbeeld bekijken we het Travelling Salesman/person Problem, ofwel het Handelsreizigersprobleem TSP. Hiervoor geldt: TSP

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

Tiende college algoritmiek. 2 mei Gretige algoritmen, Dijkstra

Tiende college algoritmiek. 2 mei Gretige algoritmen, Dijkstra College 10 Tiende college algoritmiek mei 013 Gretige algoritmen, Dijkstra 1 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag van n (n 0) eurocent. Alle

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

Samenvatting college 1-12

Samenvatting college 1-12 Samenvatting college 1-12 Probleemformulering Duidelijk definiëren van beslissingsvariabelen Zinvolle namen voor variabelen bv x ij voor ingrediënt i voor product j, niet x 1,..., x 20 Beschrijving van

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

Tiende college algoritmiek. 4 mei Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 4 mei Gretige Algoritmen Algoritme van Dijkstra Tiende college algoritmiek mei 018 Gretige Algoritmen Algoritme van Dijkstra 1 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag van n (n 0) eurocent. Alle

Nadere informatie

Hoofdstuk 13: Integer Lineair Programmeren

Hoofdstuk 13: Integer Lineair Programmeren Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem

Nadere informatie

Greedy algoritmes. Algoritmiek

Greedy algoritmes. Algoritmiek Greedy algoritmes Algoritmiek Algoritmische technieken Trucs, methoden, paradigma s voor het ontwerpen van algoritmen Dynamisch Programmeren Divide & Conquer Greedy 2 Greedy algoritme Bouwt de oplossing

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 11 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 11 november 2015 1 / 22 Mededelingen Huiswerk 2 nagekeken Terug

Nadere informatie

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur

Tentamen IN3105. Complexiteitstheorie. 16 april 2012, uur Faculteit Elektrotechniek, Wiskunde en Informatica Ti Delft Tentamen IN3105 Complexiteitstheorie 16 april 2012, 9.00-12.00 uur Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open

Nadere informatie

Minimum Spanning Tree

Minimum Spanning Tree Minimum Spanning Tree Wat is MST? Minimum spanning tree De meest efficiënte manier vinden om een verbonden netwerk op te bouwen Wat is een tree/boom? Graaf G: een verzameling knopen (vertices): V een verzameling

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december 2015 1 / 13 Vraag Wat moet ik kennen en kunnen voor

Nadere informatie

Tentamen IN3105 Complexiteitstheorie

Tentamen IN3105 Complexiteitstheorie Tentamen IN3105 Complexiteitstheorie 31 maart, 9.00 12.00 uur - Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open vragen. - Per meerkeuzevraag kunnen 0 tot 4 alternatieven juist

Nadere informatie

Tiende college algoritmiek. 14 april Gretige algoritmen

Tiende college algoritmiek. 14 april Gretige algoritmen College 10 Tiende college algoritmiek 1 april 011 Gretige algoritmen 1 Greedy algorithms Greed = hebzucht Voor oplossen van optimalisatieproblemen Oplossing wordt stap voor stap opgebouwd In elke stap

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Vierde college complexiteit. 26 februari Beslissingsbomen en selectie Toernooimethode Adversary argument

Vierde college complexiteit. 26 februari Beslissingsbomen en selectie Toernooimethode Adversary argument Complexiteit 2019/04 College 4 Vierde college complexiteit 26 februari 2019 Beslissingsbomen en selectie Toernooimethode Adversary argument 1 Complexiteit 2019/04 Zoeken: samengevat Ongeordend lineair

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

Uitgebreide uitwerking Tentamen Complexiteit, mei 2007

Uitgebreide uitwerking Tentamen Complexiteit, mei 2007 Uitgebreide uitwerking Tentamen Complexiteit, mei 007 Opgave. a. Een beslissingsboom beschrijft de werking van het betreffende algoritme (gebaseerd op arrayvergelijkingen) op elke mogelijke invoer. In

Nadere informatie

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument Complexiteit 2017/05 College 5 Vijfde college complexiteit 21 februari 2017 Selectie Toernooimethode Adversary argument 1 Complexiteit 2017/05 Opgave 28 Gegeven twee oplopend gesorteerde even lange rijen

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Tiende college algoritmiek. 26 april Gretige algoritmen

Tiende college algoritmiek. 26 april Gretige algoritmen Algoritmiek 01/10 College 10 Tiende college algoritmiek april 01 Gretige algoritmen 1 Algoritmiek 01/10 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde II op donderdag 6 juli 2017, 13.30-16.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Divide & Conquer: Verdeel en Heers vervolg. Algoritmiek

Divide & Conquer: Verdeel en Heers vervolg. Algoritmiek Divide & Conquer: Verdeel en Heers vervolg Algoritmiek Algoritmische technieken Vorige keer: Divide and conquer techniek Aantal toepassingen van de techniek Analyse met Master theorem en substitutie Vandaag:

Nadere informatie

Branch-and-Bound en Cutting Planes

Branch-and-Bound en Cutting Planes Branch-and-Bound en Cutting Planes Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

Achtste college complexiteit. 2 april Polynoomevaluatie Matrixvermenigvuldiging Euler- en Hamiltonkringen

Achtste college complexiteit. 2 april Polynoomevaluatie Matrixvermenigvuldiging Euler- en Hamiltonkringen College 8 Achtste college complexiteit 2 april 2019 Polynoomevaluatie Matrixvermenigvuldiging Euler- en Hamiltonkringen 1 Polynoomevaluatie Zij p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0 een polynoom

Nadere informatie

Elfde college algoritmiek. 18 mei Algoritme van Dijkstra, Heap, Heapify & Heapsort

Elfde college algoritmiek. 18 mei Algoritme van Dijkstra, Heap, Heapify & Heapsort Algoritmiek 018/Algoritme van Dijkstra Elfde college algoritmiek 18 mei 018 Algoritme van Dijkstra, Heap, Heapify & Heapsort 1 Algoritmiek 018/Algoritme van Dijkstra Uit college 10: Voorb. -1- A B C D

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde op donderdag 13 april 2017, 14.30-17.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Tentamen TI3300 / IN3105 Complexiteitstheorie

Tentamen TI3300 / IN3105 Complexiteitstheorie Tentamen TI3300 / IN3105 Complexiteitstheorie 24 juni 2013, 9.00-12.00 uur - Dit tentamen bestaat uit 10 meerkeuzevragen, 5 korte (open) vragen en 2 open vragen. - Voor de meerkeuzevragen kunt u maximaal

Nadere informatie

Oefententamen in2505-i Algoritmiek

Oefententamen in2505-i Algoritmiek TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Oefententamen in2505-i Algoritmiek Maart 2007 Het gebruik van boek of aantekeningen tijdens dit tentamen is niet toegestaan.

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet

Nadere informatie

Discrete Wiskunde, College 12. Han Hoogeveen, Utrecht University

Discrete Wiskunde, College 12. Han Hoogeveen, Utrecht University Discrete Wiskunde, College 12 Han Hoogeveen, Utrecht University Dynamische programmering Het basisidee is dat je het probleem stap voor stap oplost Het probleem moet voldoen aan het optimaliteitsprincipe

Nadere informatie

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 10 Begrensde variabelen Han Hoogeveen, Utrecht University Begrensde variabelen (1) In veel toepassingen hebben variabelen zowel een ondergrens als een bovengrens:

Nadere informatie

ALGORITMIEK: antwoorden werkcollege 5

ALGORITMIEK: antwoorden werkcollege 5 ALGORITMIEK: antwoorden werkcollege 5 opgave 1. a. Brute force algoritme, direct afgeleid uit de observatie: loop v.l.n.r. door de tekst; als je een A tegenkomt op plek i (0 i < n 1), loop dan van daaruit

Nadere informatie

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3 Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3 Koen Rutten, Aris van Dijk 30 mei 2007 Inhoudsopgave 1 Verzamelingen 2 1.1 Definitie................................ 2 1.2 Eigenschappen............................

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

8C080 deel BioModeling en bioinformatica

8C080 deel BioModeling en bioinformatica Vijf algemene opmerkingen Tentamen Algoritmen voor BIOMIM, 8C080, 13 maart 2009, 09.00-12.00u. Het tentamen bestaat uit 2 delen, een deel van BioModeling & bioinformatics en een deel van BioMedische Beeldanalyse.

Nadere informatie

Uitgebreide uitwerking Tentamen Complexiteit, juni 2018

Uitgebreide uitwerking Tentamen Complexiteit, juni 2018 Uitgebreide uitwerking Tentamen Complexiteit, juni 018 Opgave 1. a. Een pad van de wortel naar een blad stelt de serie achtereenvolgende arrayvergelijkingen voor die het algoritme doet op zekere invoer.

Nadere informatie

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen.

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen. Discrete modellen in de toegepaste wiskunde (WISB6) Uitwerkingen proeftentamen. Docent: Rob H. Bisseling april 202. Begin met een matching M = {x y, x y, x 6 y 6 } aangegeven door de vette lijnen. x De

Nadere informatie

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA?

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA? Algoritmes en Priemgetallen Hoe maak je een sleutelpaar voor RSA? Het recept van RSA Kies p q priemgetallen en bepaal N = pq Kies e Z N (publieke sleutel) Bepaal d e 1 mod φ N (privésleutel) x ed x kφ

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

Vijfde college algoritmiek. 2/3 maart Exhaustive search

Vijfde college algoritmiek. 2/3 maart Exhaustive search Vijfde college algoritmiek 2/3 maart 2017 Exhaustive search 1 Voor- en nadelen Brute force: Voordelen: - algemeen toepasbaar - eenvoudig - levert voor een aantal belangrijke problemen (zoeken, patroonherkenning)

Nadere informatie

ALGORITMIEK: antwoorden werkcollege 5

ALGORITMIEK: antwoorden werkcollege 5 1 ALGORITMIEK: antwoorden werkcollege 5 opgave 1. a. Brute force algoritme, direct afgeleid uit de observatie: loop v.l.n.r. door de tekst; als je een A tegenkomt op plek i (0 i < n 1), loop dan van daaruit

Nadere informatie

ALGORITMIEK: antwoorden werkcollege 5

ALGORITMIEK: antwoorden werkcollege 5 ALGORITMIEK: antwoorden werkcollege 5 opgave 1. a. Brute force algoritme, direct afgeleid uit de observatie: loop v.l.n.r. door de tekst; als je een A tegenkomt op plek i (0 i < n 1), loop dan van daaruit

Nadere informatie

Uitgebreide uitwerking Tentamen Complexiteit, juni 2017

Uitgebreide uitwerking Tentamen Complexiteit, juni 2017 Uitgebreide uitwerking Tentamen Complexiteit, juni 017 Opgave 1. a. Een pad van de wortel naar een blad stelt de serie achtereenvolgende arrayvergelijkingen voor die het algoritme doet op zekere invoer.

Nadere informatie

Transport, Routing- en Schedulingproblemen. ir. H.N. Post

Transport, Routing- en Schedulingproblemen. ir. H.N. Post Transport, Routing- en Schedulingproblemen ir. H.N. Post 1 mei 2006 Inhoudsopgave 1 Kortste pad probleem 7 1.1 Definities...................................... 7 1.2 Basisalgoritme...................................

Nadere informatie

Vierde college algoritmiek. 2 maart Toestand-actie-ruimte Exhaustive Search

Vierde college algoritmiek. 2 maart Toestand-actie-ruimte Exhaustive Search Algoritmiek 2018/Toestand-actie-ruimte Vierde college algoritmiek 2 maart 2018 Toestand-actie-ruimte Exhaustive Search 1 Algoritmiek 2018/Toestand-actie-ruimte Kannen Voorbeeld 4: Kannenprobleem We hebben

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

Datastructuren en Algoritmen

Datastructuren en Algoritmen Datastructuren en Algoritmen Tentamen Vrijdag 6 november 2015 13.30-16.30 Toelichting Bij dit tentamen mag je gebruik maken van een spiekbriefje van maximaal 2 kantjes. Verder mogen er geen hulpmiddelen

Nadere informatie

RAF belangrijk te onthouden

RAF belangrijk te onthouden RAF belangrijk te onthouden Auteur: Daan Pape Hoofdstuk 1 symbool omschrijving lees als negatie (ontkenning) p niet p het is niet zo dat p conjunctie p q p en q disjunctie p q p of q implicatie p q als

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 20 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Doorzoeken van grafen. Algoritmiek

Doorzoeken van grafen. Algoritmiek Doorzoeken van grafen Algoritmiek Vandaag Methoden om door grafen te wandelen Depth First Search Breadth First Search Gerichte Acyclische Grafen en topologische sorteringen 2 Doolhof start eind 3 Depth

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

Negende college complexiteit. 9 april NP-volledigheid I: introductie

Negende college complexiteit. 9 april NP-volledigheid I: introductie College 9 Negende college complexiteit 9 april 2019 NP-volledigheid I: introductie 1 Handelbaar/onhandelbaar -1- N 10 50 100 300 1000 log 2 N 3 5 6 8 9 5N 50 250 500 1500 5000 N log 2 N 33 282 665 2469

Nadere informatie

Elfde college algoritmiek. 10 mei Algoritme van Dijkstra, Gretige Algoritmen

Elfde college algoritmiek. 10 mei Algoritme van Dijkstra, Gretige Algoritmen lgoritmiek 019/lgoritme van ijkstra lfde college algoritmiek 10 mei 019 lgoritme van ijkstra, Gretige lgoritmen 1 lgoritmiek 019/ynamisch programmeren Programmeeropdracht 3 Lange Reis 0 10 10 1 1 100 0

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2003 1 Docenten Onderdeel a Er zijn 6 vakken V 1, V 2,..., V 6. Vak V j heeft een vraag b j = 1, voor j = 1, 2,...,

Nadere informatie

Geheeltallige programmering

Geheeltallige programmering Geheeltallige programmering In een LP probleem zijn alle variabelen reëel. In een geheeltallig probleem blijven doelfunctie en constraints lineair, maar zijn de variabelen geheeltallig. LP: IP: BIP: MIP:

Nadere informatie

Oefententamen in2505-i Algoritmiek

Oefententamen in2505-i Algoritmiek TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Oefententamen in2505-i Algoritmiek Maart 2007 Het gebruik van boek of aantekeningen tijdens dit tentamen is niet toegestaan.

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2010 2011, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Onderwerpen. Punten en lijnen, postbodes en handelsreizigers. Theorie. Theorie (2) Graaftheorie. Een mini-inleiding graaftheorie

Onderwerpen. Punten en lijnen, postbodes en handelsreizigers. Theorie. Theorie (2) Graaftheorie. Een mini-inleiding graaftheorie Onderwerpen Punten en lijnen, postbodes en handelsreizigers Een mini-inleiding graaftheorie Graaftheorie Herman Geuvers Euler en de postbode Radboud Universiteit Nijmegen 9 februari 2019 met dank aan Engelbert

Nadere informatie

Optimalisering/Besliskunde 1. College 1 6 september, 2012

Optimalisering/Besliskunde 1. College 1 6 september, 2012 Optimalisering/Besliskunde 1 College 1 6 september, 2012 Algemene informatie College: donderdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft vragenuur Delft Vier verplichte huiswerkopgaven

Nadere informatie

Zevende college algoritmiek. 24 maart Verdeel en Heers

Zevende college algoritmiek. 24 maart Verdeel en Heers Zevende college algoritmiek 24 maart 2016 Verdeel en Heers 1 Verdeel en heers 1 Divide and Conquer 1. Verdeel een instantie van het probleem in twee (of meer) kleinere instanties 2. Los de kleinere instanties

Nadere informatie

1 Vervangingsstrategie auto

1 Vervangingsstrategie auto Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2002 1 Vervangingsstrategie auto Onderdeel a Zij V = {0, 1, 2, 3, 4, 5, 6}, waarbij knoop i staat voor het einde

Nadere informatie

De statespace van Small World Networks

De statespace van Small World Networks De statespace van Small World Networks Emiel Suilen, Daan van den Berg, Frank van Harmelen epsuilen@few.vu.nl, daanvandenberg1976@gmail.com, Frank.van.Harmelen@cs.vu.nl VRIJE UNIVERSITEIT AMSTERDAM 2 juli

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2012 2013, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

Datastructuren en algoritmen voor CKI

Datastructuren en algoritmen voor CKI Datastructuren en algoritmen voor CKI Jeroen Bransen 1 11 september 2015 1 met dank aan Hans Bodlaender en Gerard Tel Heaps en heapsort Heap 1 2 3 4 5 6 7 8 9 10 16 14 10 8 7 9 3 2 4 1 16 14 10 8 7 9 3

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

D-dag 2014 Vrijeschool Zutphen VO. D -DAG 13 februari 2014: 1+ 1 = 2. (en hoe nu verder?) 1 = 2en hoe nu verder?

D-dag 2014 Vrijeschool Zutphen VO. D -DAG 13 februari 2014: 1+ 1 = 2. (en hoe nu verder?) 1 = 2en hoe nu verder? D -DAG 13 februari 2014: 1+ 1 = 2 (en hoe nu verder?) 1 = 2en hoe nu verder? 1 Inleiding Snel machtsverheffen Stel je voor dat je 7 25 moet uitrekenen. Je weet dat machtsverheffen herhaald vermenigvuldigen

Nadere informatie