Automaten & Complexiteit (X )

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Automaten & Complexiteit (X )"

Transcriptie

1 Automaten & Complexiteit (X ) Beschrijven van reguliere talen Jeroen Keiren VU University Amsterdam 5 Februari 2015

2 Talen Vorig college: Talen als verzamelingen Eindige automaten: deterministisch en nondeterministisch Taal L is regulier L geaccepteerd door een dfa Taal L is regulier L geaccepteerd door een nfa 3 / 31

3 Grammatica s Een grammatica definieert een taal. Toepassingsgebieden zijn natuurlijke taal, kunstmatige intelligentie en syntax van programmeertalen. Voorbeeld zin lidw znw werkw lidw znw lidw de lidw een znw boer znw koe werkw melkt Met deze spelregels kun je een zin bouwen. 4 / 31

4 Grammatica s Voorbeeld de boer melkt een koe is een zin in de taal. zin lidw znw werkw lidw znw de znw werkw lidw znw de boer werkw lidw znw de boer melkt lidw znw de boer melkt een znw de boer melkt een koe Bijv. een koe melkt de boer is ook een zin in de taal. 5 / 31

5 Grammatica s Een grammatica G = (V, T, S, P) bestaat uit: eindige verzameling V van variabelen (in het voorbeeld: zin, lidw, znw, werkw ) eindige verzameling T van terminals (in het voorbeeld: de, een, boer, koe, melkt) symbool S V, de startvariabele (in het voorbeeld: zin ) eindige verzameling P van producties x y met x (V T ) + y (V T ) (meestal en in het voorbeeld: x V ) 6 / 31

6 Taal gegenereerd door een grammatica Als x y een productie in P is, dan is er voor elke u, v (V T ) een afleidingsstap uxv uyv Er is een afleiding u v (resp. u + v) als v uit u verkregen kan worden door nul (resp. één) of meer afleidingsstappen. Voor een grammatica G = (V, T, S, P) is de taal gegenereerd door G. L(G) = {w T S + w} 7 / 31

7 Taal gegenereerd door een grammatica Voorbeeld G = ({S}, {a, b}, S, P), waarbij P bestaat uit S asb S λ Dan geldt: L(G) = {a n b n n 0}. Vraag Geef een grammatica G zo dat L(G) = {a, b} {c}{b, c}. 8 / 31

8 Notationele conventies voor grammatica s Bij het definiëren van G = (V, T, S, P) gebruiken we hoofdletters voor variabelen en kleine letters voor terminals. We specificeren daarom vaak alleen de producties. Voorbeeld G 1 G 2 S Ab S asb A aab S b A λ L(G 1 ) = L(G 2 ) = {a n b n+1 n 0}. 9 / 31

9 B(ackus) N(aur) F(orm) Zet variabelen tussen en. Voorbeeld stm var := expr stm stm ; stm stm begin stm end stm if cond then stm else stm stm if cond then stm stm while cond do stm cond var expr Schrijf var ::= x y z in plaats van var x var y var z 10 / 31

10 Rechts-lineaire grammatica s Een grammatica G = (V, T, S, P) heet rechts-lineair als er alleen producties zijn van de vorm met A, B V en u T. A ub en A u Vraag Geef een rechts-lineaire grammatica G zo dat L(G) = {a, b} {aa}{b} 11 / 31

11 Rechts-lineaire grammatica s reguliere talen Stelling Taal L is regulier er is een rechts-lineaire grammatica G met L(G) = L Constructie ( = ) Voor elke rechts-lineaire grammatica G = (V, T, S, P) is er een nfa M = (Q, Σ, δ, q 0, F ) met L(M) = L(G). Σ = T V {A f } Q, met A f V. Voor elke rechterkant a 1 a n B (resp. a 1 a n ) in P met n 1 zit a i+1 a n B (resp. a i+1 a n A f ) in Q voor i = 1,..., n. q 0 = S F = {A f } 12 / 31

12 Rechts-lineaire grammatica s naar nfa s Voor elke productie in P van de vorm A a 1 a n B A a 1 a n met n 1 introduceren we in M pijlen A a 1 a 2 a n B a 2 a n B A a 1 a a 2 a n A 2 a f n Af Voor producties A B en A λ in P introduceren we pijlen A λ B A λ A f Er bestaat een afleiding in G van S naar u T dan en slechts dan als er een pad is in M van S naar A f met als labels achtereenvolgens de elementen van u. Oftewel, L(G) = L(M). 13 / 31

13 Vraag Geef een nfa die de taal accepteert die wordt gegenereerd door S at T abs b 14 / 31

14 Vraag Hoe kunnen we bij een nfa een equivalente rechts-lineaire grammatica bouwen? 15 / 31

15 Nfa s naar rechts-lineaire grammatica s Constructie ( ) Voor elke nfa M = (Q, Σ, δ, q 0, F ) is er een rechts-lineaire grammatica G = (V, T, S, P) met L(G) = L(M). V = Q en T = Σ en S = q 0. P bevat voor elke r δ(q, a) (of r δ(q, λ)) een productie en voor elke q F een productie q ar (of q r) q λ Er is een afleiding in G van S naar u T dan en slechts dan als er een pad is in M van S naar een toestand in F met als labels achtereenvolgens de elementen van u. Oftewel, L(G) = L(M). 16 / 31

16 Vraag Geef een rechts-lineaire grammatica die genereert. L({ab}({a} {cb}) {b}) 17 / 31

17 Links-lineaire grammatica s Een grammatica G = (V, T, S, P) heet links-lineair als er alleen producties zijn van de vorm met A, B V en u T. A Bu en A u Stelling Een taal L is regulier er is een links-lineaire grammatica G met L(G) = L. Dit volgt uit het feit dat L R regulier is voor reguliere talen L. 18 / 31

18 Links-lineaire grammatica s Rechts- en links-lineaire producties tezamen genereren niet altijd een reguliere taal. Voorbeeld G is de grammatica S aa A Sb S λ L(G) = {a n b n n 0} is niet regulier. 19 / 31

19 Reguliere expressies We definiëren de reguliere expressies over een input alfabet Σ: is een reguliere expressie λ is een reguliere expressie a is een reguliere expressie voor alle a Σ r 1 + r 2 is een reguliere expressie voor alle reg. expr. r 1 en r 2 r 1 r 2 is een reguliere expressie voor alle reg. expr. r 1 en r 2 r is een reguliere expressie voor alle reg. expr. r Elke reguliere expressie r definieert een taal L(r): L( ) = L(λ) = {λ} L(a) = {a} (a Σ) L(r 1 + r 2 ) = L(r 1 ) L(r 2 ) L(r 1 r 2 ) = L(r 1 )L(r 2 ) L(r ) = L(r) 20 / 31

20 Source: xkcd.com 21 / 31

21 Reguliere expressies Voorbeeld L((a + b) c ) = {a, b}{c} Reguliere expressies worden gebruikt om patronen in een stuk tekst te zoeken en manipuleren (bijv. grep in Unix). Script-talen Perl en Tcl/Tk zijn gebaseerd op reguliere expressies. Vraag Geef een reguliere expressie r over {a, b} zo dat L(r) uit de strings bestaat die het patroon bab bevatten. 22 / 31

22 Reguliere expressies corresponderen met reguliere talen Stelling Een taal L is regulier er is een reguliere expressie r met L(r) = L. Constructie Voor elke reguliere expressie r is er een nfa M met L(M) = L(r). We construeren inductief voor elke een reguliere expressie een nfa met dezelfde bijbehorende taal. Deze nfa heeft één eindtoestand, verschillend van de starttoestand. 23 / 31

23 Reguliere expressie naar nfa (1) λ λ a a λ r 1 λ r 1 + r 2 λ r 2 λ r 1 r 2 r 1 λ r 2 24 / 31

24 Reguliere expressie naar nfa (2) λ r λ r λ λ ((a ) b) laat zien dat de nieuwe begintoestand noodzakelijk is. (a (b )) laat zien dat de nieuwe eindtoestand noodzakelijk is. 25 / 31

25 nfa naar reguliere expressie (1) Voor elke nfa M is er een reguliere expressie r met L(r) = L(M). Voeg (als er meerdere eindtoestanden zijn) een nieuwe toestand q toe, en uit elke eindtoestand in M een pijl naar q met label λ. Laat alleen q eindtoestand zijn. We zetten nfa M met #F = 1 om in een reguliere expressie r met L(r) = L(M). We gebruiken gegeneraliseerde transitiegrafen, met reguliere expressies als labels van pijlen. Als er twee pijlen zijn van een q 1 naar een q 2, met labels r 1 en r 2, vervang deze dan door één pijl met label r 1 + r / 31

26 nfa naar reguliere expressie (2) Als er behalve q 0 en de eindtoestand nog andere toestanden zijn, verwijder dan één andere toestand q als volgt. Voeg voor elke pijl van een toestand q 1 naar q met label r 1 en voor elke pijl van q naar een toestand q 2 met label r 2 een nieuwe pijl toe van q 1 naar q 2 met label r 1 r 2 als er geen pijl is van q naar q, of met label r 1 r r 2 als de pijl van q naar q label r heeft. 27 / 31

27 nfa naar reguliere expressie (3) Als F {q 0 }, dan is de gegeneraliseerde transitiegraaf uiteindelijk van de vorm r 1 r 4 q 0 r 2 (eventueel met r 1, r 2, r 3 of r 4 gelijk aan ). L(r1 r 2 (r 4 + r 3 r1 r 2 ) ) = L(M) r 3 Vraag Welke gegeneraliseerde transitiegraaf en reguliere expressie krijgen we uiteindelijk in het geval dat F = {q 0 }? 28 / 31

28 Vraag Geef een reguliere expressie r zo dat L(r) = {w {a, b} n a (w) even en n b (w) oneven} met n a (w) en n b (w) respectievelijk het aantal a s en b s in w. 29 / 31

29 Alternatieve beschrijvingen van reguliere talen De volgende beweringen zijn equivalent: er is een dfa M met L(M) = L er is een nfa M met L(M) = L er is een rechts-lineaire grammatica G met L(G) = L er is een links-lineaire grammatica G met L(G) = L er is een reguliere expressie r met L(r) = L 30 / 31

30 Vooruit kijken Lees: Linz 1.2, Maak: Linz 1.2: 11a,b,c, 13, 14a,b,e,f,h Linz 3.1: 5, 7, 13, 16,a,b Linz 3.2: 1, 2, 4b,d, 9, 10a,c, 13a Linz 3.3: 1, 3, 6, 12 Volgend college: Eigenschappen van reguliere talen 31 / 31

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

Formeel Denken. Herfst 2004

Formeel Denken. Herfst 2004 Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 2002 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen Herfst 2004 Contents 1 Talen 1 1.1

Nadere informatie

3 De stelling van Kleene

3 De stelling van Kleene 18 3 De stelling van Kleene Definitie 3.1 Een formele taal heet regulier als hij wordt herkend door een deterministische eindige automaat. Talen van de vorm L(r) met r een reguliere expressie noemen we

Nadere informatie

Inhoud eindtoets. Eindtoets. Introductie 2. Opgaven 3. Terugkoppeling 6

Inhoud eindtoets. Eindtoets. Introductie 2. Opgaven 3. Terugkoppeling 6 Inhoud eindtoets Eindtoets Introductie 2 Opgaven 3 Terugkoppeling 6 1 Formele talen en automaten Eindtoets I N T R O D U C T I E Deze eindtoets is bedoeld als voorbereiding op het tentamen van de cursus

Nadere informatie

Reguliere Expressies

Reguliere Expressies Reguliere Expressies Een reguliere expressie (regexp, regex, regxp) is een string (een woord) die, volgens bepaalde syntaxregels, een verzameling strings (een taal) beschrijft Reguliere expressies worden

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 13 november 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Fundamenten van de Informatica

Fundamenten van de Informatica Fundamenten van de Informatica Luc De Raedt Academiejaar 2006-2007 naar de cursustekst van Karel Dekimpe en Bart Demoen A.1: Talen en Eindige Automaten 1 Deel 1: Inleiding 2 Motivatie Fundamenten van de

Nadere informatie

Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1

Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Bas Westerbaan bas@westerbaan.name 24 april 2012 1 Opgave 1.1 Een goed en voldoende antwoord is: L 1 = L 2, want L 1 en L 2 zijn alle woorden

Nadere informatie

c, X/X a, c/λ a, X/aX b, X/X

c, X/X a, c/λ a, X/aX b, X/X ANTWOORDEN tentamen FUNDAMENTELE INFORMATICA 3 vrijdag 25 januari 2008, 10.00-13.00 uur Opgave 1 L = {x {a,b,c} n a (x) n b (x)} {x {a,b,c} n a (x) n c (x)}. a. Een stapelautomaat die L accepteert: Λ,

Nadere informatie

opgaven formele structuren deterministische eindige automaten

opgaven formele structuren deterministische eindige automaten opgaven formele structuren deterministische eindige automaten Opgave. De taal L over het alfabet {a, b} bestaat uit alle strings die beginnen met aa en eindigen met ab. Geef een reguliere expressie voor

Nadere informatie

Taaltechnologie. Januari/februari Inhoud

Taaltechnologie. Januari/februari Inhoud Taaltechnologie Januari/februari 2002 1 Finite state............................................... 4 1.1 Deterministic finite state automata.................... 4 1.2 Non-deterministic finite state automata................

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 6A, paragraaf 4 (vervolg): Eindige automaten, gezien als multi-grafen Jan Terlouw woensdag 17 / donderdag 18 maart 2010 Het frame van

Nadere informatie

Semantische eigenschappen van XML-schematalen

Semantische eigenschappen van XML-schematalen transnationale Universiteit Limburg School voor Informatietechnologie Universiteit Hasselt Semantische eigenschappen van XML-schematalen Thesis voorgedragen tot het behalen van de graad van licentiaat

Nadere informatie

Fundamenten voor de Informatica

Fundamenten voor de Informatica Fundamenten voor de Informatica Bachelor Informatica Aanvullende Opleiding Informatica Academiejaar 25 26 K. Dekimpe K.U.Leuven Campus Kortrijk B. Demoen K.U.Leuven Dep. Computerwetenschappen Inhoudsopgave

Nadere informatie

Er zijn alle soorten modificaties hoe je deze FST beter kan maken. Bijvoorbeeld, door - teen van thirteen - nineteen in het algemeen te lezen.

Er zijn alle soorten modificaties hoe je deze FST beter kan maken. Bijvoorbeeld, door - teen van thirteen - nineteen in het algemeen te lezen. 3. FST Het antwoord is: Er zijn alle soorten modificaties hoe je deze FST beter kan maken. Bijvoorbeeld, door - teen van thirteen - nineteen in het algemeen te lezen. Het idee is duidelijk hoop ik: voor

Nadere informatie

rij karakters scanner rij tokens parser ontleedboom (filteren separatoren) (niet expliciet geconstrueerd) (+ add. inform.) (contextvrije analyse)

rij karakters scanner rij tokens parser ontleedboom (filteren separatoren) (niet expliciet geconstrueerd) (+ add. inform.) (contextvrije analyse) scanning and parsing 1/57 rij karakters scanner (filteren separatoren) rij tokens (+ add. inform.) (niet expliciet geconstrueerd) parser (contextvrije analyse) ontleedboom (parse tree) representeert syntactische

Nadere informatie

10. Controleopdrachten

10. Controleopdrachten Computeralgebra met Maxima 10. Controleopdrachten 10.1. Functies en operatoren voor lijsten/vectoren/arrays Een van de eenvoudigste maar belangrijkste lusachtige functies is de makelist opdracht. Voor

Nadere informatie

{ auteur, toelichting }

{ auteur, toelichting } Programmeren Blok A Trilogie van (programmeer)talen http://www.win.tue.nl/ wstomv/edu/ip0/ College Syntaxis (vormleer): Hoe ziet t eruit, hoe schrijf je t? Tom Verhoeff Technische Universiteit Eindhoven

Nadere informatie

Als een PSD selecties bevat, deelt de lijn van het programma zich op met de verschillende antwoorden op het vraagstuk.

Als een PSD selecties bevat, deelt de lijn van het programma zich op met de verschillende antwoorden op het vraagstuk. HOOFDSTUK 3 3.1 Stapsgewijs programmeren In de vorige hoofdstukken zijn programmeertalen beschreven die imperatief zijn. is het stapsgewijs in code omschrijven wat een programma moet doen, net als een

Nadere informatie

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c Een Minimaal Formalisme om te Programmeren We hebben gezien dat Turing machines beschouwd kunnen worden als universele computers. D.w.z. dat iedere berekening met natuurlijke getallen die met een computer

Nadere informatie

Hersenkrakers: De computer lost het voor je op

Hersenkrakers: De computer lost het voor je op Hersenkrakers: De computer lost het voor je op (Profielwerkstukthema gebaseerd op graaftransformaties) Hoe zet je acht koninginnen op een schaakbord, zodat ze elkaar niet kunnen slaan? Of hoe zorg je dat

Nadere informatie

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Module 4 Programmeren

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Module 4 Programmeren HOOFDSTUK 3 3.1 Stapsgewijs programmeren De programmeertalen die tot nu toe genoemd zijn, zijn imperatieve of procedurele programmeertalen. is het stapsgewijs in code omschrijven wat een programma moet

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

VAN HET PROGRAMMEREN. Inleiding

VAN HET PROGRAMMEREN. Inleiding OVERZICHT VAN HET PROGRAMMEREN Inleiding Als je leert programmeren lijkt het nogal overweldigend om die eerste stappen te doorworstelen. Er zijn dan ook heel wat programmeertalen (Java, Ruby, Python, Perl,

Nadere informatie

Reguliere Expressies

Reguliere Expressies Reguliere Expressies Theorie en praktijk Leerboek voor het VO Huub de Beer Eindhoven, 31 mei 2011 Inhoudsopgave 1 Inleiding: patronen en tekst 4 1.1 Patronen in tekst zijn belangrijk................ 4

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 2B Jan Terlouw woensdag 17 februari 2010 Deze handout sluit aan op handout 2A van maandag 15 februari. De gepresenteerde stof valt grotendeels

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Inhoud leereenheid 1. Introduction to the theory of computation. Introductie 13. Leerkern 15. Zelftoets 22. Terugkoppeling 23

Inhoud leereenheid 1. Introduction to the theory of computation. Introductie 13. Leerkern 15. Zelftoets 22. Terugkoppeling 23 Inhoud leereenheid 1 Introduction to the theory of computation Introductie 13 Leerkern 15 1 Mathematical preliminaries and notation 15 2 Three basic concepts 16 3 Some applications 19 4 Kennismaking met

Nadere informatie

compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken

compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken - belangrijkste punten: - ontleden van de programmatekst - bijhouden van de datastructuren Data Structuren en Algoritmen

Nadere informatie

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search Recapitulatie: Ongeïnformeerd zoeken Zoekalgoritmen (009 00) College : Ongeïnformeerd zoeken Peter de Waal, Tekst: Linda van der Gaag een algoritme voor ongeïnformeerd zoeken doorzoekt de zoekruimte van

Nadere informatie

Gebruik van command-line operating systems

Gebruik van command-line operating systems Gebruik van command-line operating systems Mattias Holm & Kristian Rietveld Overzicht - Waarom hier meer over leren? - Wat is een shell? - Hoe werkt een shell? - Pipes en redirectie - Handige utilities

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route Kosten Zoekalgoritmen (00 00) ollege 5: Zoeken met kosten Peter de Waal, Tekst: Linda van der aag Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd; ongemak;...

Nadere informatie

Samenvatting hst. 3 sec. 1-3

Samenvatting hst. 3 sec. 1-3 Samenvatting hst. 3 sec. 1-3 infixr 4 (< >) :: Parser a b! Parser a b! Parser a b (p < > q) xs = p xs ++ q xs infixl 6 () :: Parser a (b!c)! Parser a b! Parser a c (p q) xs = [(f b,zs) (f,ys)"p

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren Overzicht TI1300: Redeneren en Logica College 10: Verzamelingenleer Tomas Klos Algoritmiek Groep Colleges 1 2: Bewijstechnieken Colleges 3 9: Propositielogica Vandaag en morgen: Verzamelingenleer Colleges

Nadere informatie

inleiding theoretische informatica practicum 1 deadline woensdag 20 februari 2008 om uur

inleiding theoretische informatica practicum 1 deadline woensdag 20 februari 2008 om uur 1 Inleiding inleiding theoretische informatica 2007-2008 practicum 1 deadline woensdag 20 februari 2008 om 14.00 uur Dit practicum is een kennismaking met functioneel programmeren. Twee belangrijke functionele

Nadere informatie

Java Les 3 Theorie Herhaal structuren

Java Les 3 Theorie Herhaal structuren Java Les 3 Theorie Herhaal structuren Algemeen Een herhaal structuur een is programmeertechniek waarbij bepaalde Java instructies worden herhaald net zo lang tot een bepaalde voorwaarde is bereikt. Een

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

Implementatie van Programmeertalen (IPT) 4 mei 2001

Implementatie van Programmeertalen (IPT) 4 mei 2001 Informatica Instituut, Faculteit Wiskunde en Informatica, UU. In elektrosche vorm beschikbaar gemaakt door de TBC van A Eskwadraat. Het college IPT werd in 2000/2001 gegeven door Drs. A. Dijkstra en Drs.

Nadere informatie

Korte uitleg: Wat doet de shell met mijn commandoregel?

Korte uitleg: Wat doet de shell met mijn commandoregel? Korte uitleg: Wat doet de shell met mijn commandoregel? Het onderstaande is heel erg Bash gericht, maar geldt i.h.a. ook voor andere shells. Vooral als het om "begrip" gaat. Iedere regel die aan de shell

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Faculteit Elektrotechniek - Leerstoel ES Tentamen Schakeltechniek. Vakcode 5A050, 17 november 2004, 9:00u-12:00u

Faculteit Elektrotechniek - Leerstoel ES Tentamen Schakeltechniek. Vakcode 5A050, 17 november 2004, 9:00u-12:00u achternaam : voorletters : identiteitsnummer : opleiding : Tijdens dit tentamen is het gebruik van rekenmachine of computer niet toegestaan. Vul je antwoorden in op dit formulier. Je dient dit formulier

Nadere informatie

ω-automaten Martijn Houtepen, november 2008 Begeleider: R. Iemhoff

ω-automaten Martijn Houtepen, november 2008 Begeleider: R. Iemhoff ω-automaten Martijn Houtepen, 0208523 Begeleider: R. Iemhoff 26 november 2008 1 Inhoudsopgave 1 Inleiding 3 2 Eindige automaten 4 3 Büchi-automaten 4 3.1 Büchi-automaten........................... 4 3.2

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015

Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015 AI Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015 www.liacs.leidenuniv.nl/ kosterswa/ai/ 1 Introductie

Nadere informatie

Derde college algoritmiek. 23 februari Toestand-actie-ruimte

Derde college algoritmiek. 23 februari Toestand-actie-ruimte College 3 Derde college algoritmiek 23 februari 2012 Toestand-actie-ruimte 1 BZboom: verwijderen 60 20 80 10 40 70 100 1 15 30 75 5 25 35 100 verwijderen = 60 20 80 10 40 70 1 15 30 75 5 25 35 verwijderen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a. 98 Algebra 3.3 Variabelen 3.3.1 Inleiding F= 9 5 15+32= 27+32=59 15 C= 59 F In de inleidende tekst aan het begin van dit hoofdstuk staat een afkorting waarmee de temperatuur in graden Celsius in graden

Nadere informatie

Zelftest Inleiding Programmeren

Zelftest Inleiding Programmeren Zelftest Inleiding Programmeren Document: n0824test.fm 22/01/2013 ABIS Training & Consulting P.O. Box 220 B-3000 Leuven Belgium TRAINING & CONSULTING INLEIDING BIJ DE ZELFTEST INLEIDING PROGRAMMEREN Deze

Nadere informatie

17 Operaties op bits. 17.1 Bitoperatoren en bitexpressies

17 Operaties op bits. 17.1 Bitoperatoren en bitexpressies 17 Operaties op bits In hoofdstuk 1 is gezegd dat C oorspronkelijk bedoeld was als systeemprogrammeertaal om het besturingssysteem UNIX te implementeren. Bij dit soort toepassingen komt het voor dat afzonderlijke

Nadere informatie

Samenvatting hoorcolleges Vertalerbouw

Samenvatting hoorcolleges Vertalerbouw Samenvatting hoorcolleges Vertalerbouw J.H. Jongejan 7 juni 2010 LaTeX van Hedde Bosman en Jan Jongejan. 1 Inhoudsopgave 1 Voorbeeld van een vertaling 3 1.1 Brontaal (source language)......................................

Nadere informatie

Inhoud. Introductie tot de cursus

Inhoud. Introductie tot de cursus Inhoud Introductie tot de cursus 1 Plaats en functie van de cursus 7 2 Inhoud van de cursus 7 2.1 Tekstboek 7 2.2 Voorkennis 8 2.3 Leerdoelen 8 2.4 Opbouw van de cursus 9 3 Leermiddelen en wijze van studeren

Nadere informatie

Syntax- (compile), runtime- en logische fouten Binaire operatoren

Syntax- (compile), runtime- en logische fouten Binaire operatoren Inhoud Syntax- (compile), runtime- en logische fouten Binaire operatoren Operaties op numerieke datatypen Evaluatie van expressies, bindingssterkte Assignment operaties en short-cut operatoren Controle

Nadere informatie

Leren Programmeren met Visual Basic 6.0 Les 3+4. Hoofdstuk 4 : De Selectie

Leren Programmeren met Visual Basic 6.0 Les 3+4. Hoofdstuk 4 : De Selectie Leren Programmeren met Visual Basic 6.0 Les 3+4 Hoofdstuk 4 : De Selectie Visual Basic 6.0 1 Basisstructuren (herhaling) Sequentie (HK2) : Alle opdrachten gewoon na mekaar uitvoeren. Hier worden geen keuzes

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Faculteit Elektrotechniek - Leerstoel ES Tentamen Schakeltechniek. Vakcode 5A050, 19 januari 2005, 14:00u-17:00u

Faculteit Elektrotechniek - Leerstoel ES Tentamen Schakeltechniek. Vakcode 5A050, 19 januari 2005, 14:00u-17:00u Faculteit Elektrotechniek - Leerstoel ES Tentamen Schakeltechniek Vakcode 5A050, 19 januari 2005, 14:00u-17:00u achternaam : voorletters : identiteitsnummer : opleiding : Tijdens dit tentamen is het gebruik

Nadere informatie

Praat 2: scripting. Wat zijn scripts? Interactie met scripts. Interactie met scripts. Interactie met scripts. Interactie met scripts

Praat 2: scripting. Wat zijn scripts? Interactie met scripts. Interactie met scripts. Interactie met scripts. Interactie met scripts Praat 2: scripting Wat zijn scripts? Overzicht 1. Wat zijn scripts? 2. Open Run Notities 3. Basiselementen van scripts Commands, variables, formulas, jumps en loops 4. met scripts Selecteren Analyseren

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Technische specificaties Tracking & Tracing

Technische specificaties Tracking & Tracing Netherlands B.V. Technische specificaties Tracking & Tracing Copyright 2006 GLS Netherlands B.V. Versie 052006 1.5 1 Inleiding... 3 Technische uitwerking... 4 Berekening CHK-component... 5 Voorbeelden...

Nadere informatie

Geven we decimale getallen als invoer, dan past Maxima zich onmiddellijk aan en geeft ook decimale getallen als resultaat:

Geven we decimale getallen als invoer, dan past Maxima zich onmiddellijk aan en geeft ook decimale getallen als resultaat: 3. Rekenkunde 3.1. Rekenmachine Maxima kan als een zakrekenmachine gebruikt worden voor het uitvoeren van eenvoudige en ingewikkelde berekeningen. Maxima rekent exact met gehele getallen, breuken en wortelvormen

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

Totaal

Totaal Programmeren Blok A Wat was het doel? http://www.win.tue.nl/ wstomv/edu/2ip05/ College 2 Tom Verhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Software Engineering & Technology

Nadere informatie

Hoofdstuk 4: Nieuwe objecten

Hoofdstuk 4: Nieuwe objecten Programmeren in Microsoft Visual Basic 2010 Express, lessenserie voor het voortgezet onderwijs HAVO/VWO David Lans, Emmauscollege, Vespucci College, Marnix Gymnasium Rotterdam, december 2011 Hoofdstuk

Nadere informatie

E-Basic. E-Studio. E-Run Real-Time Experiment Generator. E-Merge. E-DataAid Spreadsheet Application for E-Prime Data Files

E-Basic. E-Studio. E-Run Real-Time Experiment Generator. E-Merge. E-DataAid Spreadsheet Application for E-Prime Data Files E-Studio Graphical Design Environment E-Basic Full Scripting Language E-Run Real-Time Experiment Generator E-Merge Data Merging Utility E-DataAid Spreadsheet Application for E-Prime Data Files E-Studio

Nadere informatie

Een spoedcursus python

Een spoedcursus python Een spoedcursus python Zoals je in de titel misschien al gezien hebt, geven wij een spoedcursus Python. Door deze cursus leer je alle basics, zoals het rekenen met Python en het gebruik van strings. Het

Nadere informatie

Faculteit Economie en Bedrijfskunde

Faculteit Economie en Bedrijfskunde Faculteit Economie en Bedrijfskunde Op dit voorblad vindt u belangrijke informatie omtrent het tentamen. Voordat u met het tentamen t: lees dit voorblad! Tentamen: V&O IV: Programmeren Tentamendatum &

Nadere informatie

van PSD naar JavaScript

van PSD naar JavaScript 2015 van PSD naar JavaScript F. Vonk versie 2 19-9-2015 inhoudsopgave 1. inleiding... - 2-2. ontwikkelomgeving... - 3-3. programmeerconcepten... - 4 - statement... - 4 - sequentie... - 4 - variabele en

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

OEFENINGEN PYTHON REEKS 1

OEFENINGEN PYTHON REEKS 1 Vraag 1: Expressies & Types OEFENINGEN PYTHON REEKS 1 Python maakt gebruik van enkele vaak voorkomende (data)types. Zo zijn er integers die behoren tot de gehele getallen (VB: 3), zijn er float s die behoren

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

De bovenkamer. Het gebruik van De bovenkamer bij Taal actief. Josée Coenen. een kleurrijke grammatica van het Nederlands

De bovenkamer. Het gebruik van De bovenkamer bij Taal actief. Josée Coenen. een kleurrijke grammatica van het Nederlands Josée Coenen De bovenkamer een kleurrijke grammatica van het Nederlands Het gebruik van De bovenkamer bij Taal actief Bij de verschillende onderdelen van Taal actief kunt u onderdelen uit De bovenkamer

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Toegepaste Wiskunde 2: Het Kalman-filter

Toegepaste Wiskunde 2: Het Kalman-filter Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer

Nadere informatie

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's Cabri-werkblad Driehoeken, rechthoeken en vierkanten 1. Eerst twee macro's Bij de opdrachten van dit werkblad zullen we vaak een vierkant nodig hebben waarvan alleen de beide eindpunten van een zijde gegeven

Nadere informatie

Zoeken met beperkt geheugen. Zoekalgoritmen ( ) College 7: Zoeken met beperkt geheugen. Een representatie van het kleuringsprobleem

Zoeken met beperkt geheugen. Zoekalgoritmen ( ) College 7: Zoeken met beperkt geheugen. Een representatie van het kleuringsprobleem Zoeken met beperkt geheugen Zoekalgoritmen (2009 2010) College 7: Zoeken met beperkt geheugen Dirk Thierens, Tekst: Linda van der Gaag algoritmen voor zoeken met beperkt geheugen zijn ontwikkeld voor problemen

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Complexiteit. Rick Nouwen. Inleiding Taalkunde

Complexiteit. Rick Nouwen. Inleiding Taalkunde Complexiteit Rick Nouwen Inleiding Taalkunde Vandaag: Complexiteit Hoofdstuk 12, sectie 12.6: voorproefje op hoofdstuk 16 Hoofdstuk 14, sectie 14.10: complexiteit van parsing (achtergrondmateriaal, hier

Nadere informatie

Variabelen en statements in ActionScript

Variabelen en statements in ActionScript Ontwikkelen van Apps voor ios en Android Variabelen en statements in ActionScript 6.1 Inleiding Als we het in de informatica over variabelen hebben, bedoelen we een stukje in het geheugen van de computer

Nadere informatie

2. Syntaxis en semantiek

2. Syntaxis en semantiek 2. Syntaxis en semantiek In dit hoofdstuk worden de begrippen syntaxis en semantiek behandeld. Verder gaan we in op de fouten die hierin gemaakt kunnen worden en waarom dit in de algoritmiek zo desastreus

Nadere informatie

Programmeren met de TI84

Programmeren met de TI84 Programmeren met de TI84 Dominiek Ramboer VTI Oostende De programmeertaal die gebruikt wordt om de rekenmachine te programmeren gelijkt goed op de programmeertaal BASIC. Daarom heet ze ook TI-BASIC. Een

Nadere informatie

Functies. Huub de Beer. Eindhoven, 4 juni 2011

Functies. Huub de Beer. Eindhoven, 4 juni 2011 Functies Huub de Beer Eindhoven, 4 juni 2011 Functies: je kent ze al Je hebt al verschillende PHP functies gebruikt: pi() om het getal π uit te rekenen. sin( 0.453 ) om het de sinus van het getal 0.453

Nadere informatie

case: toestandsdiagrammen

case: toestandsdiagrammen Hoofdstuk 13 case: toestandsdiagrammen In dit hoofdstuk wordt het maken van de eerste versie van de toestandsdiagrammen voor het boodschappensysteem van Hans en Jacqueline uitgewerkt. 13.1 Vind klassen

Nadere informatie

Small Basic Console Uitwerking opdrachten

Small Basic Console Uitwerking opdrachten Opdracht 1 3 getallen => inlezen Gemiddelde uitrekenen Resultaat afdrukken TextWindow.WriteLine("Dit programma berekend het gemiddelde van drie door U in te voeren getallen.") TextWindow.Write("Voer getal

Nadere informatie

Hoofdstuk 7: Werken met arrays

Hoofdstuk 7: Werken met arrays Programmeren in Microsoft Visual Basic 6.0, lessenserie voor het voortgezet onderwijs HAVO/VWO David Lans, Emmauscollege, Marnix Gymnasium Rotterdam, januari 2004 Hoofdstuk 7: Werken met arrays 7.0 Leerdoel

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie