Vectoranalyse voor TG

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Vectoranalyse voor TG"

Transcriptie

1 college 4 en raakvlakken collegejaar : college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid 4 1 intro VA

2 De richtingsafgeleide Section 14.5, blz VA De richtingsafgeleide Section 14.5 Definitie Stel f is differentieerbaar in a, en stel v 0. De lijn l in het xy-vlak is gedefinieerd als de lijn door a met richtingsvector v. We parametriseren l als volgt: l: x(t) = a + t v = (a + vt, b + wt), waarbij v = (v, w) genormeerd is, dus v = v v. De richtingsafgeleide van f in a in de richting van v is de afgeleide van de samenstelling f (a + t v), berekend in a. De richtingsafgeleide wordt genoteerd als v f (a). De richtingsafgeleide is de helling (richtingscoëfficiënt) van de raaklijn aan de grafiek van f in het punt ( a, b, f (a, b) ) in de richting v. De richting moet genormeerd worden, omdat v f (a) anders af zou hangen van de lengte van v VA

3 De richtingsafgeleide Stelling Stel f heeft partiële afgeleiden die continu zijn in een omgeving van a. Merk op dat x (t) = d d t (a + t v) = v. Volgens de kettingregel is d d t f (a + t v) gelijk aan f (a + t v) x (t) = f (a + t v) v. Deze afgeleide moet worden berekend in a, dus kies t = 0. Als f partiële afgeleiden heeft die continu zijn in een omgeving van a, dan is de richtingsafgeleide van f in a in de richting v gelijk aan f (a) v VA De richtingsafgeleide Voorbeeld Section 14.5, example 1 Definieer f (x, y) = x 2 + xy en a = (1, 2). Bereken de richtingsafgeleide van f in a in de richting v = (1, 1). Normeer v: de lengte van v is v = = 2, dus v = 1 ( (1, 1) = 1 ) 2 2 2, De gradiënt van f is f (x, y) = (2x + y, x). De gradiënt van f in a = (1, 2) is f (1, 2) = (4, 1). De richtingsafgeleide van f in (1, 2) in de richting van v is v f (1, 2) = f (1, 2) v = (4, 1) ( ) 1 2 2, = VA

4 De richtingsafgeleide en de gradiënt De richtingsafgeleide van f in a in de richting v is het inproduct van de gradiënt en de genormeerde versie van v: v f (a) = f (a) v = f (a) v cos θ. waarbij θ de hoek is tussen de vectoren v en f (a). Er geldt v = 1, dus v f (a) = f (a) cos θ. Omdat geldt dat 1 cos θ 1 voor alle θ, is de maximale waarde van de richtingsafgeleide gelijk aan f (a), welke wordt bereikt door v in de richting van f (a) te laten wijzen (θ = 0). De minimale waarde van de richtingsafgeleide is gelijk aan f (a), welke wordt bereikt door v in de tegengestelde richting van f (a) te laten wijzen (θ = π). De richtingsafgeleide is gelijk aan 0 als θ = ±π/2, dus als v loodrecht op f (a) staat VA Niveaukrommen Stelling Een niveaukromme van een functie f is een kromme k waarvoor geldt dat f (x) constant is voor alle x k. Stel x(t) = ( x(t), y(t) ), t I is een parametrisering van de niveaukromme bij niveau c, dan f ( x(t), y(t) ) = c voor alle t I. Volgens de kettingregel geldt d d t f ( x(t), y(t) ) = f (x(t)) x (t) = 0, dus x (t) staat loodrecht op f (x(t)). Omdat x (t) de raaklijnvector is van k in x(t) hebben we het volgende bewezen: De vectoren van de gradiënt van f staan loodrecht op de niveaukrommen van f. Zowel x (t) als f (x) kunnen gelijk zijn aan 0. De nulvector staat loodrecht op iedere vector VA

5 Niveaukrommen Voorbeeld Bestudeer de gradiënt en de niveaukrommen van f (x, y) = x 2 y 2. De niveaukrommen van f zijn hyperbolen met asymptoten y = x en y = x, plus de lijnen y = x en y = x. De gradiënt van f wordt gegeven door f (x, y) = (2x, 2y). In 0 = (0, 0) bestaat de niveauverzameling uit twee snijdende lijnen y = x en y = x. Een vector kan hier alleen maar loodrecht op staan als deze gelijk is aan 0. Inderdaad geldt: f (0, 0) = (0, 0) VA Het raakvlak Het raakvlak aan de grafiek van f in het punt ( a, b, f (a, b) ) wordt gegeven door de vergelijking z = f (a) + f x 1 (a)(x a) + f x 2 (a)(y b), waarbij a = (a, b) VA

6 Het raakvlak Voorbeeld Definieer f (x, y) = x 2 + y 2. Bepaal een vergelijking van het raakvlak V in a = (1, 2). De partiële afgeleiden van f zijn f x = 2x en f y = 2y. In a = (1, 2) zijn de partiële afgeleiden f x (a) = 2 en f (a) = 4. y Er geldt f (a) = f (1, 2) = 5, een vergelijking van V is z = 5 + 2(x 1) + 4(y 2). Vereenvoudigen levert 2x + 4y z = VA Lineaire benadering Definitie Stel f : D R 2 R is een functie van 2 en stel a D. De lineaire benadering van f in a is de functie waarvan de grafiek het raakvlak is van graf f in (a, f (a)). Het functievoorschrift van de lineaire benadering is f (x, y) = f (a) + f f (a)(x a) + (a)(y b). x y Voorbeeld: de lineaire benadering van f (x, y) = x 2 + y 2 in (1, 2) is de functie f gegeven door f (x, y) = 5 + 1(x 1) + 4(y 2) = x + 4y VA

7 Differentieerbaarheid Definitie Stel f : D R 2 R is een functie van 2 en stel a D. De functie f is differentieerbaar in a als er een lineaire benadering van f in a bestaat. De lineaire benadering hoeft niet te bestaan. Als de lineaire benadering bestaat is deze uniek. Stelling Als f differentieerbaar is in a dan bestaan de partiële afgeleiden van f in a. Stelling Als de partiële afgeleiden van f in a bestaan en continu zijn in a dan is f differentieerbaar in a VA Functies van 3 De grafiek van f = f (x, y, z) is gedefinieerd door graf f = {( x, y, z, f (x, y, z) ) (x, y, z) D }. De grafiek van f is een vier-dimensionaal object! De niveauverzameling van f bij niveau c is de oplossingsverzameling van de vergelijking f (x, y, z) = c: {(x, y, z) f (x, y, z) = c} Vaak zijn de neveauverzamelingen vlakken in R 3. We spreken daarom wel van niveauvlakken. Section 14.2, fig De niveauvlakken van de G(x, y, z) = x 2 + y 2 + z 2 zijn concentrische bollen met middelpunt VA

8 De gradiënt van een functie van 3 Een functie van 3 heeft 3 partiële afgleiden: f f (x, y, z), x f (x, y, z) en (x, y, z). y z De gradiënt van f is de vector in R 3 met de partiële afgeleiden als component: f (x, y, z) = ( ) f f f (x, y, z), (x, y, z), x y z (x, y, z) of korter: f = ( f x, f y, f ). z De vectoren van de gradiënt van f staan loodrecht op de niveauvlakken van f VA De kettingregel in R 3 Stelling Kettingregel Stel f is een functie van 3 waarvan de partiële afgeleiden bestaan. Stel x(t), y(t) en z(t) zijn differentieerbare functies, dan d d t f ( x(t), y(t), z(t) ) = f x ( ) r(t) x (t) + f ( ) r(t) y (t) + f ( ) r(t) z (t) y z = f ( r(t) ) r (t) met r(t) = ( x(t), y(t), z(t) ) en r (t) = ( x (t), y (t), z (t) ). De functie t r(t) = ( x(t), y(t), z(t) ) is parametrisering van een ruimtekromme. De functie t f ( x(t), y(t), z(t) ) beschrijft de waarde van G langs deze kromme, als functie van t VA

9 De richtingsafgeleide van een functie van 3 Definitie Stel f is een functie van 3, en stel v 0 R 3. De richtingsafgeleide van f in a in de richting v is gedefinieerd als de richtingscoëfficiënt van de functie t f (a + t v) in t = 0, waarbij v de genormeerde versie van v is. De richtingsafgeleide in a in de richting v wordt genoteerd als v f (a). Stelling Als de partiële afgeleiden van f bestaan en coninu zijn in a dan geldt v f (a) = f (a) v VA De richtingsafgeleide van een functie van 3 Als θ de hoek is tussen f (a) en v (of v), dan v f (a) = f (a) cos θ. De maximale waarde van de richtingsafgeleide is gelijk aan f (a), welke wordt bereikt door v in de richting van f (a) te laten wijzen (θ = 0). De minimale waarde van de richtingsafgeleide is gelijk aan f (a), welke wordt bereikt door v in de tegengestelde richting van f (a) te laten wijzen (θ = π). De richtingsafgeleide is gelijk aan 0 als θ = ±π/2, dus als v loodrecht staat op f (a) VA

10 Section 14.7 Definitie Blz. 821 Stel f (x, y) is gedefinieerd op D R 2, en stel (a, b) D. f (a, b) is een lokaal maximum van f op D als f (a, b) f (x, y) voor alle (x, y) in een omgeving van (a, b). f (a, b) is een lokaal minimum van f op D als f (a, b) f (x, y) voor alle (x, y) in een omgeving van (a, b). f (a, b) is een lokaal extreem van f op D als f (a, b) een lokaal maximum dan wel een lokaal minimum is VA Kritieke punten Stelling Theorem 10 Stel f heeft een lokaal extreem in (a, b), en f (x, y) is differentieerbaar in (a, b), dan f (a, b) = 0. f (a, b) = 0 betekent: f x (a, b) = 0 en f y (a, b) = 0. Definitie Blz. 822 Een inwendig punt (a, b) van het domein van f heet een kritiek punt van f als f (a, b) = 0 of als f x (a, b) dan wel f y (a, b) niet bestaat VA

11 Kritieke punten Voorbeeld Example 1 Bepaal de kritieke punten van f (x, y) = x 2 + y 2 4y + 9. De functie f is overal differentieerbaar, dus de enige kritieke punten zijn punten (a, b) waarvoor f (a, b) = 0. f (x, y) = (2x, 2y 4), dus los op { 2x = 0 2y 4 = 0. Het enige kritieke punt van f is (0, 2) VA Zadelpunten Definitie Blz. 822 Een kritiek punt (a, b) van f heet een zadelpunt van f als iedere omgeving van (a, b) punten bevat met functiewaarden die zowel kleiner als groter zijn dan f (a, b). Zadelpunten zijn geen extreme waarden VA

12 Apenzadel z 2 1 x y Het apenzadel is de grafiek van de functie f (x, y) = x 3 3xy 2. De niveaukrommen op hoogte 0 worden gegeven door de lijnen x = 0, y = x, y = x. Het punt (0, 0) is een zadelpunt VA De Hessiaan Definitie Blz. 823 Stel de tweede-orde afgeleiden van f (x, y) bestaan in (x, y), en zijn daar tevens continu, dan is de Hessiaan of discriminant van f in (x, y) gedefinieerd als D 2 f (x, y) = f xx (x, y)f yy (x, y) ( f xy (x, y) ) 2. De Hessiaan is de determinant van deze matrix: [ ] fxx (x, y) f xy (x, y) H f (x, y) =, f yx (x, y) f yy (x, y) welke ongelukkiggerwijs ook Hessiaan wordt genoemd VA

13 Tweede-orde afgeleide test Stelling Theorem 11, blz. 823 Stel (a, b) is een kritiek punt van f waarvoor f x (a, b) = f y (a, b) = 0. Stel de tweede-orde afgeleiden van f (x, y) bestaan in (a, b), en zijn daar continu, dan geldt het volgende: (i) Als D 2 f (a, b) > 0 en f xx (a, b) < 0 dan is (a, b) een lokaal maximum van f. (ii) Als D 2 f (a, b) > 0 en f xx (a, b) > 0 dan is (a, b) een lokaal minimum van f. (iii) Als D 2 f (a, b) < 0 dan is (a, b) een zadelpunt van f. (iv) Als D 2 f (a, b) = 0 dan is op grond van deze stelling geen uitspraak mogelijk VA Tweede-orde afgeleide test Voorbeeld Example 3 Bepaal aard en positie van de lokale extrema en zadelpunten van f (x, y) = xy x 2 y 2 2x 2y + 4. f is een polynoom, dus kritieke punten zijn punten (x, y) waarvoor f (x, y) = 0. f (x, y) = (y 2x 2, x 2y 2), het enige kritieke punt van f is ( 2, 2). [ ] [ ] fxx f xy 2 1 H f = =, 1 2 f yx f yy de determinant van deze matrix is D 2 f = 3 > 0. Omdat f xx ( 2, 2) = 2 negatief is, is ( 2, 2) een lokaal maximum VA

14 Absolute extremen Voorbeeld Zie example 4 Gegeven is de functie f (x, y) = 3y 2 2y 3 3x 2 + 6xy. Toon aan dat (0, 0) een zadelpunt van f is. f (x, y) = (6y 6x, 6y y 2 + 6x), dus f (0, 0) = (0, 0), met andere woorden: (0, 0) is een kritiek punt van f. [ ] fxx f xy H f = = f yx f yy [ ] 6 6, 6 6 2y dus D 2 f (x, y) = 6 (6 2y) 6 2 = 72(y 1). D 2 f (0, 0) = 72 < 0, dus (0, 0) is een zadelpunt VA Absolute extreme waarden Definitie Stel f : D R is een functie gedefinieerd op D R n. f (a, b) is een absoluut maximum van f op D als f (a, b) f (x, y) voor alle (x, y) D. f (a, b) is een absoluut minimum van f op D als f (a, b) f (x, y) voor alle (x, y) D. f (a, b) is een absoluut extreem van f op D als f (a, b) een absoluut maximum of een absoluut minimum is. Stelling Extreme Waardenstelling Stel f : D R is een continue functie gedefinieerd op een gesloten en begrensd gebied D R n, dan neemt f op D een maximum- en een minimumwaarde aan VA

15 Absolute extreme waarden Stelling Stel a is een absoluut extreem is van f : D R, en a ligt op het inwendige van D, dan is a een kritiek punt van f. Dit volgt uit het feit dat ieder absoluut extreem ook een lokaal extreem is. Hoe vind je de absolute extrema? Maak een lijst van kandidaten met daarin: 1. kritieke punten van f op het inwendige van D; 2. kandidaten op de rand van D. Bereken van alle kandidaten de functiewaarde en bepaal welke waarde het grootst, en welke waarde het kleinst is VA Absolute extreme waarden Voorbeeld Example 5 Bepaal de absolute extrema van de functie f (x, y) = 2 + 2x + 2y x 2 y 2 9 x + y = 9 III gedefinieerd op de driehoek begrensd door D de lijnen x = 0, y = 0 en x + y = II I 1. Op het inwendige van D f is overal differentieerbaar, dus kritieke punten zijn nulpunten van f. f (x, y) = (2 2x, 2 2y), dus (1, 1) is een kandidaat. 2. Op de rand van D Verdeel de rand van D in drie stukken: I: het lijnstuk van (0, 0) naar (9, 0); II: het lijnstuk van (0, 0) naar (0, 9); III: het lijnstuk van (0, 9) naar (9, 0); VA

16 Voorbeeld (vervolg) I. De rand van I zijn kandidaten: (0, 0) en (9, 0). Voor het inwendige van I: parametriseer I: r(t) = (t, 0), 0 t 9. f ( r(t) ) = 2 + 2t t 2, en deze functie heeft een lokaal minimum voor t = 1, dit levert kandidaat (1, 0). II. Zowel f als D zijn symmetrisch ten opzichte van y = x: (0, 1) en (0, 9) zijn ook kandidaten. III. Parametriseer III met r(t) = (9 t, t), 0 t 9, dan f ( r(t) ) = t 2t 2. Deze functie heeft een lokaal maximum voor t = 9 2, dit geeft kandidaat (4.5, 4.5). 9 II 1 x + y = 9 D III 0 1 I 9 (x, y) f (x, y) (0, 0) 2 (1, 1) 4 max (1, 0) 3 (0, 1) 3 (9, 0) 61 min (0, 9) 61 min ( 9 2, 9 ) VA

Vectoranalyse voor TG

Vectoranalyse voor TG college 1 collegejaar college build slides Vandaag : : : : 14-15 1 25 september 214 28 1 2 3 4 otatie Green De wet van Faraday 1 VA vandaag 4.5.6 ection 16.7 telling Vergeleijking (4.62) Theorem 6 Het

Nadere informatie

3.2 Kritieke punten van functies van meerdere variabelen

3.2 Kritieke punten van functies van meerdere variabelen Wiskunde voor kunstmatige intelligentie, 007/008 Als in een kritiek punt x 0 ook de tweede afgeleide f (x 0 ) = 0 is, kunnen we nog steeds niet beslissen of de functie een minimum, maximum of een zadelpunt

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 6 van een vectorveld collegejaar college build slides Vandaag : : : : 14-15 6 22 september 214 51 1 2 3 4 5 Gradiënt van een vectorveld 1 VA vandaag Section 16.2 Hoofdstu 4 Definitie Een vectorveld

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college en scalarelden in R Vandaag collegejaar college build slides : : : : 4-5 7 augustus 4 33 Coördinatenstelsels in R VA andaag Voorkennis Zelf bestuderen uit.,. en.3: ptellen en scalair ermeniguldigen

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

INLEIDING TOT DE HOGERE WISKUNDE

INLEIDING TOT DE HOGERE WISKUNDE INLEIING TOT E HOGERE WISKUNE EEL 2: Analyse van reële functies van meerdere reële veranderlijken Arno KUIJLAARS Stefaan POETS epartement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 2 B,

Nadere informatie

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Inleiding In de cursus Calculus 2 voor Bouwkunde (2DB90) wordt evenals in de cursus Calculus 1 gebruikt het boek: Calculus, Early Transcendental

Nadere informatie

Functies van meer variabelen voor dummy s

Functies van meer variabelen voor dummy s Functies van meer variabelen voor dummy s Dit is een 'praktische gids voor dummy s'. Hieronder kun je een aantal voorbeelden met uitleg vinden, oefeningen en uitwerkingen. De voorbeelden komen deels uit

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

Week 2_2. 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels

Week 2_2. 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels Week 2_2 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels 2 Basiswiskunde_Week_2_2.nb 1.2 Voorbeeld Beschouw de uitdrukking x2 +3 x in de buurt van x = 2. x-4 Als x op 2 lijkt, dan

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 007 VK : WISKUNE TUM: WOENSG 04 JULI 007 TIJ : 09.45.5 UUR (TOELTING VWO/HVO/NTIN) 09.45.45

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 11 juni 2007 ( s morgens) Zakrekenmachine die niet grafisch en niet programmeerbaar is.

WISKUNDE 5 PERIODEN. DATUM : 11 juni 2007 ( s morgens) Zakrekenmachine die niet grafisch en niet programmeerbaar is. EUROPEES BACCALAUREAAT 007 WISKUNDE 5 PERIODEN DATUM : 11 juni 007 ( s morgens) DUUR VAN HET EXAMEN : 4 uur (40 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen. Zakrekenmachine

Nadere informatie

Convexe Analyse en Optimalisering

Convexe Analyse en Optimalisering Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2010 WISKUNDE 5 PERIODEN DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

maplev 2010/7/12 14:02 page 135 #137 Plaatjes in drie dimensies

maplev 2010/7/12 14:02 page 135 #137 Plaatjes in drie dimensies maplev /7/ 4: page 35 #37 Module Plaatjes in drie dimensies Onderwerp Voorkennis Expressies Bibliotheken Zie ook Driedimensionale plots. Module 9. plot3d, spacecurve, contourplot, gradplot, cylinderplot

Nadere informatie

Differentiaalvergelijkingen Hoorcollege 11

Differentiaalvergelijkingen Hoorcollege 11 Differentiaalvergelijkingen Hoorcollege 11 Partiële differentiaalvergelijkingen: De Eendimensionale Golfvergelijking; De Tweedimensionale Laplacevergelijking A. van der Meer DV HC11 p. 1/17 De eendimensionale

Nadere informatie

IJkingstoets burgerlijk ingenieur september 2013: algemene feedback

IJkingstoets burgerlijk ingenieur september 2013: algemene feedback IJkingstoets burgerlijk ingenieur 6 september 203 - reeks - p. IJkingstoets burgerlijk ingenieur september 203: algemene feedback In totaal namen 245 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis Wiskunde voor economie drs. H.J.Ots Hellevoetsluis 15-2-2004, Wiskunde voor economie, ISBN 90-70619-05-9,drs. H.J. Ots, www.webecon.nl Wiskunde voor economie Drs. H.J. Ots ISBN 90-70619-05-9 Webecon, Hellevoetsluis,

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie Wiskunde 2 september 2008 versie 1-1 - Op hoeveel verschillende manieren kun je drie zwarte pionnen verdelen over de 32 zwarte velden van een schaakbord? (Neem aan dat op elk veld hooguit één pion staat.)

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2008 WISKUNDE 5 PERIODEN DATUM : 5 juni 2008 ( s morgens) DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN Formuleboekje voor de Europese scholen Niet-programmeerbare,

Nadere informatie

Studiewijzer Calculus voor het schakelprogramma van Bouwkunde (2DB03) cursus 2015/2016

Studiewijzer Calculus voor het schakelprogramma van Bouwkunde (2DB03) cursus 2015/2016 Studiewijzer Calculus voor het schakelprogramma van Bouwkunde (2DB03) cursus 2015/2016 Inleiding In de cursus Calculus voor het schakelprogramma van Bouwkunde (2DB03) wordt het volgende gebruikt het boek:

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Integratie van de informatica in de wiskunde WIRIS 2.0

Integratie van de informatica in de wiskunde WIRIS 2.0 Integratie van de informatica in de wiskunde WIRIS 2.0 9 Dynamische meetkunde met Wiris 9.1 Vlakke analytische meetkunde Het palet Meetkunde bevat een aantal gereedschappen voor het uitvoeren van meetkundige

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : ONERG 0 JULI 008 TIJ : 09.45.5 UUR (MULO-III KNITEN) 09.45.45 UUR (MULO-IV

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Onderneming en omgeving - Economisch gereedschap

Onderneming en omgeving - Economisch gereedschap Onderneming en omgeving - Economisch gereedschap 1 Rekenen met procenten, basispunten en procentpunten... 1 2 Werken met indexcijfers... 3 3 Grafieken maken en lezen... 5 4a Tweedegraads functie: de parabool...

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Vliegende parkieten Opgave 1. Het energieverbruik van de parkiet als deze vliegt met

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

De hoek tussen twee lijnen in Cabri Geometry

De hoek tussen twee lijnen in Cabri Geometry De hoek tussen twee lijnen in Cabri Geometry DICK KLINGENS (e-mail: dklingens@pandd.nl) Krimpenerwaard College, Krimpen aan den IJssel (NL) augustus 2008 1. Inleiding In de (vlakke) Euclidische meetkunde

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2006-II

Eindexamen wiskunde B1-2 vwo 2006-II Drinkbak In figuur staat een tekening van een drinkbak voor dieren. De bak bestaat uit drie delen: een rechthoekige, metalen plaat die gebogen is tot een symmetrische goot, een voorkant en een achterkant

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus 2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus Kwartiel 2, week 7.b Op het college op donderdagochtend 7 januari is behandeld: - hoek tussen vectoren en cosinus regel - driehoeksongelijkheid

Nadere informatie

WISKUNDE 5 PERTODEN EUROPEES BACCALAUREAAT 2OO7. DATLIM : 11 juni 2OO7 ('s morgens) DUUR VAN HET EXAMEN : 4 uur (240 minuten)

WISKUNDE 5 PERTODEN EUROPEES BACCALAUREAAT 2OO7. DATLIM : 11 juni 2OO7 ('s morgens) DUUR VAN HET EXAMEN : 4 uur (240 minuten) EUROPEES BACCALAUREAAT 2OO7 WSKUNDE 5 PERTODEN DATLM : 11 juni 2OO7 ('s morgens) DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMDDELEN : ' Formuleboekje voor de Europese scholen.. ZaY,rekenmachine

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme Wiskunde voor kunstmatige intelligentie, 006 Les Speciale functies We ebben in de vorige les een aantal elementaire functies bekeken en iervoor gezien oe we deze functies kunnen afleiden. In wezen waren

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

differentiaalvergelijkingen. oscillaties en planeetbanen

differentiaalvergelijkingen. oscillaties en planeetbanen 1 270 NAW 5/8 nr. 4 december 2007 Differentiaalvergelijkingen, oscillaties en planeetbanen Joost Hulshof Joost Hulshof Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen, afdeling Wiskunde

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

11 e editie. Inhoudsopgaven VWO 5

11 e editie. Inhoudsopgaven VWO 5 11 e editie Inhoudsopgaven VWO 5 Inhoudsopgave 5 vwo A 1 Formules herleiden 1-1 Lineaire formules 1-2 Gebroken formules 1-3 Wortelformules 1-4 Machtsformules 1-5 Gemengde opdrachten 2 Statistiek (op computer)

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Niveau 1. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan. 1p. x + 6. 4x + 3. 4x 2 + 3. x 2 + 3x + 3. x 2 + 27

Niveau 1. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan. 1p. x + 6. 4x + 3. 4x 2 + 3. x 2 + 3x + 3. x 2 + 27 1p. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan x + 6 4x + 3 4x 2 + 3 x 2 + 3x + 3 Niveau 1 1p. 1p. 1p. x 2 + 27 Opgave 2. Als a log b = 64, dan is a2 log (b 3 ) gelijk aan 6 48 28/3 96 512 Opgave

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Een korte beschrijving van de inhoud

Een korte beschrijving van de inhoud Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige toepassingen op

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early T ranscendental F unctions, Robert T. Smith,

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 1 juli 2015 Oplossingen

IJkingstoets Wiskunde-Informatica-Fysica 1 juli 2015 Oplossingen IJkingstoets Wiskunde-Informatica-Fysica 1 juli 15 Oplossingen IJkingstoets wiskunde-informatica-fysica 1 juli 15 - p. 1/1 Oefening 1 Welke studierichting wil je graag volgen? (vraag zonder score, wel

Nadere informatie

BIOFYSICA: Toets I.4. Dynamica: Oplossing

BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 ste jaar Bachelor BIOMEDISCHE WETENSCHAPPEN Academiejaar 006-007 BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 Opgave 1 Een blokje met massa 0, kg heeft onder aan een vlakke helling een snelheid van 7,

Nadere informatie

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5.

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5. 11 ) Oefeningen 1) Vergelijkingen van functies Welke vergelijkingen stellen een rechte voor? Welke vergelijkingen stellen een parabool voor? Welke vergelijkingen stellen noch een rechte noch een parabool

Nadere informatie

Een symmetrische gebroken functie

Een symmetrische gebroken functie Een symmetrische gebroken functie De functie f is gegeven door f( x) e x. 3p Bereken exact voor welke waarden van x geldt: f( x). 00 F( x) xln( e x) is een primitieve van f( x) e x. 4p Toon dit aan. Het

Nadere informatie

Uitwerkingen Tentamen Natuurkunde-1

Uitwerkingen Tentamen Natuurkunde-1 Uitwerkingen Tentamen Natuurkunde-1 5 november 2015 Patrick Baesjou Vraag 1 [17]: a. Voor de veerconstante moeten we de hoekfrequentie ω weten. Die wordt gegeven door: ω = 2π f ( = 62.8 s 1 ) Vervolgens

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1

Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1 Eindexamen wiskunde B havo 0 - II Beoordelingsmodel Tonregel van Kepler maximumscore 6 G = B = π 9 ( 64) (cm ) Voor de cirkel op halve hoogte geldt: πr = (met r de straal van de cirkel in cm) Hieruit volgt

Nadere informatie

Willem van Ravenstein 2007

Willem van Ravenstein 2007 Inhoud van ruimtelijke figuren Inhoud van omwentelingslichamen Lengte van een kromme Differentiaalvergelijkingen Richtingsvelden Standaardtypen differentiaalvergelijkingen Losse eindjes, tips & truuks

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2009 - I

Eindexamen wiskunde B1-2 vwo 2009 - I en benadering van een nulpunt Voor elke positieve startwaarde 0 is een rij 0,, 2, gegeven door de volgende recursievergelijking: n+ = 2 n +. n Deze recursievergelijking kunnen we ook schrijven als n+ =

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: cirkel en parabool 11/5/2013 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Lijnen, vlakken, normaalvector, shading

Lijnen, vlakken, normaalvector, shading Lijnen, vlakken, normaalvector, shading Inproduct (dotproduct Parametervoorstelling en vergelijking Uitproduct (crossproduct Normaalvector Flat shading en Gouraud shading Opgaven /7 Februari, 05 Definitie

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS deel 1 LOTHAR PAPULA 2e druk > ACADEMIC SERVICE inhoud 1 Algemene grondbegrippen 1 1.1 Enkele basisbegrippen in de verzamelingenleer 1 1.1.1 Definitieenbeschrijvingvaneenverzameling

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen.

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Achter dit eamen is een erratum opgenomen. Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer

Nadere informatie

Vlakke Meetkunde Ruimtemeetkunde. Meetkunde. 1 december 2012. Meetkunde

Vlakke Meetkunde Ruimtemeetkunde. Meetkunde. 1 december 2012. Meetkunde Vlakke Ruimtemeetkunde 1 december 2012 Vlakke Ruimtemeetkunde 1 Vlakke Vectoren Vergelijking van een rechte 2 Ruimtemeetkunde Vectoren Vergelijking van een vlak Vergelijkingen van een rechte Vlakke Ruimtemeetkunde

Nadere informatie

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2 IJkingstoets 30 juni 04 - reeks - p. /5 Oefening Een functie f : A B : 7 f () van verzameling A naar verzameling B is injectief als voor alle, A geldt: als 6=, dan is f () 6= f (). Welke van de volgende

Nadere informatie

T.A. Horsmeier. Hoeken en kromming. In genormeerde ruimten zonder inprodukt. Bachelorscriptie, 25 augustus 2009

T.A. Horsmeier. Hoeken en kromming. In genormeerde ruimten zonder inprodukt. Bachelorscriptie, 25 augustus 2009 T.A. Horsmeier Hoeken en kromming In genormeerde ruimten zonder inprodukt Bachelorscriptie, 25 augustus 2009 Scriptiebegeleider: Dr. O.W. van Gaans Mathematisch Instituut, Universiteit Leiden Inhoudsopgave

Nadere informatie

Wiskunde voor bedrijfseconomen. Herbert Hamers, Bob Kaper, John Kleppe

Wiskunde voor bedrijfseconomen. Herbert Hamers, Bob Kaper, John Kleppe Wiskunde voor bedrijfseconomen Herbert Hamers, Bob Kaper, John Kleppe Wiskunde voor bedrijfseconomen Herbert Hamers Bob Kaper John Kleppe Meer informatie over deze en andere uitgaven kunt u verkrijgen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Eenvoud bij tekenen en rekenen

Eenvoud bij tekenen en rekenen Eenvoud bij tekenen en rekenen Jan van de Craats In het decembernummer 2005 van Euclides doen Paul Drijvers, Swier Garst, Peter Kop en Jenneke Krüger verslag van een experimenteel project in vwo-5 wiskunde-b

Nadere informatie

Hoofdstuk 2 - Algebra of rekenmachine

Hoofdstuk 2 - Algebra of rekenmachine Hoofdstuk - Algebra of rekenmachine Voorkennis: kwadratische vergelijkingen bladzijde V-a pp ( + ) b kk ( 0) c xx ( + ) d k( 8k 7) e qq ( + 9) f 0, tt+ ( ) g 7r( 9r) h p( 7p+ ) V-a fx () = x( x + ) b Nt

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

De Laplace-transformatie

De Laplace-transformatie De Laplace-transformatie De Laplace-transformatie is een instrument dat functies omzet in andere functies. Deze omzetting, de transformatie, heeft nette wiskundige eigenschappen. Zowel in de kansrekening

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie