Functies van één veranderlijke

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Functies van één veranderlijke"

Transcriptie

1 Functies van één veranderlijke Docent : Anton Stoorvogel 1/43 Elektrotechniek, Wiskunde en Informatica EWI

2 Maxima en minima Gegeven een functie f met domein D. De functie heeft een globaal minimum in c als f.c/ 6 f.x/ voor alle x 2 D. De functie heeft een globaal maximum in c als f.c/ > f.x/ voor alle x 2 D. 2/43 Elektrotechniek, Wiskunde en Informatica EWI

3 Zij f een functie gedefinieerd op Π1; 3:5 met de volgende grafiek: /43 Elektrotechniek, Wiskunde en Informatica EWI

4 Maxima en minima Gegeven een functie f met domein D. De functie heeft een lokaal minimum in c als f.c/ 6 f.x/ voor alle x in de buurt van c. De functie heeft een lokaal maximum in c als f.c/ > f.x/ voor alle x in de buurt van c. 4/43 Elektrotechniek, Wiskunde en Informatica EWI

5 Maxima en minima Gegeven een functie f met domein D. De functie heeft een globaal minimum in c als f.c/ 6 f.x/ voor alle x in het domein D. De functie heeft een globaal maximum in c als f.c/ > f.x/ voor alle x in het domein D. 5/43 Elektrotechniek, Wiskunde en Informatica EWI

6 Het globale minimum is altijd ook een lokaal minimum Het globale maximum is altijd ook een lokaal maximum. 6/43 Elektrotechniek, Wiskunde en Informatica EWI

7 Kandidaat extrema zijn: Randpunten Punten waar de functie niet differentieerbaar is. Punten waar de afgeleide gelijk is aan 0. 7/43 Elektrotechniek, Wiskunde en Informatica EWI

8 Buigpunt Een punt waar de tweede afgeleide van de functie van teken wisselt, wordt een buigpunt genoemd. Stel een functie is twee keer differentieerbaar. In een punt waar de afgeleide gelijk is aan 0 geldt één van de volgende drie eigenschappen: We hebben een lokaal minimum, We hebben een lokaal maximum, We hebben een buigpunt. 8/43 Elektrotechniek, Wiskunde en Informatica EWI

9 De functie f.x/ D x 3 met x 2 Π1; 1 heeft een buigpunt: /43 Elektrotechniek, Wiskunde en Informatica EWI

10 De tweede afgeleide geeft extra informatie: Als f 0.c/ D 0 en f 00.c/ > 0 dan heeft de functie een lokaal minimum in c. Als f 0.c/ D 0 en f 00.c/ < 0 dan heeft de functie een lokaal maximum in c. Als f 0.c/ D 0 en f 00.c/ D 0 kunnen we geen uitspraak doen. 10/43 Elektrotechniek, Wiskunde en Informatica EWI

11 Taylor polynoom f.a/ C f 0.a/Œx a C f 00.a/ Œx 2Š a 2 C f 000.a/ Œx 2Š a 2 C 11/43 Elektrotechniek, Wiskunde en Informatica EWI

12 /43 Elektrotechniek, Wiskunde en Informatica EWI

13 Voor de randpunten kunnen we uit de eerste afgeleide extra informatie halen. Voor een linker randpunt: Als f 0.c/ > 0 dan heeft de functie een lokaal minimum in c. Als f 0.c/ < 0 dan heeft de functie een lokaal maximum in c. Als f 0.c/ D 0 kunnen we geen uitspraak doen. Voor een rechter randpunt: Als f 0.c/ > 0 dan heeft de functie een lokaal maximum in c. Als f 0.c/ < 0 dan heeft de functie een lokaal minimum in c. Als f 0.c/ D 0 kunnen we geen uitspraak doen. 13/43 Elektrotechniek, Wiskunde en Informatica EWI

14 Extreme waarde stelling Een continue functie gedefinieerd op een gesloten interval heeft een globaal maximum en een globaal minimum. 14/43 Elektrotechniek, Wiskunde en Informatica EWI

15 /43 Elektrotechniek, Wiskunde en Informatica EWI

16 f.x/ D 3x 4 16x 3 C 18x 2 ; 1 6 x /43 Elektrotechniek, Wiskunde en Informatica EWI

17 f.x/ D 3x 4 16x 3 C 18x 2 ; 1 6 x D f 0.x/ D 12x 3 48x 2 C36x D 12x.x 2 4xC3/ D 12x.x 3/.x 1/ Kandidaat extremen: x D 1; x D 0; x D 1; x D 3; x D 4 f 00.x/ D 36x 2 96x C 36 D 12.3x 2 8x C 3/ 17/43 Elektrotechniek, Wiskunde en Informatica EWI

18 Lokale maxima: -1, 1, 4 Lokale minima: 0, 3 Globale maximum: -1 Globale minimum: 3 18/43 Elektrotechniek, Wiskunde en Informatica EWI

19 f.x/ D 2x 3 9jxjx C 12x 1; 4 6 x y=2x 3-9 x x+12x /43 Elektrotechniek, Wiskunde en Informatica EWI

20 f.x/ D 2x 3 9jxjx C 12x 1; 4 6 x D f 0.x/ D 6x 2 18xC12 D 6.x 2 3xC2/ D 6.x 2/.x 1/ x > 0 0 D f 0.x/ D 6x 2 C18xC12 D 6.x 2 C3xC2/ D 6.xC2/.xC1/ x < 0 Kandidaat extremen: x D 4; x D 2; x D 1; x D 0; x D 1; x D 2; x D 4 f 00.x/ D 6.2x 3/;.x > 0/ f 00.x/ D 6.2x C 3/;.x < 0/ 20/43 Elektrotechniek, Wiskunde en Informatica EWI

21 Lokale maxima: -2, 1, 4 Lokale minima: -4, -1, 2 Globale maximum: 4 Globale minimum: -4 21/43 Elektrotechniek, Wiskunde en Informatica EWI

22 Tussenwaardestelling Gegeven is een functie f die continu is op het gesloten interval Œa; b. Zij N een getal tussen f.a/ en f.b/. Er bestaat een c 2.a; b/ zodanig dat f.c/ D N. Het geval N D 0 wordt de stelling van Weierstrass genoemd. 22/43 Elektrotechniek, Wiskunde en Informatica EWI

23 Toon aan dat de vergelijking: een oplossing heeft tussen 1 en 2. 4x 3 6x 2 C 3x 2 D 0 23/43 Elektrotechniek, Wiskunde en Informatica EWI

24 f.x/ D 4x 3 6x 2 C 3x 2 f.1/ D 1; f.2/ D 12 24/43 Elektrotechniek, Wiskunde en Informatica EWI

25 Middelwaardestelling Zij f een functie die continu is op het gesloten interval Œa; b, differentieerbaar is op het open interval.a; b/. Dan bestaat er een getal c 2.a; b/ zodanig dat: f 0.c/ D f.b/ b f.a/ a 25/43 Elektrotechniek, Wiskunde en Informatica EWI

26 Bewijs : Kijk naar de functie: h.x/ D f.x/ f.a/ f.b/ b f.a/.x a/ a 26/43 Elektrotechniek, Wiskunde en Informatica EWI

27 Stel dat f.0/ D groot kan f.2/ dan zijn? 3 en f 0.x/ 6 5 voor alle waarden van x. Hoe 27/43 Elektrotechniek, Wiskunde en Informatica EWI

28 We hebben: f.2/ D f.0/ C f 0.c/.2 0/ 6 3 C 5 2 D 7 Gelijkheid volgt voor f.x/ D 3 C 5x. 28/43 Elektrotechniek, Wiskunde en Informatica EWI

29 Stelling.a; b/. Als f 0.x/ D 0 voor alle x 2.a; b/ dan is f constant op Voorbeeld Toon aan: 1 arctan x D arccos p 1 C x 2 29/43 Elektrotechniek, Wiskunde en Informatica EWI

30 1 0 arccos p D 1 C x 2.arctan x/ 0 D 1 1 C x 2 r p 1Cx 2 2 x.1 C x 2 / 3=2 D D q Cx 2 1 p.1 C x 2 / 1 1 p 1 C x 2 x 1 C x 2 x 1 C x 2 D 1 1 C x 2 30/43 Elektrotechniek, Wiskunde en Informatica EWI

31 Bovendien: 1 arctan.0/ D 0 D arccos p 1 C /43 Elektrotechniek, Wiskunde en Informatica EWI

32 /43 Elektrotechniek, Wiskunde en Informatica EWI

33 Limieten We weten: als lim g.x/ 0. x!a lim x!a f.x/ lim f.x/ g.x/ D x!a lim g.x/ x!a Wat doen we als dit laatste niet waar is? 33/43 Elektrotechniek, Wiskunde en Informatica EWI

34 Als f en g gladde functies zijn kunnen we ze approximeren met een Taylor reeks: f.x/ f.a/ C f 0.a/Œx g.x/ g.a/ C g 0.a/Œx a C f 00.a/ Œx 2Š a 2 a C g00.a/ Œx 2Š a 2 34/43 Elektrotechniek, Wiskunde en Informatica EWI

35 Als we nu bekijken: lim x!a f.x/ g.x/ D lim x!a f.a/ C f 0.a/Œx g.a/ C g 0.a/Œx a C f 00.a/ 2Š Œx a 2 a C g00.a/ 2Š Œx a 2 Als f.a/ D 0 en g.a/ D 0 maar g 0.a/ 0 vinden we: lim x!a f.x/ g.x/ D f 0.a/ g 0.a/ 35/43 Elektrotechniek, Wiskunde en Informatica EWI

36 Stelling van l Hôpital Als Dan geldt: lim f.x/ D 0; lim x!a lim x!a f.x/ g.x/ D lim x!a vooropgesteld dat de rechter limiet bestaat. g.x/ D 0 x!a f 0.x/ g 0.x/ 36/43 Elektrotechniek, Wiskunde en Informatica EWI

37 Voorbeeld sin.x/ lim, x!0 x 37/43 Elektrotechniek, Wiskunde en Informatica EWI

38 lim x!0 sin.x/ x lim sin.x/ D 0 lim x D 0 x!0 x!0 lim x!0 sin.x/ x D lim x!0 cos.x/ 1 D 1 38/43 Elektrotechniek, Wiskunde en Informatica EWI

39 Voorbeeld lim x!0 x sin.x/ x 3, 39/43 Elektrotechniek, Wiskunde en Informatica EWI

40 lim x!0 x sin.x/ x 3 lim x sin.x/ D 0 lim x!0 x!0 x3 D 0 lim x!0 x sin.x/ x 3 D lim x!0 1 cos.x/ 3x 2 lim 1 cos.x/ D 0 lim x!0 x!0 3x2 D 0 lim x!0 1 cos.x/ 3x 2 D lim x!0 sin.x/ 6x 40/43 Elektrotechniek, Wiskunde en Informatica EWI

41 lim x!0 sin.x/ 6x lim sin.x/ D 0 lim 6x D 0 x!0 x!0 lim x!0 sin.x/ 6x D lim x!0 cos.x/ 6 D /43 Elektrotechniek, Wiskunde en Informatica EWI

42 Voorbeeld ln.1 C x/ lim. x!0 x 42/43 Elektrotechniek, Wiskunde en Informatica EWI

43 lim x!0 ln.1 C x/ x lim ln.1 C x/ D 0 lim x D 0 x!0 x!0 lim x!0 ln.1 C x/ x D lim x!0 1 1Cx 1 D 1 43/43 Elektrotechniek, Wiskunde en Informatica EWI

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 201300130 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/57 Elektrotechniek, Wiskunde en Informatica EWI Horizontale asymtoten Gedrag van de functie voor grote

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/60 Elektrotechniek, Wiskunde en Informatica EWI Een functie f W A! B is injectief of one-to-one als

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Signalen en Transformaties

Signalen en Transformaties Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/29 Elektrotechniek, Wiskunde en Informatica EWI Complexe getallen z D a C bi We definiëren de complex

Nadere informatie

Inverse functies en limieten

Inverse functies en limieten Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Convexe Analyse en Optimalisering

Convexe Analyse en Optimalisering Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,

Nadere informatie

Functies van één veranderlijke 191512600

Functies van één veranderlijke 191512600 Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /40 Elektrotechniek, Wiskunde en Informatica EWI Partieel Breuksplitsen a0 x m C a x m C C a m x C a m

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/40 Elektrotechniek, Wiskunde en Informatica EWI Functies van één veranderlijke Als je alleen deelneemt

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

(x x 1 ) + y 1. x x 1 x k x x x k 1

(x x 1 ) + y 1. x x 1 x k x x x k 1 Les Taylor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op dinsdag 26 augustus 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Uitwerkingen tentamen Wiskunde B 16 januari 2015

Uitwerkingen tentamen Wiskunde B 16 januari 2015 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

Bouwstenen van signalen

Bouwstenen van signalen Bouwstenen van signalen Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl Zonder wiskunde geen snelle communicatie 1/27 Elektrotechniek, Wiskunde en Informatica EWI We sturen steeds meer informatie

Nadere informatie

Dit vak bestaat uit een werk- en instructiecollege, verplicht en vrijwillig huiswerk, één tussentoets op blackboard en één tentamen aan het eind.

Dit vak bestaat uit een werk- en instructiecollege, verplicht en vrijwillig huiswerk, één tussentoets op blackboard en één tentamen aan het eind. Wiskunde 1A - groep 3 (Gabor Wiese) 16/09/2003 Wat informatie: Dit vak bestaat uit een werk- en instructiecollege, verplict en vrijwillig uiswerk, één tussentoets op blackboard en één tentamen aan et eind.

Nadere informatie

Signalen en Transformaties

Signalen en Transformaties Signalen en Transformaties 200009 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /48 Elektrotechniek, Wiskunde en Informatica EWI Convolutie.f g/.t/ D Z f./g.t / d Goed gedefinieerd als f.t/

Nadere informatie

Week 2_2. 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels

Week 2_2. 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels Week 2_2 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels 2 Basiswiskunde_Week_2_2.nb 1.2 Voorbeeld Beschouw de uitdrukking x2 +3 x in de buurt van x = 2. x-4 Als x op 2 lijkt, dan

Nadere informatie

Paragraaf 2.1 : Snelheden (en helling)

Paragraaf 2.1 : Snelheden (en helling) Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }

Nadere informatie

Inleiding Wiskundige Systeemtheorie 156056

Inleiding Wiskundige Systeemtheorie 156056 Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/28 Elektrotechniek, Wiskunde en Informatica EWI Evenwichtspunt.x 0 ; y 0 ; u 0 / heet een evenwichtspunt

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde 3 voor B. Functies van twee variabelen.. Een functie fx, y) van twee variabelen kan analoog aan een functie van één variabele in Maple

Nadere informatie

~ (" 3 5x5 + 3x3 - gx + C. ~ 1 1-6/5 f (x =~=X65= x. = x~~5 + c = 55X + c V I NTEGRAALREKENING.

~ ( 3 5x5 + 3x3 - gx + C. ~ 1 1-6/5 f (x =~=X65= x. = x~~5 + c = 55X + c V I NTEGRAALREKENING. 1 I NTEGRAALREKENING. Onder een primitieve funktie F(x) van een funktie f(x) verstaan we de funktie F(x) waarvoor geldt: F ' (x) = f (x) B i j v. f (x) = x F (x) = x + c (c R) een primitieve funktie f(x)

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Rocco van Vreumingen 29 augustus 2014 1 Inhoudsopgave 1 Hints 1 3 2 Hints 2 4 3 Hints 3 5 4 Hints 4 5 5 Hints 5 6 6 Hints 6 6 7 Hints 7 6 8 Antwoorden

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8,

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8, UITWERKINGEN TENTAMEN DIFFERENTIËREN EN INTEGREREN 20 OKTOBER 2008. a) f(x) < is equivalt aan < f(x)

Nadere informatie

Eigenschappen van de gradiënt

Eigenschappen van de gradiënt Eigenschappen van de gradiënt De functie f stijgt in (a, b) het snelst in de richting van f(a, b) en daalt het snelst in tegenovergestelde richting. April 19, 2007 6 Eigenschappen van de gradiënt De functie

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

1.1 Differentiëren, geknipt voor jou

1.1 Differentiëren, geknipt voor jou 1.1 Differentiëren, geknipt voor jou Je hebt leren omgaan met hellings of, wat hetzelfde is: s. We frissen de begrippen en rekenmethoden die hierbij horen nu wat op. Stel dat je met een (gewone) schaar

Nadere informatie

Minima en maxima van functies

Minima en maxima van functies Les 3 Minima en maxima van functies Een reden waarom we de afgeleide van een functie bekijken is dat we iets over het stijgen of dalen van de functie willen weten. Als we met een differentieerbare functie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/28 Elektrotechniek, Wiskunde en Informatica EWI x.k C 1/ D Ax.k/ C Bu.k/; y.k/ D Cx.k/ C Du.k/ We

Nadere informatie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Convexe Analyse en Optimalisering Opleiding: Bacheloropleiding Econometrie Vakcode: 64200 Datum:

Nadere informatie

2 Differentiaal- en integraalrekening - Peter Bueken

2 Differentiaal- en integraalrekening - Peter Bueken Ü Ø Ï Ø Ò ÔÔ Ò ÒÁÒ ÓÖÑ Ø ÀÓ Ö Ú ÖØ ÓÓÐ ÒØÛ ÖÔ Ò ÇÒ ÖÛ Ò Ö ÒØ Ð¹ Ò ÒØ Ö ÐÖ Ò Ò È Ø Ö Ù Ò HZS-OE5-NW4 Eerste jaar Bachelor Nautische Wetenschappen Versie.4 4 maart 29 2 Differentiaal- en integraalrekening

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Convexe Analyse en Optimalisering Opleiding: Bacheloropleiding Econometrie Vakcode: 611010 Datum:

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17 Hints en uitwerkingen huiswerk 013 Analyse 1 H17 Rocco van Vreumingen augustus 014 1 Inhoudsopgave 1 Hints 1 3 Hints 4 3 Hints 3 4 4 Hints 4 5 5 Hints 5 5 6 Hints 6 6 7 Hints 7 6 8 Hints 8 6 9 Hints 9

Nadere informatie

Uitwerkingen analyse op de lijn tweede deel

Uitwerkingen analyse op de lijn tweede deel Uitwerkingen analse op de lijn tweede deel Het uitwerkspook 23 juli 25 Inhoudsopgave Hoofdstuk 2 3 2 Hoofdstuk 32 3 3 Hoofdstuk 29 4 4 Hoofdstuk 33 5 5 Hoofdstuk 34 5 6 Hoofdstuk 36 5 7 Hoofdstuk 37 7

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differtiaalvergelijking Fourierreeks Partiële differtiaalvergelijking zijn vergelijking waarin e onbekde functie van twee of meer variabel z n partiële afgeleide(n) voorkom. Dit in

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Differentiaalrekening. Elementaire techniek van het differentieren.

Differentiaalrekening. Elementaire techniek van het differentieren. Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze

Nadere informatie

Niet-standaard analyse (Engelse titel: Non-standard analysis)

Niet-standaard analyse (Engelse titel: Non-standard analysis) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Niet-standaard analyse (Engelse titel: Non-standard analysis) Verslag ten behoeve

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 Inleverdatum 30 maart 207, uiterlijk :5 uur Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je mag de theorie gebruiken die op het college

Nadere informatie

3.2 Kritieke punten van functies van meerdere variabelen

3.2 Kritieke punten van functies van meerdere variabelen Wiskunde voor kunstmatige intelligentie, 007/008 Als in een kritiek punt x 0 ook de tweede afgeleide f (x 0 ) = 0 is, kunnen we nog steeds niet beslissen of de functie een minimum, maximum of een zadelpunt

Nadere informatie

Paragraaf 7.1 : Eenheidscirkel en radiaal

Paragraaf 7.1 : Eenheidscirkel en radiaal Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)

Nadere informatie

Afdeling Kwantitatieve Economie

Afdeling Kwantitatieve Economie Afdeling Kwantitatieve Economie Wiskunde AEO V Uitwerking tentamen 1 november 2005 1. De tekenschema s in opgave 1a 1e zijn de voortekens van vermenigvuldigers en de laatste leidende hoofdminoren in een

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

Analyse 1 Handout limieten en continuïteit

Analyse 1 Handout limieten en continuïteit Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

Utrecht, 25 november Numerieke Wiskunde. Gerard Sleijpen Department of Mathematics.

Utrecht, 25 november Numerieke Wiskunde. Gerard Sleijpen Department of Mathematics. Utrecht, 25 november 2014 Numerieke Wiskunde Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ [a, b] R, : [a, b] R Benader f door eenvoudige functies Voorbeelden eenvoudige

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

integreren is het omgekeerde van differentiëren

integreren is het omgekeerde van differentiëren Integraalrekening Als we een functie f(x) differentiëren is het resultaat de eerste afgeleide f (x). Dezelfde functie f(x) kunnen we ook integreren met als resultaat de zogenaamde primitieve functie F(x).

Nadere informatie

Functies van meer variabelen voor dummy s

Functies van meer variabelen voor dummy s Functies van meer variabelen voor dummy s Dit is een 'praktische gids voor dummy s'. Hieronder kun je een aantal voorbeelden met uitleg vinden, oefeningen en uitwerkingen. De voorbeelden komen deels uit

Nadere informatie

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 16 januari 2015 Tijd: 13.30 16.30 uur Aantal opgaven: 5 Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom 8. Fouriertheorie Periodieke functies. Veel verschijnselen en processen hebben een periodiek karakter. Na een zekere tijd, de periode, komt hetzelfde patroon terug. Denk maar aan draaiende of heen en weer

Nadere informatie

Algemene informatie. Inhoudelijke informatie

Algemene informatie. Inhoudelijke informatie Informatie over Colloquium doctum Wiskunde niveau 2 voor Bedrijfskunde, Economie, Fiscale Economie en Mr.-Drs. Programma Economie en Recht ERASMUS UNIVERSITEIT ROTTERDAM Algemene informatie Tijdsduur:

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 13 september 2017 dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 13 september 2017 dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 13 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

Dag van de wiskunde 22 november 2014

Dag van de wiskunde 22 november 2014 WISKUNDIGE UITDAGINGEN MET DE TI-84 L U C G H E Y S E N S VRAGEN/OPMERKINGEN/ peter.vandewiele@telenet.be TOEPASSING 1: BODY MASS INDEX Opstarten programma en naamgeven! Peter Vandewiele 1 TOEPASSING 1:

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel I Voortgezette Analyse Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Robert C. Wrede, Murray Spiegel: (Schaum s Outline of Theory and Problems of) Advanced Calculus. McGraw-Hill

Nadere informatie

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden:

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden: Hoofdstuk 4 Programmeren met de GR Toevoegen: een inleiding op het programmeren met de GR Hoofdstuk 5 - Numerieke methoden Numerieke wiskunde is een deelgebied van de wiskunde waarin algoritmes voor problemen

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Onderwijsstage: Analyse I

Onderwijsstage: Analyse I Faculteit Wetenschappen Departement Wiskunde Onderwijsstage: Analyse I Ilse Spruyt Begeleiders: Prof. Stefaan Caenepeel Prof. Bart Windels Academiejaar 13-14 Inhoudsopgave 1 Pedagogisch aspect 1.1 Lesobservaties..................................

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1 Herhalingsoefeningen Tweedegraadsfuncties Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1

Nadere informatie

Signalen en Transformaties

Signalen en Transformaties Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/42 Elektrotechniek, Wiskunde en Informatica EWI Laplace transformatie éénzijdige Laplace-transformatie:

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

ANALYSEQUIZ Ga naar new.shakeq.com en log in met de code uvaanalyse2a

ANALYSEQUIZ Ga naar new.shakeq.com en log in met de code uvaanalyse2a ANALYSEQUIZ 2016 Ga naar new.shakeq.com en log in met de code uvaanalyse2a WAAR OF ONWAAR: EEN SOM CONVERGEERT ALS DE TERMEN NAAR NUL GAAN. A. Waar B. Onwaar De vraag gaat open zodra u een sessie en diavoorstelling

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Minimum-Maimumproblemen (versie 11 augustus 2008) Inleiding In heel wat vraagstukken gaan we op zoek naar het maimum of het minimum van een zekere grootheid.

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie.

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie. 2 Domein en bereik Verkennen grafieken Domein en bereik Inleiding Verkennen Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van

Nadere informatie