Vectoranalyse voor TG

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Vectoranalyse voor TG"

Transcriptie

1 college 1 collegejaar college build slides Vandaag : : : : september otatie Green De wet van Faraday 1 VA vandaag

2 4.5.6 ection 16.7 telling Vergeleijking (4.62) Theorem 6 Het oppervlak is georiënteerd en stuksgewijs glad. De rand van is een georiënteerde, enkelvoudige, gesloten, stuksgewijs gladde kromme, waarvan de oriëntatie overeenstemt met die van volgens de rechterhandregel; Vectorveld F heeft continue partiële afgeleiden op een open omgeving van. Dan geldt F dr curl F n dσ. 2 st/1 VA irculatie Zie ook college 1 Definitie Gegeven is een stroming v in 3. tel is een georiënteerde, gesloten kromme. De circulatie door is de lijnintegraal van v door, dus v dr. n telling circulatiestelling tel is een klein georiënteerd oppervlak met normaal n, dan v dr (curl v n) opp(). 3 st/2 VA

3 n 1 1 B D Voor vlak 1 geldt: curl F n 1 opp( 1 ) F 1 dr. Voor 2 geldt: curl F n 2 opp( 2 ) F 2 dr. Lijnstuk AB wordt twee keer doorlopen, maar in tegengestelde richting, dus F 2 dr + F 2 dr F ( 1 dr. 2 ) Dus curl F n 1 opp( 1 )+curl F n 2 opp( 2 ) F dr. A n 2 2 D ( 1 2 ) 4 st/3 VA n k k Door herhaald toepassen krijg je een iemann som curl F n k opp( k ) F dr. k Maak de oppervlakjes k kleiner en kleiner. Door limiet opp( k ) te nemen volgt de stelling van : curl F n dσ F dr. 5 st/4 VA

4 Voorbeeld ection 16.7, example 2 Gegeven is het vectorveld F (y, x, ). Verifieer de stelling van voor het oppervlak : x 2 + y 2 + z 2 9, z. Kies de oriëntatie van is linksom (van boven gezien). Parametrisering van : r(θ) (3 cos θ, 3 sin θ, ) met θ 2π. r (θ) ( 3 sin θ, 3 cos θ, ) F ( r(θ) ) (3 sin θ, 3 cos θ, ) F ( r(θ) ) r (θ) 9 sin 2 θ 9 cos 2 θ 9. F dr F ( r(θ) ) r (θ) dθ 9 dθ 18π. 6 st/5 VA Voorbeeld (vervolg) curl F(x, y, z) (,, 2) 2k. In Thomas wordt de oppervlakteintegraal met behulp van de impliciete vorm berekend. Dit voorbeeld wordt berekend met een expliciete parametrisering. Parametrisering van : r(ϕ, θ) (3 sin ϕ cos θ, 3 sin ϕ sin θ, 3 cos ϕ) met ϕ π/2 en θ 2π. r ϕ 3(cos ϕ cos θ, cos ϕ sin θ, sin ϕ). r θ 3( sin ϕ sin θ, sin ϕ cos θ, ). r ϕ r θ 9 sin ϕ(sin ϕ cos θ, sin ϕ sin θ, cos ϕ). Als ϕ π/2 dan cos ϕ, dus r ϕ r θ wijst naar boven. curl F ( r(ϕ, θ) ) (r ϕ r θ ) 18 sin ϕ cos ϕ 9 sin(2ϕ). curl F n dσ π/2 9 sin(2ϕ) dϕ dθ 18π. 7 st/6 VA

5 Voorbeeld De kromme is de snijfiguur van de cilinder x 2 + y 2 1 en het vlak y + z 2. Bereken F dr waarbij F(x, y, z) ( y 2, x, z 2). De oriëntatie van is linksom (van boven gezien). curl F(x, y, z) (,, 1 + 2y). met {(x, y, z) x 2 + y 2 1, y + z 2}. Parametrisering van : r(x, y) (x, y, 2 y) met (x, y) {(x, y) x 2 + y 2 1}. r x (1,, ) en r y (, 1, 1). r x r y (, 1, 1). Deze vector is naar boven gericht en klopt met de oriëntatie van. 8 st/7 VA Voorbeeld (vervolg) F dr curl F n dσ (,, 1 + 2y) (, 1, 1) dx dy y dx dy (1 + 2r sin θ)r dr dθ [ 1 2 r r 3 sin θ ] 1 dθ sin θ dθ 1 2 θ 2 3 cos θ 2π 1 2 2π 2 ( ) 3 cos(2π) cos() π. 9 st/8 VA

6 Voorbeeld Het oppervlak is het gedeelte van de bol x 2 + y 2 + z 2 4 dat binnen de cilinder x 2 + y 2 1 en boven het xy-vlak ligt. Bereken curl F n dσ waarbij F(x, y, z) (xz, yz, xy). Hierbij is de oriëntatie van de rand van linksom (van boven gezien). 1 st/9 VA Voorbeeld (vervolg) Parametriseer de rand van : r(t) (cos t, sin t, 3). r (t) ( sin t, cos t, ). F ( r(t) ) ( 3 cos t, 3 sin t, cos t sin t). curl F n dσ F dr F ( r(t) ) r (t) dt 3 cos t sin t + 3 sin t cos t dt dt. 11 st/1 VA

7 Green ecion 16.4 telling Green Vergelijking (4.63) Theorem 5 2 is een enkelvoudig samenhangend gebied, met rand. is een enkelvoudige gesloten, stuksgewijs gladde, positief georiënteerde kromme. M en N zijn functies waarvan de partiële afgeleiden bestaan en continu zijn op een open gebied dat omvat. Dan geldt M dx + N dy Als F (M, N ) dan x M y da. M dx + N dy F dr. 12 st/11 VA Green Beschouw als een oppervlak in 3 : {(x, y, ) (x, y) }. Definieer F(x, y, z) (M (x, y), N (x, y), ). Als wordt geparametriseerd met de vectorfunctie r(t) ( x(t), y(t) ) met a t b dan is een parametrisering van als kromme in het xy-vlak: ( x(t), y(t), ). F ( r(t) ) r (t)m ( x(t), y(t) ) x (t)+n ( x(t), y(t) ) y (t). 13 st/12 VA

8 Green ( volgt curl F,, x M ). y Parametriseer : r(x, y) (x, y, ). Uit M z z Er geldt r x r y (1,, ) (, 1, ) (,, 1). Daarmee M dx + N dy b M ( x(t), y(t) ) x (t) dt + N ( x(t), y(t) ) y (t) dt a F dr curl F n dσ (,, x M ) y (,, 1) da x M y da. Green 14 st/13 VA Green Voorbeeld ection 16.4, example 1 Verifieer de stelling van Green voor het vectorveld F(x, y) (x y)i + xj voor het gebied waarvan de rand de eenheidscirkel is. In tegenstelling tot het boek van Thomas verifiëren we de rotatie-variant van Green s stelling: M dx + N dy x M y da. Definieer M (x, y) x y, N (x, y) x. en gebruik voor de parametrisering r(t) (cos t, sin t), t 2π. 15 st/14 VA

9 Voorbeeld (vervolg) M dx + N dy F dr F ( r(t) ) ( M (r(t)), N (r(t)) ) (cos t sin t, cos t). r (t) ( sin t, cos t). F ( r(t) ) r (t) cos t sin t + sin 2 t + cos 2 t sin(2t). M dx + N dy F dr F ( r(t) ) r (t) dt t cos(2t) 2π 2π sin(2t) dt 16 st/15 VA Voorbeeld (vervolg) x x x 1. M (x y) y x x M y x M y da 1. 1 ( 1) 2. x M y da 2 da 2 opp() 2π. 17 st/16 VA

10 Green Voorbeeld Bereken ( 3y e sin x) ( ) dx + 7x + y dy waarbij de cirkel is met middelpunt (, ) en straal 3. is de rand van de cirkelschijf gegeven door {(x, y) 2 x 2 + y 2 9}. Gebruik de stelling van Green: ( 3y e sin x) ( ) dx + 7x + y dy M 7 3 da 4 x M y N 1 da 4 opp 36 π. 18 st/17 VA onservatieve velden Zie ook colleges 7 en 1 Een vectorveld F in 3 heet rotatievrij als curl F(x) voor alle x 3. telling ection 16.7, vergelijking (8) Het gradiëntveld van een functie f : 3 is rotatievrij: curl grad f of f. Het bewijs volgt uit simpele verificatie. Gevolg Als een vectorveld F conservatief is, dan is het rotatievrij. Bewijs tel f is een potentiaal van F, dan F grad f, dus curl F curl grad f. 19 st/18 VA

11 onservatieve velden telling ection 16.7, theorem 7 tel F is een vectorveld gedefinieerd op een open, enkelvoudig samenhangend gebied D, en stel F is rotatievrij. Als de partiële afgeleiden van de componenten van F continu zijn, dan is F conservatief. Bewijs tel zowel 1 als 2 is een pad van P naar Q in D. F 1 dr F 2 dr F dr curl F n dσ n dσ. Dus lijnintegralen in D zijn pad-onafhankelijk. 2 st/19 VA Gesloten oppervlakken telling Voor een enkelvoudig gesloten oppervlak geldt curl F n dσ. tel het gesloten oppervlak is verdeeld in twee delen 1 en 2, met gemeenschappelijke rand. Het normaalveld n is naar buiten gericht. curl F n dσ F dr F dr. 1 curl F n dσ + 2 curl F n dσ 21 st/2 VA

12 Gesloten oppervlakken Gevolg Voor twee een enkelvoudige oppervlakken 1 en 2 met gemeenschappelijke rand en identieke oriëntatie geldt curl F 1 n dσ curl F 2 n dσ. curl F 1 n dσ F dr curl F 2 n dσ. 22 st/21 VA Gesloten oppervlakken Voorbeeld Gegeven is het vectorveld F(x, y, z) ( y, x, xyz 2 ). Het oppervlak is een piramide bestaande uit drie driehoeken D 1, D 2 en D 3. De oriëntatie van E is naar boven gericht. Bereken curl F n dσ. De rand van bestaat uit de driehoek met hoekpunten (,, ), (1,, ) en (, 1, ). 23 st/22 VA

13 Voorbeeld (vervolg) Het oppervlak bestaat uit drie delen: curl F n dσ + + D 1 D 2 D 3 De rand van bestaat uit drie lijnstukken: F dr De rand van is ook de rand van de driehoek D met hoekpunten (,, ), (1,, ) en (, 1, ). curl F n dσ curl F D n dσ 24 st/23 VA Voorbeeld (vervolg) De normaal op D is n (,, 1). F(x, y, z) ( y, x, xyz 2 ). curl F(x, y, z) (,, x (x) y ( y)) (,, 2). Dus curl F(x, y, z) n 2. curl F n dσ curl F D n dσ 2 dσ 2 opp(d ) D 25 st/24 VA

14 Toepassing: de wet van Faraday Inductiewet van Faraday Een veranderend magneetveld wekt een elektrisch veld op. - Michael Faraday, 1831 B Voor ieder georiënteerd oppervlak met rand geldt E dr d d t B n dσ. - James lerk Maxwell 26 st/25 VA Toepassing: de wet van Faraday Gebruik de stelling van : d B n dσ E dr d t curl E n dσ. Als niet afhangt van de tijd geldt: d B n dσ B n dσ d t t Dus ( curl E + B ) t n dσ. Dit geldt voor ieder oppervlak 3, dus curl E B t. 27 st/26 VA

15 Overzicht vlak niet vlak Vlakke integralen: b f (x) dx a f (x, y) da f (x, y, z) dv E Lijnintegralen van functies: f dr van vectorvelden: F dr Oppervlakteintegralen van functies: f dσ van vectorvelden: F n dσ 28 ov/1 VA

Vectoranalyse voor TG

Vectoranalyse voor TG college 11 collegejaar college build slides Vandaag : : : : 17-18 11 23 oktober 2017 35 De sterrennacht Vincent van Gogh, 1889 1 2 3 4 5 Verband met de stelling van n 1 VA intro ection 16.7 Definitie Equation

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 12 collegejaar college build slides Vandaag : : : : 17-18 12 4 september 217 3 ail Training Vessel 263 tad Amsterdam 1 2 3 4 stelling van Gauss stelling van Green Conservatieve vectorvelden 1 VA

Nadere informatie

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking Math D Gauss Wiskunde leerlijn TOM Deelnemende Modules: 14-144/FMHT/14161/14144-1A Oefententamen # Uitwerking Vraagstuk 1. tel de doorsnijding van de oppervlakken x + y + z 4 en z 1. Van bovenaf bekijkt

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 6 van een vectorveld collegejaar college build slides Vandaag : : : : 14-15 6 22 september 214 51 1 2 3 4 5 Gradiënt van een vectorveld 1 VA vandaag Section 16.2 Hoofdstu 4 Definitie Een vectorveld

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

Faculteit Wiskunde en Informatica VECTORANALYSE

Faculteit Wiskunde en Informatica VECTORANALYSE 2 Faculteit Wiskunde en Informatica Aanvulling 5 VECTORANALYE 2WA5 2006/2007 Hoofdstuk 5 De stellingen van tokes en Green 5. Inleiding In dit hoofdstuk worden de stellingen van tokes en van Green 2 behandeld.

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

Ruimtewiskunde. college 3 Lijnen, vlakken en oppervlakken in de ruimte. Vandaag

Ruimtewiskunde. college 3 Lijnen, vlakken en oppervlakken in de ruimte. Vandaag college 3 Lijnen, vlakken en in de collegejaar : 16-17 college : 3 build : 6 juni 2017 slides : 37 Vandaag 1 Lijnen 2 Vlakken 3 4 Toepassing: perspectivische.16-17[3] 1 vandaag Lijnen in het platte vlak

Nadere informatie

Tentamen WISN102 Wiskundige Technieken 2 Ma 26 jan :30 16:30

Tentamen WISN102 Wiskundige Technieken 2 Ma 26 jan :30 16:30 Tentamen WISN1 Wiskundige Technieken Ma 6 jan 14 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Huiswerk Hints&Tips Analyse 2, College 26

Huiswerk Hints&Tips Analyse 2, College 26 Huiswerk Hints&Tips Analyse, College 6 [K..]. Tip : Toon aan dat er punten (x, y ) en (x, y ) en scalars m, M R bestaan zo dat m = f(x, y ) f(x, y) f(x, y ) = M. Laat dan zien dat m(b a)(d c) = m f M =

Nadere informatie

Faculteit Wiskunde en Informatica VECTORANALYSE

Faculteit Wiskunde en Informatica VECTORANALYSE 12 Faculteit Wiskunde en Informatica Aanvulling 4 VECTOANALYE 2WA15 2006/2007 Hoofdstuk 4 De stelling van Gauss (divergentie-stelling) 4.1 Inleiding Dit hoofdstuk is gewijd aan slechts één stelling. De

Nadere informatie

Faculteit Wiskunde en Informatica VECTORANALYSE

Faculteit Wiskunde en Informatica VECTORANALYSE 12 Faculteit Wiskunde en Informatica Aanvulling 2 VECTORANALYSE 2WA15 2006/2007 Hoofdstuk 2 Vectorvelden en lijnintegralen 2.1 De Euclidische ruimte E 3 Zij E 3 de (Euclidische) ruimte. iezen we in E 3

Nadere informatie

Studiewijzer Vectorcalculus voor TN 2DN /13 Semester A kwartiel 2

Studiewijzer Vectorcalculus voor TN 2DN /13 Semester A kwartiel 2 Studiewijzer Vectorcalculus voor TN 2DN13 2012/13 Semester A kwartiel 2 De actuele versie van deze studiewijzer is te vinden op http://www.win.tue.nl/ gprokert/wijzer2dn13.pdf Doelgroep: tweedejaars Bachelor

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Integratie voor meerdere variabelen

Integratie voor meerdere variabelen Wiskunde 2 voor kunstmatige intelligentie, 27/28 Les 4 Integratie voor meerdere variabelen In deze les bekijken we het omgekeerde van de afgeleide, de integratie, en gaan na hoe we een integraal voor functies

Nadere informatie

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden college 2 - en het uitwendig collegejaar college build slides Vandaag : : : : 6-7 2 30 mei 207 30 2 3 4 5 Hoeken Orthogonaliteit en projecties Toepassing: magnetische velden.6-7[2] vandaag meetkundig Section

Nadere informatie

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries)

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries) Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017 Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer) / B

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus 2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus Kwartiel 2, week 7.b Op het college op donderdagochtend 7 januari is behandeld: - hoek tussen vectoren en cosinus regel - driehoeksongelijkheid

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

TENTAMEN INFINITESIMAALREKENING 1C

TENTAMEN INFINITESIMAALREKENING 1C TENTAMEN INFINITESIMAALREKENING 1C onderdag 1 maart 1, 14. 17. uur. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Shrijf je naam en studentnummer op elk vel dat je inlevert en op het

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Oefenzitting 2: Parametrisaties.

Oefenzitting 2: Parametrisaties. Oefenzitting : Parametrisaties. Modeloplossingen Oefening.5:. Beschouw vooreerst de cirkel C in het xz-vlak met straal r en middelpunt (x, y, z) = (R,, ) (zie Figuur ). De parametrisatie van C wordt dan

Nadere informatie

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari 9. Opgave: Bereken dt ( q) als p = (, ), q = (, ) en p u+v x = e t dt T : (u, v) (x, y) : u y = u sin(vt) dt Oplossing:

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 J.Keijsper

Nadere informatie

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 Inleverdatum 30 maart 207, uiterlijk :5 uur Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je mag de theorie gebruiken die op het college

Nadere informatie

college 2: partiële integratie

college 2: partiële integratie 39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college en scalarelden in R Vandaag collegejaar college build slides : : : : 4-5 7 augustus 4 33 Coördinatenstelsels in R VA andaag Voorkennis Zelf bestuderen uit.,. en.3: ptellen en scalair ermeniguldigen

Nadere informatie

Toepassingen op Integraalrekening

Toepassingen op Integraalrekening Toepssingen op Integrlrekening ) Oppervlktes vn vlkke figuren erekenen De meest voor de hnd liggende toepssing vn integrlrekening is uiterrd de reden wrom ze is ingevoerd, nmelijk het erekenen vn oppervlktes

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 5 juli 2012 van 14u00-17u00

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 5 juli 2012 van 14u00-17u00 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 5 juli 202 van 4u00-7u00 Dit tentamen bestaat uit 5 opgaven met elk 3 onderdelen. Voor elk

Nadere informatie

Onbetwist-Toetsen Calculus

Onbetwist-Toetsen Calculus Onbetwist-Toetsen Calculus 1 Exercise 1. Op is het vectorveld gegeven door Bepaal de veldlijn door het punt in de vorm. Geef de functie. Exercise 2. The vector field on is given by Determine the field

Nadere informatie

Lineaire algebra en vectorcalculus

Lineaire algebra en vectorcalculus Lineaire algebra en vectorcalculus dr. G.R. Pellikaan Studiewijzer voor het studiejaar 2013/2014 College 2DN60 Contents 1 Algemeen 2 2 Inhoud van het vak 2 3 Leerdoelen 3 4 Berekening tijdsplanning 3 5

Nadere informatie

maplev 2010/7/12 14:02 page 135 #137 Plaatjes in drie dimensies

maplev 2010/7/12 14:02 page 135 #137 Plaatjes in drie dimensies maplev /7/ 4: page 35 #37 Module Plaatjes in drie dimensies Onderwerp Voorkennis Expressies Bibliotheken Zie ook Driedimensionale plots. Module 9. plot3d, spacecurve, contourplot, gradplot, cylinderplot

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 2011 van 14u00-17u00

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 2011 van 14u00-17u00 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 20 van 4u00-7u00 Dit tentamen bestaat uit 5 opgaven met elk 3 onderdelen. Voor elk

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early Transcendental Functions Robert T. Smith,

Nadere informatie

Tentamen Analyse 4 (wi2602) 17 juni 2011, uur. ) (1 gratis)) Deel 2: opgaven 2b, 4ab, 5, 6 (normering: 2 + (

Tentamen Analyse 4 (wi2602) 17 juni 2011, uur. ) (1 gratis)) Deel 2: opgaven 2b, 4ab, 5, 6 (normering: 2 + ( TU Delft Mekelweg 4 Faculteit EWI, DIAM 68 CD Delft Tentamen Analyse 4 (wi6) 7 juni, 4-7 uur Het tentamen bestaat uit twee delen: Deel : opgaven, a, 3ab, 4c (normering: + + ( + ) + + ( gratis)) Deel :

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2006-I

Eindexamen wiskunde B1-2 vwo 2006-I Eindexamen wiskunde B- vwo 006-I Beoordelingsmodel Sauna 0,9 00 80 e t 00 beschrijven hoe deze vergelijking opgelost kan worden de oplossing t,07 het tijdstip 7:0 uur 0,9t S () t 80 0,9 e S () 9, 06 het

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2002-I

Eindexamen wiskunde B1-2 vwo 2002-I Eindexamen wiskunde B- vwo -I 4 Antwoordmodel Uit de kust De isoafstandslijn bestaat uit drie lijnstukken en een cirkelboog De lijnstukken hebben lengte 4 x, 4 x en 4 De lengte van de cirkelboog is 4 πx

Nadere informatie

Zomercursus Wiskunde. Module 18 Geïntegreerde oefeningen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 18 Geïntegreerde oefeningen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 18 Geïntegreerde oefeningen (versie 22 augustus 2011) Inhoudsopgave 1 Inleiding 1 2 Opgaves 1 3 Oplossingen 11 18-1 1 Inleiding In deze module worden

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

Analyse 1 November 2011 Januari 2011 November 2010

Analyse 1 November 2011 Januari 2011 November 2010 WI1330CT/CT1135-1/CTB1001-1 Januari 2013 November 2012 Januari 2012 Analyse 1 November 2011 Januari 2011 November 2010 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" TU DELFT, 2010

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

Bespreking van het examen Complexe Analyse (tweede zittijd)

Bespreking van het examen Complexe Analyse (tweede zittijd) Bespreking van het examen Complexe Analyse (tweede zittijd) Bekijk ook de bespreking van het examen van de eerste zittijd (op Toledo). Het valt hier op dat de scores op sommige vragen wel heel slecht zijn.

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early T ranscendental F unctions, Robert T. Smith,

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2001-II

Eindexamen wiskunde B1-2 vwo 2001-II Koordentrapezium In figuur is koordenvierhoek ABCD getekend. AB is evenwijdig aan DC; ABCD is dus een trapezium. De figuur is ook op de bijlage getekend. figuur C D B A 5p Bewijs de volgende stelling:

Nadere informatie

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel

Nadere informatie

1 WGAM: overzicht definities, eigenschappen en stellingen. (Nuttig voor de WPO s)

1 WGAM: overzicht definities, eigenschappen en stellingen. (Nuttig voor de WPO s) 1 WGAM: overzicht definities, eigenschappen en stellingen. (Nuttig voor de WPO s) 1.1 Hoofdstuk 1: eeksen efinitie 1.1.1. Gegeven een rij (a n ) van reële getallen, dan noemen we een uitdrukking van de

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar

Nadere informatie

1 Oppervlakteberekeningen

1 Oppervlakteberekeningen Oppervlakteberekeningen. Oppervlakte ellips of een deel ervan.. Zonder gebruik te maken van parametervergelijkingen We berekenen de oppervlakte in het eerste kwadrant, achteraf vermenigvuldigen we het

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 00-005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.9, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 16 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 46 Outline III.7 Applications of the Residue Theorem

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur Wiskunde B Profi (oude stijl) Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 20 juni 3.30 6.30 uur 20 0 Voor dit eamen zijn maimaal 78 punten te behalen; het eamen bestaat uit 4 vragen.

Nadere informatie

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Examen VWO. wiskunde B1,2

Examen VWO. wiskunde B1,2 wiskunde B1,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening 307 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http:users.telenet.betoelating) . Inleiding Dit oefeningenoverzicht

Nadere informatie

Eindexamen wiskunde B 1-2 vwo I

Eindexamen wiskunde B 1-2 vwo I Eindexamen wiskunde B - vwo - I Beoordelingsmodel Oppervlakte en inhoud bij f(x) = e x maximumscore e Lijn AB heeft richtingscoëfficiënt = (e ) Voor lijn AB geldt de formule y = (e ) x + De oppervlakte

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Imaginary - singulariteiten

Imaginary - singulariteiten Imaginary - singulariteiten Gommaar Maes en Tania Van Damme SLO Wiskunde - Universiteit Gent en Atheneum Mariakerke Inleiding Een regulier punt van een vlakke kromme is een punt waar de kromme vloeiend

Nadere informatie

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde Masterclass VWO-leerlingen juni 2008 Snelle glijbanen Emiel van Elderen en Joost de Groot NWD 2009 1 Technische Universiteit Delft Probleemstelling Gegeven: een punt A(0,a) en een punt B(b, 0) met a 0.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

Elektromagnetische veldtheorie (121007) Proeftentamen

Elektromagnetische veldtheorie (121007) Proeftentamen Elektromagnetische veldtheorie (121007) Proeftentamen Tijdens dit tentamen is het gebruik van het studieboek van Feynman toegestaan, en zelfs noodzakelijk. Een formuleblad is bijgevoegd. Ander studiemateriaal

Nadere informatie

Over de functies arcsin, arccos en arctan

Over de functies arcsin, arccos en arctan Over de functies arcsin, arccos en arctan Booglengte figuur figuur De grafiek van een functie f tussen twee punten P (met a) en Q (met b) kan worden opgedeeld in stukjes die kunnen worden opgevat als lijnstukken,

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B, (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Vrijdag 4 mei 3.30 6.30 uur 0 0 Voor dit examen zijn maximaal 86 punten te behalen; het examen bestaat uit 8 vragen.

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Analytische en andere soorten meetkunde van Mavo tot Maple. Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft.

Analytische en andere soorten meetkunde van Mavo tot Maple. Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft. Analytische en andere soorten meetkunde van Mavo tot Maple Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft.nl Puzzel mavo 3 Puzzel mavo 3 Puzzel mavo 3 Veronderstel: zijde

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Inzenden scores Uiterlijk op 9 mei de scores van de alfabetisch eerste vijf kandidaten per school op

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2001-I

Eindexamen wiskunde B1-2 vwo 2001-I Eindexamen wiskunde B- vwo 00-I 4 Antwoordmodel Boottocht Het gezochte punt is het snijpunt van en de middelloodlijn van het lijnstuk van het punt P aximumscore 6 = =, met het midden van dus = 90 Het punt

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B,2 (nieuwe stijl) Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni 330 630 uur 20 0 Voor dit eamen zijn maimaal 80 punten te behalen; het eamen bestaat uit 5 vragen

Nadere informatie

Uitwerkingen toets emv

Uitwerkingen toets emv Uitwerkingen toets emv 24 april 2012 1 (a) Bij aanwezigheid van een statische ladingsverdeling ρ(r) wordt het elektrische veld bepaald door E = 1 ρ(r ) 4π r 2 ˆrˆrˆr dτ, V waarin V het volume van de ladingsverdeling,

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

Opgaven bij Analytische meetkunde in een nieuw jasje

Opgaven bij Analytische meetkunde in een nieuw jasje Opgaven bij Analytische meetkunde in een nieuw jasje Opgave 1. Gegeven de lijnen m en n met vectorvoorstellingen 6 8 x = 7 + µ 0. Bepaal de afstand tussen m en n. 16 0 4 x = 2 + λ 1 en Opgave 2. Bewijs

Nadere informatie