Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie"

Transcriptie

1 Hoofdstuk : Randwaardeproblemen en Sturm-Liouville theorie.. Tweepunts randwaardeproblemen. Bij het oplossen van partiële differentiaalvergelijkingen met behulp van de methode van scheiden van variabelen stuiten we steeds op gewone differentiaalvergelijkingen met één of meer randvoorwaarden. In veel gevallen een tweede orde lineaire differentiaalvergelijking met twee randvoorwaarden, een zogenaamd tweepunts randwaardeprobleem. Zoals al eerder opgemerkt is de methode van scheiden van variabelen niet alleen bruikbaar in de drie gevallen van de warmte-, de golf- en de Laplace of potentiaalvergelijking. De methode kan ook worden toegepast bij veel algemenere vormen van partiële differentiaalvergelijkingen, zoals r(x)u t = p(x)u x ] x q(x)u + F (x, t). () Dit is een veel algemenere vorm van een warmtevergelijking. Zie ook Appendix A van hoofdstuk. Ook kan men veel algemenere randvoorwaarden beschouwen, zoals u x (, t) h u(, t) = en u x (L, t) + h u(l, t) = met h, h R. () Dergelijke randvoorwaarden treden bijvoorbeeld op als de mate van temperatuurverandering in de eindpunten evenredig is met de dan heersende temperatuur. Voor h = en h = beschrijven deze randvoorwaarden de situatie met geïsoleerde uiteinden. Neem aan dat de differentiaalvergelijking () homogeen is, dat wil zeggen : F (x, t) =. Stel dan dat u(x, t) = X(x)T (t), dan volgt : Delen door r(x)x(x)t (t) geeft dan : r(x)x(x)t (t) = p(x)x (x) ] T (t) q(x)x(x)t (t). T (t) T (t) = p(x)x (x)] q(x) r(x)x(x) r(x) = σ (separatieconstante). Dit leidt tot de gewone differentiaalvergelijkingen T (t) σt (t) = en p(x)x (x) ] q(x)x(x) σr(x)x(x) =. Uit de randvoorwaarden () volgt verder dat X () h X() = en X (L) + h X(L) =. Hierbij stuiten we dus op het tweepunts randwaardeprobleem p(x)x (x)] q(x)x(x) σr(x)x(x) =, X () h X() =, X (L) + h X(L) =. < x < L We zijn dan weer geïnteresseerd in de waarden van σ waarvoor dit homogene tweepunts randwaardeprobleem niet-triviale oplossingen heeft.

2 Voorbeeld. Beschouw het homogene randwaardeprobleem y + λy =, < x < y() =, y () + y() =. Dit randwaardeprobleem treedt bijvoorbeeld op bij een warmteprobleem voor een metalen staaf, waarbij het ene uiteinde (x = ) op een vaste temperatuur wordt gehouden terwijl de mate van temperatuurverandering aan het andere uiteinde (x = L) evenredig is met de temperatuur aldaar. We onderscheiden weer drie gevallen :. λ = : y = = y(x) = a x + a. Uit y() = volgt dan dat a =. Dus : y(x) = a x en y (x) = a. Uit y () + y() = volgt dan dat a =. Dus : λ = is geen eigenwaarde.. λ = µ < : y µ y = = y(x) = b cosh µx + b sinh µx. Uit y() = volgt dan dat b =. Dus : y(x) = b sinh µx en y (x) = µb cosh µx. Uit y () + y() = volgt dan dat µ cosh µ + sinh µ] b =. Er kunnen dus alleen niet-triviale oplossingen optreden als µ cosh µ + sinh µ = µ = tanh µ. Dit heeft echter geen oplossingen voor µ > omdat tanh x stijgend is voor x >. Immers : tanh x = sinh x cosh x = ex e x e x + e x = ex e x + en dus tanh x = ex (e x + ) e x (e x ) (e x + ) = 4e x (e x + ) >. Merk op dat µ = een oplossing is van µ = tanh µ. Maar voor µ > is µ zelf stijgend en dus positief, terwijl tanh µ dalend en dus negatief is voor alle µ >. 3. λ = µ > : y + µ y = = y(x) = c cos µx + c sin µx. Uit y() = volgt dan dat c =. Dus : y(x) = c sin µx en y (x) = µc cos µx. Uit y () + y() = volgt dan dat µ cos µ + sin µ] c =. In dit geval kunnen er alleen niet-triviale oplossingen optreden als µ cos µ + sin µ = µ = tan µ. Dit heeft oneindig veel oplossingen voor µ >. De grafiek van µ doorsnijdt de grafiek van tan µ precies eenmaal in elk interval (n π/, n + π/) met n =,, 3,.... De snijpunten kunnen we niet exact bepalen, maar met behulp van (bijvoorbeeld) Maple kunnen we ze wel stuk voor stuk benaderen met iedere gewenste nauwkeurigheid. Als we deze snijpunten met n =,, 3,... noemen, dan zijn de positieve eigenwaarden van het randwaardeprobleem gelijk aan λ n = µ n met n =,, 3,.... De eigenfuncties zijn dan y n (x) = sin x met n =,, 3,.... Dit voorbeeld toont dat bij meer algemene randwaardeproblemen de eigenwaarden en eigenfuncties wat ingewikkelder kunnen zijn dan we tot nu toe gezien hebben. De principes blijven echter gelijk.

3 .. Sturm-Liouville randwaardeproblemen. We beschouwen homogene randwaardeproblemen van de vorm p(x)y ] q(x)y + λr(x)y =, < x < (3) a y() + a y () =, b y() + b y () =. Een dergelijk randwaardeprobleem wordt een Sturm-Liouville randwaardeprobleem genoemd. Het is soms handig om gebruik te maken van de lineaire homogene differentiaaloperator L gedefinieerd door Ly] := p(x)y ] + q(x)y. De differentiaalvergelijking kan dan geschreven worden in de vorm Ly] = λr(x)y. We nemen aan dat de functies p, p, q en r continu zijn op het interval, ] en dat p(x) > en r(x) > voor alle x, ]. De randvoorwaarden in (3) worden wel gescheiden randvoorwaarden genoemd. Voor een tweede orde differentiaalvergelijking zijn dit de meest algemene gescheiden randvoorwaarden die men kan opleggen. Voor een randwaardeprobleem van de vorm (3) is een uitgebreide theorie ontwikkeld, de Sturm-Liouville theorie. We zullen hier enkele belangrijke resultaten uit deze theorie de revue laten passeren. Met de notatie zoals hierboven hebben we Lu]v dx = Met behulp van partiële integratie vinden we (pu ) v dx = (pu ) v + quv ] dx. v d(pu ) = p(x)u (x)v(x) pu dv = p(x)u (x)v(x) pv du = p(x)u (x)v(x) p(x)u(x)v (x) + u d(pv ) = p(x) u (x)v(x) u(x)v (x) ] Hieruit volgt de identiteit van Lagrange : + (pv ) u dx {Lu]v ulv]} dx = p(x) u (x)v(x) u(x)v (x) ]. Stel nu dat de functies u en v voldoen aan de randvoorwaarden in (3), dat wil zeggen : a u() + a u () = b u() + b u () = en a v() + a v () = b v() + b v () =. Als a en b, dan volgt hieruit dat {Lu]v ulv]} dx = p(x) u (x)v(x) u(x)v (x) ] 3

4 = p() u ()v() u()v () ] + p() u ()v() u()v () ] = p() b u()v() + b ] u()v() b b + p() a u()v() + a ] u()v() =. a a Als a = en/of b =, dan volgt hetzelfde resultaat. Ga na! Als we nu weer de notatie < u, v > = u(x)v(x) dx voor het standaard inwendig product van twee reële functies op, ] gebruiken, dan geldt dus de symmetrierelatie < Lu], v > = < u, Lv] >. (4) Voor complexwaardige functies u en v dient men gebruik te maken van < u, v > = u(x)v(x) dx, waarbij v de complex geconjugeerde van v is. Ook in dat geval geldt de symmetrierelatie (4). Hiermee kunnen we de volgende stelling bewijzen : Stelling. Alle eigenwaarden van het Sturm-Liouville randwaardeprobleem (3) zijn reëel. Bewijs. Stel dat λ C een eigenwaarde van (3) is en dat φ een bijbehorende eigenfunctie is. We schrijven nu λ = µ + iν en φ(x) = U(x) + iv (x), waarbij µ, ν R en U en V reële functies zijn. Voor u = v = φ in de symmetrierelatie (4) volgt nu dat Nu geldt dat Lφ] = λr(x)φ(x) en dus < Lφ], φ > = < φ, Lφ] >. < λrφ, φ > = < φ, λrφ >. Uitschrijven met behulp van de definitie van het inwendig product geeft dan oftewel r(x)φ(x)φ(x) dx = (λ λ) φ(x)λr(x)φ(x) dx r(x)φ(x)φ(x) dx =, want r(x) is reëel. Omdat nu φ(x)φ(x) = {U(x)} +{V (x)} is de integraal hierboven ongelijk aan nul en dus is λ = λ. Dat betekent dat λ R. Men kan ook aantonen dat de eigenfuncties reëel moeten zijn. Het bewijs hiervan laten we achterwege. Zie ook opgave 3. Bij het zoeken naar eigenwaarden van een Sturm-Liouville randwaardeprobleem kunnen we ons dus beperken tot reële waarden van λ zoals we ook steeds gedaan hebben. De eigenfuncties behorende bij verschillende eigenwaarden zijn orthogonaal in de volgende zin : 4

5 Stelling. Als φ en φ twee eigenfuncties zijn van het Sturm-Liouville randwaardeprobleem (3) behorende bij de eigenwaarden λ en λ respectievelijk, dan geldt r(x)φ (x)φ (x) dx =, λ λ. Merk op dat als < f, g > = r(x)f(x)g(g) dx, dan geldt : < φ, φ > =. Men noemt φ en φ dan orthogonaal ten opzichte van of met betrekking tot de gewichtsfunctie r(x). Bewijs. Er geldt dus Lφ ] = λ rφ en Lφ ] = λ rφ. Met u = φ en v = φ volgt uit de symmetrierelatie (4) dat < λ rφ, φ > = < φ, λ rφ >. Uitschrijven met behulp van de definitie van het standaard inwendig product van functies op, ] geeft dan λ r(x)φ (x)φ (x) dx = λ φ (x)r(x)φ (x) dx. Aangezien λ R en de functies r en φ reëel zijn, volgt hieruit dat Dus geldt en dat bewijst de stelling. (λ λ ) r(x)φ (x)φ (x) dx =. r(x)φ (x)φ (x) dx, λ λ Een ander belangrijk resultaat uit de theorie van Sturm-Liouville randwaardeproblemen is : Stelling 3. Alle eigenwaarden van het Sturm-Liouville randwaardeprobleem (3) zijn enkelvoudig, dat wil zeggen : bij elke eigenwaarde van (3) behoort slechts één lineair onafhankelijke eigenfunctie. Bovendien geldt dat de eigenwaarden een oneindige reeks vormen die in grootte gerangschikt kunnen worden als λ < λ < λ 3 < < λ n < waarbij bovendien geldt dat λ n voor n. Het bewijs van deze stelling laten we achterwege (geen tentamenstof). In voorbeeld hebben we ook gezien dat er oneindig veel enkelvoudige eigenwaarden zijn. Ook daar geldt dat λ n voor n zoals eenvoudig is in te zien. 5

6 De eigenfuncties zijn dus orthogonaal met betrekking tot de gewichtsfunctie r(x). We kunnen deze functies normeren zodat r(x){φ n (x)} dx =, n =,, 3,.... In dat geval spreekt men van orthonormale eigenfuncties of genormeerde eigenfuncties omdat de orthogonaliteit vanzelfsprekend is. Voor elk Sturm-Liouville randwaardeprobleem kan men dus een verzameling {φ n (x)} n= van genormeerde eigenfuncties vinden. Hiervoor geldt dus {, m n r(x)φ m (x)φ n (x) dx = δ mn =, m = n met m, n {,, 3...}. Stel dat {φ n (x)} n= een verzameling van genormeerde eigenfuncties van het Sturm-Liouville randwaardeprobleem (3) is en dat Dan volgt dat en dus r(x)f(x)φ m (x) dx = c n = f(x) = c n φ n (x). n= c n r(x)φ m (x)φ n (x) dx = c m, m =,, 3,... n= r(x)f(x)φ n (x) dx, n =,, 3,.... Dit leidt tot de volgende generalisatie van de stelling van Fourier : Stelling 4. Stel dat {φ n (x)} n= genormeerde eigenfuncties zijn van het Sturm-Liouville randwaardeprobleem (3). Dan geldt : als f en f stuksgewijs continu zijn op, ] dan is f(x) = c n φ n (x) met c n = n= r(x)f(x)φ n (x) dx, n =,, 3,.... Deze reeks convergeert bovendien naar f(x+) + f(x )]/ voor iedere x (, ). Voorbeeld. In voorbeeld hebben we de eigenwaarden en bijbehorende eigenfuncties bepaald van het homogene randwaardeprobleem y + λy =, < x < y() =, y () + y() =. De eigenwaarden zijn λ n = µ n met n =,, 3,..., waarbij voldoet aan cos + sin =, n =,, 3,.... 6

7 De bijbehorende eigenfuncties zijn φ n (x) = k n sin x, n =,, 3,... met k n willekeurig. In dit geval is r(x) =. Normeren geeft dus : Nu geldt : = sin x dx = {φ n (x)} dx = k n = sin x dx, n =,, 3,.... cos x] dx = ] sin x sin µ ] nx = sin cos = sin cos = + cos = + cos. Hierbij hebben we gebruikt dat sin = cos. We kunnen dus kiezen k n = + cos, n =,, 3,.... De genormeerde eigenfuncties van dit randwaardeprobleem zijn dan φ n (x) = + cos sin x, n =,, 3,.... Stel nu bijvoorbeeld dat dan volgt We vinden nu c n = xφ n (x) dx = x sin dx = x = c n φ n (x), n= + cos x sin x dx, n =,, 3,.... x d cos x = x cos x µ + n = cos + µ sin = cos + sin n µ n = cos + sin µ n = sin µ, n waarbij we dus ook weer gebruiken dat cos = sin. Hieruit volgt dat c n = + cos sin µ = sin n + cos en dus x = sin c n φ n (x) = 4 µ n( + cos ) sin x. n= n= cos x dx 7

11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm :

11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm : 11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm : L[y] := [p(x)y ] + q(x)y = µr(x)y + f(x), < x < 1 (1) a 1 y() + a 2 y () =, b 1 y(1)

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differentiaalvergelijkingen en Fourierreeksen Partiële differentiaalvergelijkingen zijn vergelijkingen waarin een onbekende functie van twee of meer variabelen en z n partiële afgeleide(n)

Nadere informatie

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm 5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm x y + xy + (x ν )y = met ν R (1) heet een Bessel (differentiaal)vergelijking. De waarde van ν noemt men ook wel de orde

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differtiaalvergelijking Fourierreeks Partiële differtiaalvergelijking zijn vergelijking waarin e onbekde functie van twee of meer variabel z n partiële afgeleide(n) voorkom. Dit in

Nadere informatie

10.6. Andere warmteproblemen. We hebben warmteproblemen bekeken van de vorm. 0 < x < L, t > 0. w(0, t) = 0, w(l, t) = 0, t 0. u(x, 0) = f(x), 0 x L,

10.6. Andere warmteproblemen. We hebben warmteproblemen bekeken van de vorm. 0 < x < L, t > 0. w(0, t) = 0, w(l, t) = 0, t 0. u(x, 0) = f(x), 0 x L, .6. Andere warmteproblem. We hebb warmteproblem bekek van de vorm α 2 u xx = u t, < x u(, t) =, u(, t) =, t u(x, ) = f(x), x, waarbij de temperatuur aan de beide uiteind constant bovdi gelijk is.

Nadere informatie

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx )

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx ) .4. Ev onev functies. E functie f heet ev als voor elke x in het domein van f ook x tot dat domein behoort f( x) = f(x) voor alle x in het domein van f. En e functie f heet onev als voor elke x in het

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi23wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi23wbmt 1 / 12 Fourierreeksen van even en oneven functies a 2 + (

Nadere informatie

Analyse, Deel III Samenvatting Martijn Boussé

Analyse, Deel III Samenvatting Martijn Boussé Analyse, Deel III Inhoudsopgave I Lineaire Differentiaalvergelijkingen... 2 I.I Algemene theorie... 2 I.II Lineaire differentiaalvergelijkingen constante coëfficiënten... 3 I.III Lineaire differentiaalvergelijking

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 3de Bachelor EIT - de Bachelor Fysica Academiejaar 014-015 1ste semester 7 januari 015 Aanvullingen van de Wiskunde 1. Gegeven is een lineaire partiële differentiaalvergelijking van orde 1: a 1 (x 1,,

Nadere informatie

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen de Bachelor EIT 2de en de Bachelor Wiskunde Academiejaar 215-216 1ste semester 26 januari 216 Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen 1. Gegeven een homogene lineaire partiële

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 1ste semester 23 januari 2007 Aanvullingen van de Wiskunde 1. Gegeven zijn twee normen 1 en 2 op een vectorruimte V. Wanneer zegt men dat de 1 fijner is dan 2? Wat is dan het verband tussen convergentie

Nadere informatie

WI1708TH Analyse 2. College 5 24 november Challenge the future

WI1708TH Analyse 2. College 5 24 november Challenge the future WI1708TH Analyse 2 College 5 24 november 2014 1 Programma Vandaag 2 e orde lineaire differentiaal vergelijking (17.1) 2 1 e orde differentiaal vergelijking Definitie Een 1 e orde differentiaal vergelijking

Nadere informatie

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles

Nadere informatie

Hoofdstuk 1: Inleiding

Hoofdstuk 1: Inleiding Hoofdstuk 1: Inleiding 1.1. Richtingsvelden. Zie Stewart, 9.2. 1.2. Oplossingen van enkele differentiaalvergelijkingen. Zelf doorlezen. 1.3. Classificatie van differentiaalvergelijkingen. Differentiaalvergelijkingen

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Bij het vak Lineaire Algebra hebben we reeds kennis gemaakt met stelsels eerste orde lineaire differentiaalvergelijkingen We hebben

Nadere informatie

Hoofdstuk 5: Machtreeksoplossingen van tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 5: Machtreeksoplossingen van tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 5: Machtreeksoplossing van tweede orde lineaire differtiaalvergelijking 5.1. Machtreeks. In deze paragraaf word de belangrijkste eigschapp van machtreeks op e rijtje gezet. Zelf doorlez! Zie

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013 Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Tentamen Gewone Differentiaal Vergelijkingen II

Tentamen Gewone Differentiaal Vergelijkingen II Tentamen Gewone Differentiaal Vergelijkingen II.0.007 Jullie mogen een willekeurige van de vier opgaven als bonusopgave bekijken. (Dus drie opgaven volledig en goed gedaan is al een 10.) Opgave 1 Bekijk

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D00. Datum: vrijdag 3 juni 008. Tijd: 09:00-:00. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D020. Datum: Vrijdag 26 maart 2004. Tijd: 14.00 17.00 uur. Plaats: MA 1.41 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een

Nadere informatie

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom 8. Fouriertheorie Periodieke functies. Veel verschijnselen en processen hebben een periodiek karakter. Na een zekere tijd, de periode, komt hetzelfde patroon terug. Denk maar aan draaiende of heen en weer

Nadere informatie

Oefensessie 1 Lineaire differentiaalvergelijkingen & MAPLE Modeloplossingen Versie

Oefensessie 1 Lineaire differentiaalvergelijkingen & MAPLE Modeloplossingen Versie Oefeningen Analyse III & Aanvullingen Wiskunde Oefensessie 1 Lineaire differentiaalvergelijkingen & MAPLE Modeloplossingen Versie 1-11 Leuven, Oktober 1 nico.scheerlinck@cs.kuleuven.be In deze bundel wordt

Nadere informatie

Tentamen Functies en Reeksen

Tentamen Functies en Reeksen Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

Examen Analyse 2 : Theorie (zonder Maple). (7 januari 2014)

Examen Analyse 2 : Theorie (zonder Maple). (7 januari 2014) Examen Analyse 2 : Theorie (zonder Maple). (7 januari 204). Maclaurin reeksen. Geef met bewijs de Maclaurin reeksontwikkeling van de logaritmische functie ln( + x). Geef ook het convergentie-interval van

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.3, maandag K. P. Hart Faculteit EWI TU Delft Delft, 2 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 34 Outline 1 Conforme afbeeldingen 2 K. P. Hart TW2040:

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm :

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm : 1.8. De Lplce vergelijking. De wrmtevergelijking in meerdimsionle ruimt heeft de volgde vorm : in R 2 : α 2 (u xx + u yy ) = u t in R 3 : α 2 (u xx + u yy + u zz ) = u t. Hierbij stelt u(x, y, t) de tempertuur

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

De Laplace-transformatie

De Laplace-transformatie De Laplace-transformatie De Laplace-transformatie is een instrument dat functies omzet in andere functies. Deze omzetting, de transformatie, heeft nette wiskundige eigenschappen. Zowel in de kansrekening

Nadere informatie

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je

Nadere informatie

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten)

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten) 8.I.00 Wiskundige Analyse I, theorie 60% van de punten) Beantwoord elk van de vragen I,II,III en IV op één van de dubbele geruite bladen. Schrijf op elk van die dubbele geruite bladen, bovenaan de eerste

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt).

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt). 76 Complexe eigenwaarden Ook dit hebben we reeds gezien bij Lineaire Algebra Zie: Lay, 57 Als xt ve rt een oplossing is van de homogene differentiaalvergelijking x t Axt, dan moet r een eigenwaarde van

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)

Nadere informatie

Tentamen Lineaire Algebra UITWERKINGEN

Tentamen Lineaire Algebra UITWERKINGEN Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Integratietechnieken: substitutie en partiële integratie

Integratietechnieken: substitutie en partiële integratie Integratietechnieken: substitutie en partiële integratie Inleiding In dit pakket wordt zeer kort de definitie van onbepaalde integralen herhaald evenals het verband tussen bepaalde en onbepaalde integralen.

Nadere informatie

Tentamen Lineaire Algebra B

Tentamen Lineaire Algebra B Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 1 / 15 Even voorstellen... Dr. Roelof Koekoek Gebouw

Nadere informatie

Eerste orde partiële differentiaalvergelijkingen

Eerste orde partiële differentiaalvergelijkingen Eerste orde partiële differentiaalvergelijkingen Vakgroep Differentiaalvergelijkingen 1995, 2001, 2002 1 Eerste orde golf-vergelijking De vergelijking au x + u t = 0, u = u(x, t), a ɛ IR (1.1) beschrijft

Nadere informatie

(vi) Als u een stelling, eigenschap,... gebruikt, formuleer die dan, toon aan dat de voorwaarden vervuld zijn, maar bewijs die niet.

(vi) Als u een stelling, eigenschap,... gebruikt, formuleer die dan, toon aan dat de voorwaarden vervuld zijn, maar bewijs die niet. Examen Functieruimten - Deel theorie 15 januari 2016, 08:30 uur Naam en Voornaam: Lees eerst dit: (i) Naam en voornaam hierboven invullen. (ii) Nietje niet losmaken. (iii) Enkel deze bundel afgeven; geen

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Antwoorden. 1. Rekenen met complexe getallen

Antwoorden. 1. Rekenen met complexe getallen 1. Rekenen met complexe getallen 1.1 a. 9 b. 9 c. 16 d. i e. 1 1. a. 1 b. 3 c. 1 d. 4 3 e. 3 4 1.3 a. 3 i b. 3 i c. i d. 5 i e. 15 i 1.4 a. 33 i b. 7 i c. 4 3 i d. 3 5 i e. 5 3 i 1.5 a. 1 ± i b. ± i c.

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 3: 6 oktober 2016

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 3: 6 oktober 2016 Kwantummechanica HOVO cursus Jo van den Brand Lecture 3: 6 oktober 2016 Copyright (C) VU University Amsterdam 2016 Overzicht Algemene informatie Jo van den Brand Email: jo@nikhef.nl 0620 539 484 / 020

Nadere informatie

Bespreking Examen Analyse 1 (Augustus 2007)

Bespreking Examen Analyse 1 (Augustus 2007) Bespreking Examen Analyse 1 (Augustus 2007) Vooraf: Zoals het stilletjes aan een traditie is geworden, geef ik hier bedenkingen bij het examen van deze septemberzittijd. Ik zorg ervoor dat deze tekst op

Nadere informatie

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2 Radboud Universiteit Nijmegen Tentamen Calculus NWI-NPB 8 januari 3, 8.3.3 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering

Nadere informatie

Tentamen Lineaire Algebra

Tentamen Lineaire Algebra Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

6. Lineaire operatoren

6. Lineaire operatoren 6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/

Nadere informatie

Utrecht, 25 november Numerieke Wiskunde. Gerard Sleijpen Department of Mathematics.

Utrecht, 25 november Numerieke Wiskunde. Gerard Sleijpen Department of Mathematics. Utrecht, 25 november 2014 Numerieke Wiskunde Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ [a, b] R, : [a, b] R Benader f door eenvoudige functies Voorbeelden eenvoudige

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Tentamenopgaven over hfdst. 1 t/m 4

Tentamenopgaven over hfdst. 1 t/m 4 Ttamopgav over hfdst. 1 t/m 4 1. donderdag 31 oktober 1996 Bepaal de oplossing van het beginwaardeprobleem y + 4y = 4 cos 2x, y(0) = 1, y (0) = 0. 2. donderdag 31 oktober 1996 Bepaal de algeme oplossing

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

De golfvergelijking in drie dimensies. Golfvergelijking in een dimensie: trillende snaar

De golfvergelijking in drie dimensies. Golfvergelijking in een dimensie: trillende snaar De golfvergelijking in drie dimensies In drie dimensies wordt de golfvergelijking 2 Ψ t 2 = c2 ( 2 ) Ψ x 2 + 2 Ψ y 2 + 2 Ψ z 2 waar c een constante is die de snelheid van de golven aangeeft. Dit is de

Nadere informatie

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n. Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

x a k of.x 1 a 1 / 2 + ::+.x n a n / 2 k 2 bol om a, straal k

x a k of.x 1 a 1 / 2 + ::+.x n a n / 2 k 2 bol om a, straal k Punten, Vectoren in de R n Punten: a =.a 1 ; a 2 ; : : : ; a n / ; b =.b 1 ; b 2 ; : : : ; b n / Vectoren: a = a 1 ; a 2 ; : : : ; a n ; b = b 1 ; b 2 ; : : : ; b n lengte van a : a = a 2 1 + : : : + a2

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Tentamen Wiskundige Technieken 1 Ma 6 nov 2017 Uitwerkingen

Tentamen Wiskundige Technieken 1 Ma 6 nov 2017 Uitwerkingen Tentamen Wiskundige Technieken Ma 6 nov 207 Uitwerkingen Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

QuizAnalyseHoofdstuk3 - wv -Brackx

QuizAnalyseHoofdstuk3 - wv -Brackx QuizAnalyseHoofdstuk3 - wv -Brackx Als: dan is: Als f discontinu is in x 0 en dan zijn de linker- en rechterlimieten van f(x) in x 0 aan elkaar gelijk maar verschillend van L. Als voor alle x in ]a,b [

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D00. Datum: Vrijdag 1 maart 003. Tijd: 14.00 17.00 uur. Plaats: VRT 03H04. Lees dit vóórdat je begint! Maak iedere ogave o een aart vel. Schrijf

Nadere informatie

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen

Hoofdstuk 9. Vectorruimten. 9.1 Scalairen Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen 1ste Bachelor Fysica en Sterrenkunde Academiejaar 014-015 1ste semester 1 oktober 014 Wiskundige Technieken 1. Beschouw een scalaire functie f : R R en een vectorveld

Nadere informatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft

Nadere informatie

Relevante vragen , eerste examenperiode

Relevante vragen , eerste examenperiode Relevante vragen 2006 2007, eerste examenperiode OEFENING y = x 2 2, y = x, z = x 2 + y 2, z = x + 6 omvatten, indien we ons tot het gedeelte binnen de parabolische cilinder beperken, twee verschillende

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

college 2: partiële integratie

college 2: partiële integratie 39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:

Nadere informatie

Hertentamen WISN101 Wiskundige Technieken 1 Do 5 jan :30 16:30

Hertentamen WISN101 Wiskundige Technieken 1 Do 5 jan :30 16:30 Hertentamen WISN0 Wiskundige Technieken Do 5 jan 207 3:30 6:30 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Topologie in R n 10.1

Topologie in R n 10.1 Topologie in R n 10.1 Lengte x = (x 1,..., x n ) = x 2 1 + x2 2 + + x2 n Bol B(x 0, r) = {x : x x 0 < r} x 0 r p 1 p 3 p 1 p 2 S p 1 heet uitwendig punt p 2 heet inwendig punt p 3 heet randpunt p 1 p 3

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie