Differentiaalvergelijkingen Technische Universiteit Delft

Maat: px
Weergave met pagina beginnen:

Download "Differentiaalvergelijkingen Technische Universiteit Delft"

Transcriptie

1 Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 1 / 15

2 Even voorstellen... Dr. Roelof Koekoek Gebouw EWI Kamer HB tel Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 2 / 15

3 Vak: Docent: Rooster: Differentiaalvergelijkingen Dr. Roelof Koekoek di. 15:45-17:30 uur vr. 13:45-15:30 uur Boek: William E. Boyce & Richard C. DiPrima Elementary Differential Equations and Boundary Value Problems (10th ed.) Wiley, 2012, ISBN Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 3 / 15

4 Differentiaalvergelijkingen Definitie: Een differentiaalvergelijking is een vergelijking in een onbekende functie en één of meer van haar afgeleiden Classificatie: Gewone differentiaalvergelijking: functie van één variabele en haar gewone afgeleiden Partiële differentiaalvergelijking: functie van meerdere variabelen en haar partiële afgeleiden Tweedeling: lineaire en niet-lineaire differentiaalvergelijkingen De orde van een differentiaalvergelijking is de orde (hoogte) van de hoogste afgeleide die voorkomt Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 4 / 15

5 Differentiaalvergelijkingen Doel: Het vinden van de (algemene) oplossing, de verzameling van alle oplossingen van de differentiaalvergelijking Dit vak gaat over methoden en technieken om zoveel mogelijk verschillende typen differentiaalvergelijkingen op te lossen De methode hangt af van het type van de differentiaalvergelijking We beginnen met eerste orde differentiaalvergelijkingen Lineaire differentiaalvergelijkingen zijn veel eenvoudiger dan niet-lineaire We beperken ons eerst tot gewone differentiaalvergelijkingen Later zullen we ook partiële differentiaalvergelijkingen bekijken Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 5 / 15

6 Eerste orde differentiaalvergelijkingen Algemene vorm: y = F (x, y) of dy dx = F (x, y) Hierbij staat F (x, y) voor een of andere uitdrukking met x en y Hierin is x de onafhankelijke en y de afhankelijke variabele Immers: y is de onbekende functie van de variabele x Kwalitatieve benadering door middel van richtingsvelden: in elk punt (x, y) kunnen we de richtingscoëfficiënt y bepalen We weten dus hoe de grafiek van y = y(x) loopt in dat punt (x, y) Deze richtingen kunnen we aangeven in het (x, y)-vlak (richtingsveld) Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 6 / 15

7 Richtingsvelden Voorbeeld 1: y = x + y en y(0) = 1 y y (0, 1) x x FIGURE 3 Direction field foryª=x+y FIGURE 4 The solution curve through (0, 1) Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 7 / 15

8 Richtingsvelden Voorbeeld 2: y = x 2 + y 2 1 en y(0) = 0 y 2 y _2 _ x _2 _ x -1-1 _2 _2 FIGURE 5 FIGURE 6 Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 8 / 15

9 Separabele differentiaalvergelijkingen Een eerste-orde differentiaalvergelijking heet separabel als: dy dx Dan volgt: = F (x, y) = g(x)f (y) = g(x) h(y) h(y) dy = g(x) dx = met f (y) = 1 h(y) h(y) dy = g(x) dx Voorbeeld: dy dx = x 2 y (y 0) y dy = x 2 dx y dy = x 2 dx 1 2 y 2 +c 1 = 1 3 x 3 +c 2, c 1, c 2 R 1 2 y x 3 = C, C R. Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 9 / 15

10 Lineaire differentiaalvergelijkingen Een eerste-orde differentiaalvergelijking heet lineair als deze geschreven kan worden in de vorm dy + P(x)y = Q(x) dx met P(x) en Q(x) continue functies Integrerende factor I (x): I (x) = P(x)I (x) is separabel: I (x)y (x) +P(x)I (x) y(x) = I (x)q(x) }{{} I (x) er kan dus altijd zo n I (x) gevonden worden Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 10 / 15

11 Lineaire differentiaalvergelijkingen dan: I (x)y(x) = I (x)y (x) +P(x)I (x) y(x) = I (x)q(x) }{{} I (x) d [I (x)y(x)] = I (x)q(x) dx (productregel) I (x)q(x) dx = y(x) = 1 I (x) I (x)q(x) dx Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 11 / 15

12 Lineaire differentiaalvergelijkingen Voorbeeld 1: x dy dx + y = 2x, x > 0 Schrijf de differentiaalvergelijking eerst in de standaardvorm: y (x) + 1 y(x) = 2, x > 0 x en vermenigvuldig met een integrerende factor I (x): I (x)y (x) + 1 I (x)y(x) = 2I (x), x > 0 x Nu volgt: I (x) = 1 x I (x) = I (x) = eln x = x, x > 0 d Dus: [x y(x)] = 2x = x y(x) = 2x dx = x 2 + C dx Ten slotte volgt: y(x) = x 2 + C, x > 0 x Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 12 / 15

13 Lineaire differentiaalvergelijkingen Voorbeeld 2: y 2xy = 3x I (x)y (x) 2xI (x)y(x) = 3xI (x) I (x) = 2xI (x) = I (x) = e x2 d [ ] e x2 y(x) = 3xe x2 = e x2 y(x) = 3xe x2 dx = 3 dx 2 e x2 +C Dus: e x2 y(x) = 3xe x2 dx = 3 2 e x2 + C Ten slotte volgt: y(x) = Cex2 Merk op dat y(x) = 3 2 klopt! (C = 0) kennelijk een oplossing is en dat Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 13 / 15

14 Lineaire differentiaalvergelijkingen Andere methode: variatie van de constante dy + P(x)y = Q(x) (1) dx Los eerst de bijbehorende homogene differentiaalvergelijking op: dy dx + P(x)y = 0 Deze differentiaalvergelijking is separabel en dus altijd oplosbaar De oplossing bevat een willekeurige integratieconstante Vervang de constante door een functie u(x) en substitueer dit in (1) Dan valt u(x) weg en blijft een vergelijking met alleen u (x) over Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 14 / 15

15 Variatie van de constante Voorbeeld: y 2xy = 3x Los eerst op: y 2xy = 0 = y(x) = ce x2 met c R Neem nu y(x) = u(x)e x2 en substitueer dit in de inhomogene d.v.: u (x)e x2 + 2xu(x)e x2 2xu(x)e x2 = 3x = u (x)e x2 = 3x u (x) = 3xe x2 = u(x) = 3xe x2 dx = 3 2 e x2 + C Dan volgt: y(x) = u(x)e x2 = Cex2 Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 15 / 15

Differentiaalvergelijkingen Wi1909TH. I.A.M. Goddijn, Faculteit EWI 12 november 2018

Differentiaalvergelijkingen Wi1909TH. I.A.M. Goddijn, Faculteit EWI 12 november 2018 Differentiaalvergelijkingen Wi1909TH, 12 november 2018 Inleiding van Mourik Broekmanweg 6, kamer 3.W.700 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi2030wbmt 1 / 14 Niet-lineaire diff. vgl. en stabiliteit Niet-lineaire

Nadere informatie

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n. Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek WbMT248 Roelof Koekoek (TU Delft) Differentiaalvergelijkingen WbMT248 1 / 1 Partiële integratie Uit de productregel volgt: (f (x)g(x))

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

Hoofdstuk 1: Inleiding

Hoofdstuk 1: Inleiding Hoofdstuk 1: Inleiding 1.1. Richtingsvelden. Zie Stewart, 9.2. 1.2. Oplossingen van enkele differentiaalvergelijkingen. Zelf doorlezen. 1.3. Classificatie van differentiaalvergelijkingen. Differentiaalvergelijkingen

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

Tentamenopgaven over hfdst. 1 t/m 4

Tentamenopgaven over hfdst. 1 t/m 4 Ttamopgav over hfdst. 1 t/m 4 1. donderdag 31 oktober 1996 Bepaal de oplossing van het beginwaardeprobleem y + 4y = 4 cos 2x, y(0) = 1, y (0) = 0. 2. donderdag 31 oktober 1996 Bepaal de algeme oplossing

Nadere informatie

11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm :

11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm : 11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm : L[y] := [p(x)y ] + q(x)y = µr(x)y + f(x), < x < 1 (1) a 1 y() + a 2 y () =, b 1 y(1)

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi23wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi23wbmt 1 / 12 Fourierreeksen van even en oneven functies a 2 + (

Nadere informatie

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT Differentiaalvergelijkingen kunnen we ook oplossen met behulp van ICT. In dit geval zijn de oplossingen uitgewerkt met behulp van Derive. dy De differentiaalvergelijking = ky, met k een reëel getal Voorbeeld

Nadere informatie

WI1708TH Analyse 2. College 5 24 november Challenge the future

WI1708TH Analyse 2. College 5 24 november Challenge the future WI1708TH Analyse 2 College 5 24 november 2014 1 Programma Vandaag 2 e orde lineaire differentiaal vergelijking (17.1) 2 1 e orde differentiaal vergelijking Definitie Een 1 e orde differentiaal vergelijking

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differentiaalvergelijkingen en Fourierreeksen Partiële differentiaalvergelijkingen zijn vergelijkingen waarin een onbekende functie van twee of meer variabelen en z n partiële afgeleide(n)

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 20 20 oktober 2014 1 Programma Vanmorgen Integrerende factor (8.4) Vanmiddag Populatiemodellen (8.5) 2 Herhaling Als de differentiaal vergelijking wordt gegeven door dy dx

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek WbMT2048 Roelof Koekoek (TU Delft) Differentiaalvergelijkingen WbMT2048 1 / 1 Het vinden van een particuliere oplossing Voor een

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Hoofdstuk 5: Machtreeksoplossingen van tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 5: Machtreeksoplossingen van tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 5: Machtreeksoplossing van tweede orde lineaire differtiaalvergelijking 5.1. Machtreeks. In deze paragraaf word de belangrijkste eigschapp van machtreeks op e rijtje gezet. Zelf doorlez! Zie

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm 5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm x y + xy + (x ν )y = met ν R (1) heet een Bessel (differentiaal)vergelijking. De waarde van ν noemt men ook wel de orde

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2 Radboud Universiteit Nijmegen Tentamen Calculus NWI-NPB 8 januari 3, 8.3.3 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013 Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie Hoofdstuk : Randwaardeproblemen en Sturm-Liouville theorie.. Tweepunts randwaardeproblemen. Bij het oplossen van partiële differentiaalvergelijkingen met behulp van de methode van scheiden van variabelen

Nadere informatie

Eerste orde partiële differentiaalvergelijkingen

Eerste orde partiële differentiaalvergelijkingen Eerste orde partiële differentiaalvergelijkingen Vakgroep Differentiaalvergelijkingen 1995, 2001, 2002 1 Eerste orde golf-vergelijking De vergelijking au x + u t = 0, u = u(x, t), a ɛ IR (1.1) beschrijft

Nadere informatie

Lineaire gewone & partiele 1ste en 2de orde differentiaalvergelijkingen

Lineaire gewone & partiele 1ste en 2de orde differentiaalvergelijkingen Lineaire gewone & partiele 1ste en de orde differentiaalvergelijkingen Basisbegrippen Een differentiaalvergelijking is een vergelijking waarin minstens een afgeleide van een onbekende reeelwaardige functie

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een

Nadere informatie

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Inleiding In de cursus Calculus 2 voor Bouwkunde (2DB90) wordt evenals in de cursus Calculus 1 gebruikt het boek: Calculus, Early Transcendental

Nadere informatie

Analyse 1 November 2011 Januari 2011 November 2010

Analyse 1 November 2011 Januari 2011 November 2010 WI1330CT/CT1135-1/CTB1001-1 Januari 2013 November 2012 Januari 2012 Analyse 1 November 2011 Januari 2011 November 2010 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" TU DELFT, 2010

Nadere informatie

Oplossen van lineaire differentiaalvergelijkingen met behulp van de methode van Leibniz-MacLaurin

Oplossen van lineaire differentiaalvergelijkingen met behulp van de methode van Leibniz-MacLaurin Oplossen van lineaire differentiaalvergelijingen met behulp van de methode van Leibniz-MacLaurin Calculus II voor S, F, MNW 7 november 2005 1 De n-de afgeleide van het product van twee functies Voor we

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentilvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft) Differentilvergelijkingen wi2030wbmt 1 / 1 De Lplce vergelijking De tweedimensionle wrmtevergelijking

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 6 collegejaar : 8-9 college : 6 build : 2 oktober 28 slides : 38 Vandaag Minecraft globe van remi993 2 erhaalde 3 4 intro VA Drievoudige integralen Section 5.5 Definitie Een rechthoekig blok is

Nadere informatie

Differentiaalvergelijkingen voor WbMT. wi2051wbmt. Dr. Roelof Koekoek

Differentiaalvergelijkingen voor WbMT. wi2051wbmt. Dr. Roelof Koekoek Differentiaalvergelijkingen voor WbMT wi25wbmt Dr Roelof Koekoek Het boek William E Boyce & Richard C DiPrima Elementary Differential Equations and Boundary Value Problems Tenth Edition, Wiley, 22, ISBN

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

Differentiaalrekening. Elementaire techniek van het differentieren.

Differentiaalrekening. Elementaire techniek van het differentieren. Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze

Nadere informatie

Hoofdstuk 1: Inleiding

Hoofdstuk 1: Inleiding Hoofstuk 1: Inleiing 1.1. Richtingsvelen. Zie Stewart, 9.2. 1.2. Oplossingen van enkele ifferentiaalvergelijkingen. Zelf oorlezen. 1.3. Classificatie van ifferentiaalvergelijkingen. Differentiaalvergelijkingen

Nadere informatie

Differentiaalvergelijkingen Hoorcollege 11

Differentiaalvergelijkingen Hoorcollege 11 Differentiaalvergelijkingen Hoorcollege 11 Partiële differentiaalvergelijkingen: De Eendimensionale Golfvergelijking; De Tweedimensionale Laplacevergelijking A. van der Meer DV HC11 p. 1/17 De eendimensionale

Nadere informatie

Primitiveren. Omgekeerd differentiëren (primitieve bepalen)

Primitiveren. Omgekeerd differentiëren (primitieve bepalen) Primitiveren WISNET-HBO update april 2006 Inleiding Soms moet je juist de functie bepalen waarvan de afgeleide bekend is. Dit omgekeerd differentiëren (de primitieve bepalen) heet in het Engels de antiderivative.

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

n 2 + 3n + 6 4n 3 3 n + 8n n + 3n + 16 n=1 Indien convergent, bepaal dan ook de waarde van de reeks.

n 2 + 3n + 6 4n 3 3 n + 8n n + 3n + 16 n=1 Indien convergent, bepaal dan ook de waarde van de reeks. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP004B januari 05,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

i(i + 1) = xy + y = x + 1, y(1) = 2.

i(i + 1) = xy + y = x + 1, y(1) = 2. Kenmerk : Leibniz/toetsen/Re-Exam-Math A + B-45 Course : Mathematics A + B (Leibniz) Date : November 7, 204 Time : 45 645 hrs Motivate all your answers The use of electronic devices is not allowed [4 pt]

Nadere informatie

Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, uur.

Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, uur. Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4, Delft Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, 18.30-20.30 uur. Het gebruik

Nadere informatie

Analyse module 1. Contents

Analyse module 1. Contents Analyse module 1 Contents College 1... 3 Inverse functies logaritme goniometrie... 3 College 2... 5 D-toets moeilijke vraag bespreken... 5 Differentieren... 5 Kettingregel... 5 Impliciet differentieren...

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D020. Datum: Vrijdag 26 maart 2004. Tijd: 14.00 17.00 uur. Plaats: MA 1.41 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf

Nadere informatie

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt

Nadere informatie

WI1708TH Analyse 3. College 5 23 februari Challenge the future

WI1708TH Analyse 3. College 5 23 februari Challenge the future WI1708TH Analyse 3 College 5 23 februari 2015 1 Programma Vandaag Richtingsafgeleide (14.6) Gradiënt (14.6) Maximalisatie richtingsafgeleide (14.6) Raakvlak voor niveauoppervlakken (14.6) 2 Richtingsafgeleide

Nadere informatie

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1 Radboud Universiteit Nijmegen Tentamen Calculus 2 NWI-NP004B 6 april 205, 8.00 2.00 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten

Nadere informatie

Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M van 16:00 tot 18:00u

Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M van 16:00 tot 18:00u Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M 00.07 van 16:00 tot 18:00u Beste student, Deze oefeningentoets bevat twee oefeningen betreffende het tweede deel

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

x a k of.x 1 a 1 / 2 + ::+.x n a n / 2 k 2 bol om a, straal k

x a k of.x 1 a 1 / 2 + ::+.x n a n / 2 k 2 bol om a, straal k Punten, Vectoren in de R n Punten: a =.a 1 ; a 2 ; : : : ; a n / ; b =.b 1 ; b 2 ; : : : ; b n / Vectoren: a = a 1 ; a 2 ; : : : ; a n ; b = b 1 ; b 2 ; : : : ; b n lengte van a : a = a 2 1 + : : : + a2

Nadere informatie

TOEGEPASTE MECHANICA 6 1 e Jaar. Ir J.W. (Hans) Welleman Universitair docent TU-Delft, Civiele Techniek, Constructiemechanica

TOEGEPASTE MECHANICA 6 1 e Jaar. Ir J.W. (Hans) Welleman Universitair docent TU-Delft, Civiele Techniek, Constructiemechanica blad nr 1 TOEGEPASTE MECHANICA 6 1 e Jaar Docent : Ir J.W. (Hans) Welleman Universitair docent TU-Delft, Civiele Techniek, Constructiemechanica e-mail : j.w.welleman@hetnet.nl URL : http://go.to/jw-welleman

Nadere informatie

Differentiaalvergelijkingen

Differentiaalvergelijkingen Notities bij de nascholing Differentiaalvergelijkingen Eekhoutcentrum 11 mei 2005 Bart Windels Differentiaalvergelijkingen 1 1 Algemeenheden Zij I een open interval van R (eventueel onbegrensd) en y :

Nadere informatie

Differentiaalvergelijkingen

Differentiaalvergelijkingen Analyse Differentiaalvergelijkingen Jens Bossaert 2013 Gottfried Leibniz Isaac Newton Inhoudsopgave 1 Terminologie 4 2 Algemene technieken 5 2.1 Factorisatie..............................................

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

college 2: partiële integratie

college 2: partiële integratie 39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:

Nadere informatie

11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20

11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20 .0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:

Nadere informatie

Standaardafgeleiden. Wisnet-HBO. update maart 2011

Standaardafgeleiden. Wisnet-HBO. update maart 2011 Standaardafgeleiden Wisnet-HBO update maart 2011 1 Inleiding Als je nog niets over differentiëren weet, kun je beter eerst naar de les Wat is Differentiëren gaan in Wisnet Verder zijn er Maplets om de

Nadere informatie

Tentamen: Kwantitatieve methoden 1.2(wiskundige methoden) Opleiding: Bacheloropleiding Economie Vakcode: 60121110

Tentamen: Kwantitatieve methoden 1.2(wiskundige methoden) Opleiding: Bacheloropleiding Economie Vakcode: 60121110 Vrije Universiteit Amsterdam Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Kwantitatieve methoden.2(wiskundige methoden) Opleiding: Bacheloropleiding Economie

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie Utrecht Les 2: en differentiaalrekening Dr Harm van der Lek vdlek@vdleknl Natuurkunde hobbyist Programma 211 1 Goniometrische functies 2 Som formules 3 Cosinus regel

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde

Nadere informatie

Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Dit document bevat niet alleen voorkennis in de zin dat moet u al gehad hebben en kennen, maar ook in de

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie HOVO Utrecht Les 2: Matrixen en differentiaalrekening Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 2.1.1 Goniometrie Matrixen Integraal rekening

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking tentamen Kansrekening en Stochastische Processen (2S61) op woensdag 27 april 25, 14. 17. uur. 1. Gegeven zijn twee onafhankelijke

Nadere informatie

Lineaire Algebra WI1048WbMt. I.A.M. Goddijn, Faculteit EWI 4 september 2016

Lineaire Algebra WI1048WbMt. I.A.M. Goddijn, Faculteit EWI 4 september 2016 Lineaire Algebra WI1048WbMt, 4 september 2016 Informatie over de docent Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard

Nadere informatie

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde Masterclass VWO-leerlingen juni 2008 Snelle glijbanen Emiel van Elderen en Joost de Groot NWD 2009 1 Technische Universiteit Delft Probleemstelling Gegeven: een punt A(0,a) en een punt B(b, 0) met a 0.

Nadere informatie

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies.

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. 03 college 5: meer technieken In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. Opmerking over de notatie. Net als in het

Nadere informatie

Training integreren WISNET-HBO. update aug 2013

Training integreren WISNET-HBO. update aug 2013 Training integreren WISNET-HBO update aug 2013 Primitiveren De primitieve bepalen betekent in feite de functie bepalen waarvoor geldt dat Anders geschreven: Links en rechts maal dx: df = f dx De betekenis

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013, Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

De Riemannintegraal. Dan heet f(ξ ij, η ij ) A ij een Riemannsom bij f. May 9, I.A.M. Goddijn Faculteit EWI

De Riemannintegraal. Dan heet f(ξ ij, η ij ) A ij een Riemannsom bij f. May 9, I.A.M. Goddijn Faculteit EWI e Riemannintegraal Veronderstel dat f : R continu is, waarbij = [a, b] [c, d]. Laten a = x 0 < x 1 < x 2 < < x m 1 < x m = b en c = y 0 < y 1 < y 2 < < y n 1 < y n = d partities zijn van [a, b] en [c,

Nadere informatie

Minima en maxima van functies

Minima en maxima van functies Les 3 Minima en maxima van functies Een reden waarom we de afgeleide van een functie bekijken is dat we iets over het stijgen of dalen van de functie willen weten. Als we met een differentieerbare functie

Nadere informatie

Verbanden en functies

Verbanden en functies Verbanden en functies 0. voorkennis Stelsels vergelijkingen Je kunt een stelsel van twee lineaire vergelijkingen met twee variabelen oplossen. De oplossing van het stelsel is het snijpunt van twee lijnen.

Nadere informatie

Wiskundige functies. x is het argument of de (onafhankelijke) variabele

Wiskundige functies. x is het argument of de (onafhankelijke) variabele Wiskundige functies Een (wiskundige) functie voegt aan ieder getal een ander getal toe. Bekijk bijv. de functie f() = 2 1 Aan het getal 2, d.w.z. = 2, wordt het getal 3 toegevoegd, want f(2) = 2 2 1 =

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer)

Nadere informatie

TEST JE WISKUNDEKENNIS!

TEST JE WISKUNDEKENNIS! Bewegingswetenschappen Je overweegt Bewegingswetenschappen te gaan studeren. Een goede keus. Het gaat hier immers om een interessante, veelzijdige studie met gezonde arbeidsmarktperspectieven. Je hebt

Nadere informatie