Hoofdstuk 2 DE STELLING VAN PYTHAGORAS
|
|
|
- Daniël de Croon
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Hoofdstuk DE STELLING VAN PYTHAGORAS INHOUD. De stelling vn Pythgors formuleren 98. Meetkundige voorstellingen 06. De stelling vn Pythgors ewijzen 09. Rekenen met Pythgors. Construties.6 Pythgors in de ruimte 9 Studiewijzer 97
2 Hoofdstuk DE STELLING VAN PYTHAGORAS. De stelling vn Pythgors formuleren.. Op onderzoek Vul de tel verder in. driehoek (mm) (mm) (mm) Wt stel je vst ls je de ltste twee kolommen vergelijkt?.. Benmingen in een rehthoekige driehoek Een rehthoekige driehoek estt uit twee rehthoekszijden : en (vormen een rehte hoek) een shuine zijde of hypothenus : 98
3 .. De stelling vn Pythgors Stelling In een rehthoekige driehoek is de som vn de kwdrten vn de rehthoekszijden gelijk n In symolen: + = (wrij en de rehthoekszijden zijn en de shuine zijde is) Drie ntuurlijke getllen, en (elk vershillend vn 0) die n de voorwrde + = voldoen, noem je Pythgorishe drietllen of Pythgorishe getllen. Het eenvoudigste Pythgorishe drietl is, en. De stelling vn Pythgors geldt ook omgekeerd. Stelling Als in een driehoek de som vn de kwdrten vn de twee kortste zijden gelijk is n het kwdrt vn de lngste zijde, dn is de driehoek. De ---regel Pythgorishe drietllen worden geruikt om een rehte hoek te eplen. Bind op gelijke fstnd knopen in een touw. Zo verkrijg je gelijke knoopfstnden. Vorm met het touw een driehoek wrvn een zijde drie knoopfstnden heeft; een zijde vier knoopfstnden heeft; een zijde vijf knoopfstnden heeft. Zo verkrijg je een rehthoekige driehoek en kun je een rehte hoek uitzetten. Pythgors is georen op het Griekse eilnd Smos, vermoedelijk in 69 v.chr. In 8 v.chr. verliet hij, omwille vn politieke geshillen, zijn geoorteplts. Hij vestigde zih in het Zuid-Itlinse Croton, wr hij zijn eroemde filosofishe shool stihtte. Zijn volgelingen werden mthemtikoi genoemd, of ook wel Pythgoreeërs en vormden een gemeenshp met strenge leefregels. Enkele vn de sisprinipes vn de gemeenshp wren: wiskunde is het wezen vn lles; eplde symolen heen een religieuze wrde; lle leden zweren volledige trouw en geheimhouding; er zijn geen persoonlijke ezittingen; iedereen is vegetrish. De mthemtikoi geloofden dus dt lles met getllen te vtten ws. Enkele wiskundige hoogtepunten vn de Pythgoreeërs: het meetkundig oplossen vn vergelijkingen; de ontdekking vn de irrtionle getllen; studie vn regelmtige veelvlkken. Of de stelling vn Pythgors ooit door hemzelf of een vn zijn volgelingen is ewezen, is twijfelhtig. In elk gevl ws deze eigenshp vn rehthoekige driehoeken l eerder ekend ij de Byloniërs, de Indiërs en de Chinezen. In 08 v.chr. werd de gemeenshp in Croton edreigd en Pythgors vluhtte nr Metpontium, wr hij welliht enkele jren lter overleed. Hoofdstuk DE STELLING VAN PYTHAGORAS 99
4 Oefeningen REEKS A Kleur het vk met de pssende lengte vn de shuine zijde zodt de driehoek met zijden, en rehthoekig is. ) m m m 6 m 7 m ) dm dm dm dm dm ) 60 mm 80 mm 90 mm 00 mm 0 mm d) 0 m m 7 m 9 m m e) 9m m m 8m m Formuleer ij de volgende driehoeken, indien mogelijk, de stelling vn Pythgors. ) d) k j l ) e) d e m o f n ) f) g r i h q p 00
5 Onderzoek of de driehoek met zijden, en rehthoekig is. Zet een vinkje. rehthoekig niet rehthoekig ) 6 m 8 m 0 m ) m m m ) 9mm mm mm d) 0 m 8 m m e) 8 m m 0 m REEKS B Bereken de zijden vn de volgende rehthoekige driehoeken. Geruik een touw met een ntl knopen op gelijke knoopfstnd. knoopfstnd lengte vn de zijden ) rehthoekszijde: stukken vn m rehthoekszijde: stukken vn m shuine zijde: stukken vn m ) rehthoekszijde: stukken vn m rehthoekszijde: stukken vn m shuine zijde: stukken vn m ) rehthoekszijde: stukken vn mm rehthoekszijde: stukken vn mm shuine zijde: stukken vn mm d) rehthoekszijde: stukken vn 7 m rehthoekszijde: stukken vn 7 m shuine zijde: stukken vn 7 m Hoofdstuk DE STELLING VAN PYTHAGORAS 0
6 Bewijs zonder te meten. ) Prllellogrm PLAK is een rehthoek. ) Prllellogrm KLAP is een ruit. P L D=6m d=m K 8 m 7 m 0 m P L K m A A 6 Toon n zonder geodriehoek dt. Geruik de ---regel. 7 Bereken de shuine zijde met de ---regel. ) rehthoekszijde: 60 m = 0 m ) rehthoekszijde: dm = rehthoekszijde: 80 m = 0 m rehthoekszijde: 6 dm = shuine zijde: shuine zijde: ) rehthoekszijde: m = d) rehthoekszijde: 90 mm = rehthoekszijde: 0 m = rehthoekszijde: 0 mm = shuine zijde: shuine zijde: 0
7 8 Onderzoek of de driehoek met zijden, en rehthoekig is. Zet een vinkje. rehthoekig niet rehthoekig ) mm, mm,9 mm ) m 7, m 8, m ) 0, m 0, m 0,7 m d), m,8 m, m e), m,8 m m 9 Onderzoek of de nabc rehthoekig is. Zet een vinkje. zijden rehthoekig niet rehthoekig ) 6 m m 0 m ), m 7, m 6 m ),7 dm,6 dm,8 dm d) 8 m m m e) 78 m 0 m 7 m 0 Los op. ) Om in het prk een voetlpleintje f te kenen, stpt Stijn twintig pssen f in de reedte en zestig in de lengte. Pedro vertrouwt het niet heleml en vrgt Stijn eens digonl over het veld te stppen. Stijn telt 67 pssen. Is hun voetlplein rehthoekig? Antwoord: ) P wil een tuinhuis hter in de tuin. Hij grft een rehthoekige kuil vn,6 m ij,8 m voor de grondplt. Om te ontroleren of zijn put wel rehthoekig is, meet hij de digonl. Die is zes meter. Is de kuil rehthoekig? Antwoord: Hoofdstuk DE STELLING VAN PYTHAGORAS 0
8 REEKS C Primitieve Pythgorishe drietllen zijn Pythgorishe drietllen die geen ntuurlijke veelvouden zijn vn ndere Pythgorishe drietllen. Vooreeld: 9, en is een Pythgorish drietl, mr niet primitief. Enkele vn de kleinste primitieve Pythgorishe drietllen zijn: Om zelf primitieve Pythgorishe drietllen op te stellen, g je ls volgt te werk. Kies twee, vn 0 vershillende, ntuurlijke getllen m en n wrij m > n. =mn = m n = m + n Vooreeld Stel m =enn = = = = Controle: Bewijs. gegeven m en n zijn ntuurlijke getllen, vershillend vn 0 en m > n =mn = m n = m + n te ewijzen + = ewijs esluit 0
9 Stel Pythgorishe drietllen op. erekeningen ) ) 0 ) 0 d) 0 e) 0 Het vermoeden vn De Fermt Er lijken oneindig veel ntuurlijke getllen, en te estn die voldoen n de vergelijking + =. De Frnse wiskundige Pierre de Fermt (60-66) vroeg zih f of er ook vn nul vershillende, ntuurlijke getllen te vinden zijn die voldoen n de formule n + n = n, voor wrden vn n groter dn. Pierre de Fermt Hij vond er geen en shreef in de kntlijn vn een vn zijn oeken dt de vergelijking onoplosr is. De Fermt eweerde een ewijs te heen voor dit theorem, mr dt werd nooit gevonden. Men is dus nooit zeker geweest over het estn vn het ewijs, lt stn over de juistheid ervn. Gedurende 00 jr proeerde men het theorem te ewijzen, zonder sues. Het duurde tot in 99. Toen slgde de Britse wiskundige Andrew Wiles erin om een sluitend ewijs te vinden. Andrew Wiles Pierre de Fermt stond smen met Psl n de wieg vn de knsrekening en is ook ekend door het eginsel vn Fermt. Hoofdstuk DE STELLING VAN PYTHAGORAS 0
10 Studiewijzer DE STELLING VAN PYTHAGORAS. De stelling vn Pythgors formuleren KENNEN In een rehthoekige driehoek is de som vn de kwdrten vn de rehthoekszijden gelijk n het kwdrt vn de shuine zijde. Als in een driehoek de som vn de kwdrten vn de twee kortste zijden gelijk is n het kwdrt vn de lngste zijde, dn is de driehoek rehthoekig. De stelling vn Pythgors formuleren.. Meetkundige voorstellingen De stelling vn Pythgors geruiken ij erekeningen vn lengten in meetkundige situties (zijden vn een rehthoekige driehoek, zijden en digonlen vn een vierhoek,...).. De stelling vn Pythgors ewijzen De stelling vn Pythgors ewijzen.. Rekenen met Pythgors De stelling vn Pythgors geruiken in ewijzen en vrgstukken.. Construties De stelling vn Pythgors geruiken in onstruties vn lijnstukken met een eplde lengte..6 Pythgors in de ruimte De stelling vn Pythgors geruiken in ruimtelijke situties (digonlen kuus en lk, hoogte pirmide,...). Contrtwerk
Hoofdstuk 5: Vergelijkingen van de
Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek
Getallenverzamelingen
Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.
Natuurlijke getallen op een getallenas en in een assenstelsel
Turf het ntl fouten en zet de resultten in een tel. Vlmingen Nederlnders resultt ntl resultt ntl 9 9 en nder tlstelsel U Ontijfer de volgende hiërogliefen met ehulp vn het overziht op p. in het leerwerkoek.........................
Het kwadraat van een tweeterm a+b. (a+b)²
Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven
Opgave 1. Waarom kun je bij het Noorden twee getallen neerzetten? Geldt dit ook voor andere windrichtingen? Hoeveel graden hoort er bij het Oosten?
Opgve 1 Hier zie je een windroos met de windrihtingen er in getekend. Hij is verder verdeeld in 360 hoekjes, elk vn die hoekjes heet 1 grd. Bij het Noorden (N) hoort 0 grden (en dus ook 360 grden). file:
H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10
H. 10 Goniometrie 10.1 Bsisegrippen Regelmtig voeren we erekeningen uit, wrin één of meerdere hoeken voorkomen. Voor een sherpe hoek kunnen we 3 goniometrishe verhoudingen definiëren. Deze lten zih het
Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad
Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling
Overzicht eigenschappen en formules meetkunde
Overziht eigenshppen en formules meetkunde 1 iom s Rehten en hoeken 3 riehoeken 4 Vierhoeken Op de volgende ldzijden vind je de eigenshppen en formules die je in de eerste grd geleerd het en deze die in
Spiegelen, verschuiven en draaien in het vlak
2 Spiegelen, vershuiven en drien in het vlk it kun je l 1 de iddelloodlijn vn een lijnstuk herkennen en tekenen 2 een hoek eten en tekenen 3 de issetrie vn een hoek herkennen en tekenen 4 de oördint vn
Merkwaardige producten en ontbinden in factoren
6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm
In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.
9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende
Noordhoff Uitgevers bv
I- I- 38 lok 3 IT - eetkundige pltsen met Geoger ldzijde 8 H Het spoor vn lijkt een irkel te zijn. De irkel is de meetkundige plts vn een onstnte hoek. Het ewijs komt voor ij de stelling vn Thles. Gegeven:
Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1
Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten
Beste leerling. De auteurs
Voor wie kopiëren wil: U vindt dit oek goed en wenst er kopieën vn te mken. edenk dn ook eens: dt zowel uitgever ls uteurs met de oprengst ervn hun kosten moeten dekken; dt kopiëren zonder toestemming
Werkblad TI-83: Over de hoofdstelling van de integraalrekening
Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5
De cirkel M22. het middelpunt een koorde de straal de diameter een middelpuntshoek een middellijn. 2 cm 4 cm. Cirkel en elementen van een cirkel
M De irkel Cirkel en elementen vn een irkel 781 E Geef de nm vn de ngeduide delen in de irkel. Y X O T S het middelpunt een koorde de strl de dimeter een middelpuntshoek een middellijn O:... [XY]:... OS
MEETKUNDE 1 Basisbegrippen
MEETKUNE sisegrippen M Een klslokl vol meetkunde M nzihten M sisegrippen vn de meetkunde 7 M4 Onderlinge ligging vn rehten 74 M5 Eigenshppen in vernd met evenwijdigheid en loodrehte stnd vn rehten in het
Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I
Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,
Moderne wiskunde: berekenen zwaartepunt vwo B
Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen
Rangschik van klein naar groot. Vul aan. Meet de lengte van onderstaande voorwerpen.
582 Rngshik vn klein nr groot. 583 Vul n. 0,3 km 500 m 200 000 m 25 000 dm... 0,3 m 40 m 12 dm 240 mm... 1 mm is... mm kleiner dn 1 m. 8 m is... m kleiner dn 1 m. d 9 92 70 47 3 m is... mm kleiner dn 1
HOOFDSTUK 1 BASISBEGRIPPEN
I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo
1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde.
Vlmse Wiskunde Olympide 987-988 : Eerste Ronde De eerste ronde estt steeds uit 0 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt: een deelnemer strt met 0 punten, per goed
Hoofdstuk 2: Bewerkingen in R
Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen
Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.
Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:
MEETKUNDE 5 Cirkels en cilinders
MEETKUNDE 5 Cirkels en ilinders M22 De irkel 254 M23 De ilinder 262 253 M22 De irkel Cirkel en elementen vn een irkel 781 E Geef de nm vn de ngeduide delen in de irkel. Y X O T S het middelpunt een koorde
3 Snijpunten. Verkennen. Uitleg
3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls
Parate kennis wiskunde
Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr
1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?
Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.
De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af.
Opgve 1 Vn twee korte en twee lnge luifers is een rehthoek geleg. Omt je geen fmetingen weet hngt e omtrek vn eze rehthoek f vn twee vrielen, nmelijk lengtekorteluif er en lengtelngeluif er. Welke formule
opgaven formele structuren procesalgebra
opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve
Bewerkingen met eentermen en veeltermen
5 Bewerkingen met eentermen en veeltermen Dit kun je l 1 werken met letters ls onekenden, ls vernderlijken en om te verlgemenen 2 een tel mken ij een situtie 3 de fsprken over lettervormen toepssen 4 oppervlkteformules
Meet de lengte en de breedte van de rechthoek.
M15 Rechthoek en lk 692 E Je kunt hieronder eenvoudig de oppervlkte vn een rechthoek vinden door de ruitjes te tellen. Elk ruitje is 1 cm². Hoe groot is de oppervlkte vn deze rechthoek?... 693 B Bereken
De stelling van Pythagoras
De stelling van Pythagoras Inhoud Inhoud... 1 Inleiding... 3 De stelling van Pythagoras... 3.1 De stelling van Pythagoras... 3. De omgekeerde stelling van Pythagoras... 3.3 Bewijs van de stelling van Pythagoras...
Wiskunde voor 1 havo/vwo
Wiskunde voor 1 hvo/vwo Deel 2 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons
INTERVIEWEN 1 SITUATIE
INTERVIEWEN drs. W. Bontenl 1 SITUATIE Een interview vlt te omshrijven ls een gesprek tussen één of meerdere personen - de interviewers - en een ndere persoon (of diverse nderen) - de geïnterviewden -
1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.
Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder
Zelfstudie practicum 1
Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().
Hoofdstuk 4 : Ongelijkheden
Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...
Noordhoff Uitgevers bv
Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p
Breuken. Breuken. Wiskunde voor de brugklas. 1 De cd-roms van Wiskunde Interactief
De d-roms vn Wiskunde Intertief Breuk voor de Bsisshool het hoe wrom vn reuk verevoudig 8 4 4 optell 4 + 7 ftrekk 3 4 7 3 vermigvuldig 4 3 del 7 : 3 4 Breuk voor de Bsisshool,Vmo, Hvo/VWO Po het hoe wrom
Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur
Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord
REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM
REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei
Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.
Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn
Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c
Opgve 1 Stel je eens een getl voor, ijvooreeld: 504,76. Wt zijn de ijfers vn dit getl? Hoeveel is elk vn die ijfers wrd? Wt etekent de komm? Opgve 2 Bekijk het getl 6102,543. d e Hoeveel ijfers hter de
Lineaire formules.
www.betles.nl In de wiskunde horen bij grfieken beplde formules wrmee deze grfiek getekend kn worden. zijn formules die in een grfiek een reeks vn punten oplevert die op een rechte lijn liggen. In de vorige
Meetkunde 1 Ruimtemeetkunde
Meetkunde 1 Ruimtemeetkunde M1 Ruimtelijke situties voorstellen in een vlk 180 M2 De pirmide, de kegel en de ol 18 M Het volume vn een pirmide, een kegel en een ol 190 179 M1 1 Titel Ruimtelijke situties
1 Vlaamse Wiskunde Olympiade : Tweede ronde
1 Vlmse Wiskunde Olympide 000-001: Tweede ronde De eerste ronde estt uit 0 meerkeuzevrgen Het quoteringssysteem werkt ls volgt: per goed ntwoord krijgt de deelnemer 5 punten, een lnco ntwoord ezorgt hem
MEETKUNDE 3 Vierhoeken
MEETKUNDE 3 Vierhoeken M11 Vierhoeken in de ruimte 8 M1 Vierhoeken tekenen 1 M13 Kuus en lk 14 M14 Metriek stelsel M15 Rehthoek en lk 3 M16 Vierknt en kuus 8 M17 Trpezium, prllellogrm en ruit 3 7 M111
Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2
Lijnen en vlkken in Kls N en N Wiskunde perioden Kees Temme Versie . Coördinten in R³.... De vergelijking vn een vlk ().... De vectorvoorstelling vn een lijn.... De vectorvoorstelling vn een vlk... 8.
Platte en bolle meetkunde
Hoofdstuk I Pltte en olle meetkunde F. vn der lij Dit hoofdstuk evt een door de redctie gemkte ewerking vn een in Utrecht op 6 oktoer 1993 gegeven Kleidoscoop college vn F. vn der lij. Grg willen we professor
MEETKUNDE 2 Lengte - afstand - hoeken
MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul
De formule van het opslagpercentage voor alle producten luidt:
4.3 Verkoopprijs erekenen Om een product of een dienst met winst te verkopen, moet je eerst goed weten wt de kosten zijn. Als je dt weet, dn kun je de verkoopprijs eplen. Kosten De kostprijs vn een product
Profielwerkstuk Geschiedenis van de wiskunde
Profielwerkstuk Geschiedenis vn de wiskunde De wondere wereld vn de wiskunde voor Christus. Dingo Alvrez V6 Inhoudsopgve Voorwoord Egyptische Wiskunde Delen en vermenigvuldigen op z n Egyptisch 5 Egyptische
les 1 1 Welke breuk is het grootst? 2 Hoe kun je een meter veterdrop in zes gelijke stukken verdelen? Hoe vergelijk je de breuken?
0 vergelijken en op volgorde zetten vn eenvoudige reuken en kommgetllen reuken omzetten in kommgetllen en omgekeerd Welke reuk is het grootst? 5 6 2 7 9 5 5 9 2 5 7 2 7 8 8 9 8 5 00 5 6 7 20 5 7 27 70
Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller
Wiskunde voor 2 hvo Deel 1 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons lientie.
Krommen en oppervlakken in de ruimte
(HOOFDSTUK 60, uit College Mthemtis, door Frnk Ares, Jr. nd Philip A. Shmidt, Shum s Series, MGrw-Hill, New York; dit is de voorereiding voor een uit te geven Nederlndse vertling). Krommen en oppervlkken
Inhoud college 7 Basiswiskunde
Inhoud college 7 Bsiswiskunde 3.3 De ntuurlijke logritme en de exponentiële functie (zie college 6) 5.1/3 Introductie Integrlen 5.4 Eigenschppen vn de eplde integrl 5.5 De hoofdstelling vn Clculus 2.10
Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde
Oppervlkte vn riehoeken Verkennen Opgve 1 Je ziet hier twee riehoeken op een m-rooster. Beie riehoeken zijn omgeven oor eenzelfe rehthoek. nme: Imges/hv-me7-e1-t01.jpg file: Imges/hv-me7-e1-t01.jpg Hoeveel
Basisbegrippen. Test jezelf Elke vraag heeft maar één juist antwoord. Controleer je antwoord in de correctiesleutel. balk cilinder kubus
sisegrippen Dit kun je l de enmingen vn vershillende soorten driehoeken en vierhoeken geruiken een kuus, een lk en een ilinder herkennen evenwijdige en snijdende rehten herkennen sherpe, stompe en rehte
Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11
84 V** Vul binnen de hkjes de juiste tekens in zodt de gelijkheden kloppen. De letters stellen gehele getllen voor. + + + + + + + + + b + + d + e f = (... b...... d... e... f ) b b + + d + e f = ( b) +
1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.
Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord
Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is:
Integrlen DE ONBEPAALDE INTEGRAAL VAN f() wordt genoteerd met f()d, en is de meest lgemene zogenmde primitieve vn f() dt is: f()d = F() + C wrij F() elke functie is zodnig dt F'() = f() en C een willekeurige
Hoofdstuk 0: algebraïsche formules
Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html
Examen VWO. wiskunde B1,2 (nieuwe stijl)
wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor
middelloodlijnen werkschrift naam:
werkshrift middelloodlijnen nm: 1 Disuswerpen Hiernst zie je, vn ovenf, de setor wrinnen een disuswerper zijn shijf moet gooien. De shl is 1:1000. Het wereldreord disuswerpen is sinds 6 juni 1986 in hnden
Permanente kennis 3de trimester 4de jaar Grootheden en eenheden BASISGROOTHEDEN
Permnente kennis 3de trimester 4de jr Grooteden en eeneden BASISGROOTHEDEN Bsisgrooteid Symool Eeneid lengte l meter m mss m kilogrm kg tijd t seonde s elektrise stroom I mpère A AFGELEIDE GROOTHEDEN EN
Routeplanning middels stochastische koeling
Routeplnning middels stochstische koeling Modellenprcticum 2008 Stochstische koeling of Simulted nneling is een combintorisch optimlistielgoritme dt redelijke resultten geeft in ingewikkelde situties.
a = 1 b = 0 k = 1 ax + b = lim f(x) lim
BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +
6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...
113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de
11 Wiskundige denkactiviteiten: digitale bijlage
Wiskundige denkctiviteiten: digitle ijlge Suggesties voor opdrchten wrij de leerlingen uitgedgd worden wiskundige denkctiviteiten te ontplooien. De opdrchten heen de volgende structuur. In de kop stn chtereenvolgend:
Henk Pijls Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam
Jn vn de Crts Henk Pijls De kromme gevormd door de toppen vn de prolen door drie gegeven punten NAW 5/9 nr. mrt 08 9 Jn vn de Crts Korteweg-de Vries Instituut voor Wiskunde Universiteit vn Amsterdm [email protected]
Rekenregels van machten
4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf
De standaard oppervlaktemaat is de vierkante meter. Die is afgeleid van de standaard lengtemaat, de meter.
Opgve 1 Dit is een roosterord. Elk roosterhokje is 5 m ij 5 m. Hoeveel edrgt de oppervlkte vn dit ord? Opgve 2 Welke oppervlktemten ken je l? Noem er zoveel mogelijk. De oppervlkte-eenheid is de vierknte
Bijlage 2 Gelijkvormigheid
ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf
Toetsopgaven vwo B deel 3 hoofdstuk 10
Toetsopgven vwo deel 3 hoofdstuk 10 Opgve 1 In de figuur hiernst zie je 15 kubusjes met ribbe. e punten,, en zijn hoekpunten vn een kubusje, punt is het midden vn een ribbe en de punten en delen een ribbe
1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.
Voorereidende opgven Kerstvkntieursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem
Werkkaarten GIGO 1184 Elektriciteit Set
Werkkrten GIGO 1184 Elektriiteit Set PMOT 2006 1 Informtie voor de leerkrht Elektriiteit is één vn de ndhtsgeieden ij de nieuwe kerndoelen voor ntuur en tehniek: 42 De leerlingen leren onderzoek doen n
edatenq is een toepassing die de ondernemingen de mogelijkheid biedt om hun statistische aangiften in te vullen en door te sturen via internet.
Inleiding edatenq is een toepssing die de ondernemingen de mogelijkheid iedt om hun sttistishe ngiften in te vullen en door te sturen vi internet. Het etreft een door de FOD Eonomie volledig eveiligde
Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.
Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De
Inhoudsmaten. Verkennen. Uitleg. Opgave 1. Dit is een kubus met ribben van 1 m lengte. Hoeveel bedraagt de inhoud ervan?
Inhousmten Verkennen Opgve 1 Dit is een kuus met rien vn 1 m lengte. Hoeveel ergt e inhou ervn? Kun je e nm kuieke meter ls eenhei vn inhou verklren? In hoeveel kleinere kuussen is eze kuieke meter vereel?
Antwoorden Natuurkunde Hoofdstuk 1
Antwoorden Ntuurkunde Hoofdstuk 1 Antwoorden door Dn 2719 woorden 3 pril 2016 4,3 2 keer eoordeeld Vk Methode Ntuurkunde Systemtishe ntuurkunde 1.1 Grootheden en eenheden Opgve 1 Kwntittieve metingen zijn
Om welke reden heeft een kwak relatief grote ogen?
Route K - Volière en fznterie Strt ij de volière; de vrgen 1 t/m 6 gn over een ntl grote Europese vogels. De vrgen over de ndere dieren vn deze route hoeven niet in de juiste volgorde te stn. Dt komt omdt
Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150
Inhoud leereenheid 3 Integreren Introductie 5 Leerkern 6 Integrl ls oppervlkte 6 De functie ls fgeleide vn zijn oppervlktefunctie 3 3 Primitieven 33 4 Beplde en oneplde integrl 35 5 Oneigenlijke integrlen
Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt?
Opgve 1 Je ziet hier een eenvoudige ksson. Hoeveel dingen he je volgens de ksson gekoht? Hoeveel etl je in totl? Hoe kun je dt edrg nrekenen? Hoe ereken je het edrg dt je vn de 20 euro terug krijgt? Je
GETALLENLEER 1 Wandelen door de soorten getallen
GETALLENLEER Wndelen door de soorten getllen G Ntuurlijke getllen G Ntuurlijke getllen op een getllens en in een ssenstelsel 9 G Bewerkingen met ntuurlijke getllen G Gemiddelde en medin 9 G Gehele getllen
6.4 Rekenen met evenwichtsreacties
6.4 Rekenen met evenwihtsreties An de hnd vn een reeks vooreelden zullen we het rekenwerk ehndelen n evenwihtsreties. Vooreeld 6.2 We estuderen het gsevenwiht: A(g) + B(g) C(g) + D(g) In een ruimte vn
schets 10 Bergrede: tweeërlei fundament (7:24-29)
shets 10 Bergrede: tweeërlei fundment (7:24-29) A Kernpunten * An het einde vn de Bergrede vergelijkt Jezus de mens met de ouwer vn een huis. Het is een eeld voor wt wij vn ons leven mken en vioor de hele
Noordhoff Uitgevers bv
86 Verdieping Regelmatige figuren 1a e figuur heeft 12 hoekpunten. lke hoek is 150. Ja, ze zijn allemaal 150. d e zijden zijn 2,5 m. e Ja, ze zijn allemaal even lang. 2a en regelmatige driehoek is een
Meetkundige constructies
Hoofdstuk 2 Meetkundige constructies 2.1 Ineiding: ouwstenen vn de meetkunde EENMEETKUNIGEONSTRUTIE iseentekeningwrinereifigurenzos driehoeken, vierhoeken, ijnen en cirkes een ro speen en wrij precies
OP GETAL EN RUIMTE KUN JE REKENEN
OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde
Breuken en verhoudingen
WISKUNDE IN DE BOUW Breuken en verhoudingen Leerdoelen N het estuderen vn dit hoofdstuk moet je in stt zijn om: te rekenen met reuken en verhoudingen; reuken toe te pssen in erekeningen vn onder ndere
Noordhoff Uitgevers bv
V-a Voorkennis: ijzondere figuren ladzijde 30 50 60 = 80 50 60 = 70 d V-a Hoofdstuk 5 - efinities en stellingen Ja, de zwaartelijnen gaan door één punt: het zwaartepunt Ja, de hoogtelijnen gaan door één
Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven
Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de
Opdrachten bij hoofdstuk 2
Opdrchten ij hoofdstuk 2 2.1 Het vullen vn je portfolio In hoofdstuk 2 he je gezien op welke mnier je de informtie kunt verzmelen. An de hnd vn die informtie kun je de producten mken wrmee jij je portfolio
