Lineaire formules.
|
|
|
- Lieven Goossens
- 6 jaren geleden
- Aantal bezoeken:
Transcriptie
1
2 In de wiskunde horen bij grfieken beplde formules wrmee deze grfiek getekend kn worden. zijn formules die in een grfiek een reeks vn punten oplevert die op een rechte lijn liggen. In de vorige presenttie hebben we gezien hoe de som- en verschilformule uit een grfiek opgestelt kon worden, en ook wren we l vooruitgelopen op de methode om de formule vn de lijn op lgebrïsche wijze op te stellen. In deze presenttie behndelen we hoe we vergelijkingen kunnen gebruiken. We zullen zien dt vergelijkingen voor veel vrgstukken gebruikt kunnen worden.
3 Voorbeeld 1 Als je bij een getl 5 optelt, de uitkomst deelt door en er dn vnf trekt, krijg je hetzelfde getl terug. Wt is het getl? 1) Stel het onbekende getl x getl = x ) Schrijf de som op zols gegeven. (komt nu in stpjes, mr mg in één keer geschreven worden) x + 5 x+5 x+5 x+5 = x
4 Voorbeeld 1 Als je bij een getl 5 optelt, de uitkomst deelt door en er dn vnf trekt, krijg je hetzelfde getl terug. Wt is het getl? 1) Stel het onbekende getl x x+5 = x ) Schrijf de som op zols gegeven. x+5 (komt nu in stpjes, mr mg in één = x + keer geschreven worden) x + 5 = x + 4 x + 5 = 4 3) Werk de gekregen vergelijking uit x = 1 met behulp vn de belnsmethode. x = 1 4) Controleer je ntwoord (ls je tijd over hebt) 1+5 Dit klopt, dus het ntwoord is goed. = 1 1 = 1
5 Intermezzo We hebben nu gezien dt we met vergelijkingen een getl kunnen beplen wr iemnd nr op zoek is. Dit wordt gebruikt bij onder ndere rekeningen. Stel een bedrijf krijgt 100 bonnen, heeft een bepld begin en eindsldo, gt rekenen en blijkt dn nog mr 99 bonnen te hebben. In dit gevl kn dn het bedrg - dt (wrschijnlijk) op die bon stond - berekend worden. In de volgende sheets ziet u een uitgebeider voorbeeld. Met de stof behndeld bij meetkunde moet je deze kunnen bentwoorden, echter niet op de mnier hoe dit in het begin wordt uitgelegd.
6 De gemeente Heerlen wil een nieuw plein pltsen. Omdt zij ltijd recht door zee gt, wil zij een hoogtelijn op de schuine zijde vn een rechthoekige driehoek pltsen, en n beide knten ndere stenen leggen. Alleen de lengte (4m) en breedte (3m) vn het plein zijn bekend. Hoe groot zijn de oppervlktes vn beide delen? 1) Schets probleem 3m 4m
7 ) Lengte vn schuine zijde is te berekenen met stelling vn Phytgors: (²+b²=c² en is dus 5m (3-4-5-driehoek)) 3) Stel de hoogtelijn. 4) Er geldt: A tot = A 1 + A (A=oppervlkte) 3m A 1 5m = A 1 + A (A=oppervlkte) A 4m
8 4) Stel een zijde x, de ndere is dn 5-x x 3m x A 1 5m 5-x A 5-x 4m
9 5) We weten A tot = A 1 + A 1 x 3 4 = x + (5 x) 3 A 1 6) Met Phytgors kunnen we uitdrukken in x In A 1 : ² + x² = 3² ² = 9 x² In A : ² + 5 x = 4 ² x + x = 16 ² + x² 10x = 9 3 A tot A 4 5-x 4
10 5) We weten A tot = A 1 + A = x + (5 x) 6) Met Phytgors kunnen we uitdrukken in x In A 1 : ² + x² = 3² ² = 9 x² In A : ² + 5 x = 4 ² x + x = 16 ² + x² 10x = 9 Substitueer ² = 9 x²: 9 x² + x² 10x = 9 10x = 18 x = 1,8 Nu x = 1,8 in formule vn 5) invullen.
11 5) We weten A tot = A 1 + A 1 x 3 4 = x + (5 x) 3 A 1 A 5-x 4 3 A tot 4
12 5) We weten A tot = A 1 + A = x + (5 x) 3 4 = 1,8 + 3, 3 A 1 1,8 A 3, 7) Herleiden 6 = 5 = 1,m 3 4 A tot 4
13 Dit hd ntuurlijk veel mkkelijker gekund door meteen de hoogtelijnen te nemen vn het vorige hoofdstuk = 5 = 1,m Er geldt steeds: A = 1 l bijbehorende hoogte 3m 5m 4m
14 Einde
Hoofdstuk 0: algebraïsche formules
Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html
Eindexamen wiskunde B1-2 vwo 2004-I
chten vn een derdegrdsfunctie Gegeven is de functie 3 2 1 3 4 4 f ( x) x x op het domein [0, 3]. V is het gebied ingesloten door de grfiek vn f en de x-s. 5p 1 ereken lgebrïsch de excte wrde vn de oppervlkte
Hoofdstuk 5: Vergelijkingen van de
Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek
2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c.
Wiskunde voor bchelor en mster Deel Bsiskennis en bsisvrdigheden c 05, Syntx Medi, Utrecht www.syntxmedi.nl Uitwerkingen hoofdstuk 0 0... Voor scherpe hoek α geldt:. sin α = 0,8 α = sin 0,8 = 5, d. cos
F G H I J. 5480
() Nm : Kls: Dtum: A. 06 Uit ln + ln( ) = ln volgt dt gelijk is n ) ) ) ) ) g.v.d.v. B. 77 + b ) b ) (+ is gelijk n b ) ) b) ).b b F. 7 kn ook geschreven worden ls ) e ) e ) e ( ) ln e ) ) e G. 7 9 Als
Examen VWO. wiskunde B1,2 (nieuwe stijl)
wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor
Voorbereidende opgaven Kerstvakantiecursus
Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt
3 Snijpunten. Verkennen. Uitleg
3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls
Boek 2, hoofdstuk 7, allerlei formules..
Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.
Werkblad TI-83: Over de hoofdstelling van de integraalrekening
Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5
Voorbereidende opgaven Examencursus
Voorbereidende opgven Exmencursus Tips: Mk de voorbereidende opgven voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een opdrcht niet lukt, werk hem dn uit tot wr je kunt en
Het kwadraat van een tweeterm a+b. (a+b)²
Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven
wiskunde B pilot vwo 2015-I
wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t
1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.
1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4
Vectoranalyse voor TG
college 5 De tweevoudige integrl collegejr : 8-9 college : 5 build : 27 ugustus 28 slides : 48 Vndg dubbel en De tweevoudige integrl en inhoud 2 Herhlde integrl 3 4 Poolcoördinten intro VA Wt is een integrl?
Lineaire formules.
www.betales.nl In de wiskunde horen bij grafieken bepaalde formules waarmee deze grafiek getekend kan worden. Lineaire formules zijn formules die in een grafiek een reeks van punten oplevert die op een
KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN
KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden
Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.
Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de
1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.
Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord
Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur
Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld
OP GETAL EN RUIMTE KUN JE REKENEN
OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde
REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM
REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei
Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven
Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de
Rekenregels van machten
4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf
Exact periode 2.2. Gemiddelde en standaarddeviatie Betrouwbaarheidsinterval Logaritme ph lettersommen balansmethode
Exct periode. Gemiddelde en stndrddevitie Betrouwbrheidsintervl Logritme ph lettersommen blnsmethode 1 gemiddelde en stndrddevitie vn meetwrden. x en s Hieronder zie je twee getllenseries die hetzelfde
Continuïteit en Nulpunten
Continuïteit en Nulpunten 1 1 Inleiding Continuïteit en Nulpunten In de wiskunde wordt heel vk gebruik gemkt vn begrippen ls functie, functievoorschrift, grfiek, Voor een gedetilleerde inleiding vn deze
Getallenverzamelingen
Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.
1.0 Voorkennis. Voorbeeld 1:
1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4
Hoofdstuk 4 : Ongelijkheden
Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...
Voorbereidende opgaven Stoomcursus
Voorereidende opgven Stoomcursus Tips: MEER DAN 0 JAAR ERVARING Dit document estt uit twee delen: de voorereidende opgven en een overzicht met lgerïsche vrdigheden. Mk de volgende opgven het liefst voorin
5.1 Hogeremachtswortels [1]
5. Hogeremchtswortels [] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij
1.0 Voorkennis. Voorbeeld 1:
1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24
Inhoud college 7 Basiswiskunde
Inhoud college 7 Bsiswiskunde 3.3 De ntuurlijke logritme en de exponentiële functie (zie college 6) 5.1/3 Introductie Integrlen 5.4 Eigenschppen vn de eplde integrl 5.5 De hoofdstelling vn Clculus 2.10
15 5 omhoog. Hoofdstuk 26 RECHTE LIJNEN. 6 ad 26.0 INTRO
Hoofdstuk 6 RECHTE LIJNEN 6.0 INTRO 6 d km kost,0: =,9 drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls je nr rechts zou gn, zou je omhoog
Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur
Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord
2 Formules herschrijven
Formules herschrijven Verkennen www.mth4ll.nl MAThADORE-bsic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules herschrijven Inleiding Verkennen Probeer de vrgen bij Verkennen zo goed mogelijk te bentwoorden.
Eindexamen vwo wiskunde B pilot I
Formules Goniometrie sin( t u) sintcosu costsinu sin( t u) sintcosu costsinu cos( t u) costcosu sintsinu cos( t u) costcosu sintsinu sin( t) sintcost cos( t) cos t sin t cos t sin t www. - - nfhnkelijk
Merkwaardige producten en ontbinden in factoren
6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm
is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b
1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls
Begripsvragen: Beweging
Hndboek ntuurkundedidctiek Hoofdstuk 4: Leerstofdomeinen 4.2 Domeinspecifieke leerstofopbouw 4.2.1 Mechnic Begripsrgen: Beweging 1 Meerkeuzergen O Q R P 1 [H/V] Iemnd stt op de in figuur 1 ngegeen plts
6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...
113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml
Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.
Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
Hoofdstuk 2 DE STELLING VAN PYTHAGORAS
Hoofdstuk DE STELLING VAN PYTHAGORAS INHOUD. De stelling vn Pythgors formuleren 98. Meetkundige voorstellingen 06. De stelling vn Pythgors ewijzen 09. Rekenen met Pythgors. Construties.6 Pythgors in de
Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c
Opgve 1 Stel je eens een getl voor, ijvooreeld: 504,76. Wt zijn de ijfers vn dit getl? Hoeveel is elk vn die ijfers wrd? Wt etekent de komm? Opgve 2 Bekijk het getl 6102,543. d e Hoeveel ijfers hter de
H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO
H6 RECHTE LIJNEN VWO 6.0 INTRO 6 d km kost,0: =,0 (oude druk) km kost,0: =,9 (nieuwe druk) drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls
a = 1 b = 0 k = 1 ax + b = lim f(x) lim
BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +
Noordhoff Uitgevers bv
I- I- 38 lok 3 IT - eetkundige pltsen met Geoger ldzijde 8 H Het spoor vn lijkt een irkel te zijn. De irkel is de meetkundige plts vn een onstnte hoek. Het ewijs komt voor ij de stelling vn Thles. Gegeven:
Bijlage 2 Gelijkvormigheid
ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf
Eindexamen wiskunde B1-2 vwo 2007-I
Eindemen wiskunde B- vwo 007-I Beoordelingsmodel Podiumverlichting mimumscore 3 sin α = r 650 V 650 r r r 650 r = 9 + invullen geeft V = 9 + sin α = r r = 9 + V = 650 650 = 9+ 9+ 9 + mimumscore 5 650 00
Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I
Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,
DOEL: Weten wat de gevolgen en risico s kunnen zijn van het plaatsen van (persoonlijke) informatie op internet.
kennismking met i-respect.nl INTRODUCTIE GEMAAKT DOOR: Annèt Lmmers ONDERWERP: Een eerste kennismking met i-respect.nl en het onderwerp publiceren. DOEL: Weten wt de gevolgen en risico s kunnen zijn vn
Voorbereidende opgaven Stoomcursus
Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht
Moderne wiskunde: berekenen zwaartepunt vwo B
Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen
Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt?
Opgve 1 Je ziet hier een eenvoudige ksson. Hoeveel dingen he je volgens de ksson gekoht? Hoeveel etl je in totl? Hoe kun je dt edrg nrekenen? Hoe ereken je het edrg dt je vn de 20 euro terug krijgt? Je
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
Vlmse Wiskunde Olympide 99 993 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord
1 Vlaamse Wiskunde Olympiade : Tweede ronde
1 Vlmse Wiskunde Olympide 000-001: Tweede ronde De eerste ronde estt uit 0 meerkeuzevrgen Het quoteringssysteem werkt ls volgt: per goed ntwoord krijgt de deelnemer 5 punten, een lnco ntwoord ezorgt hem
PR en QR snijden de grote as van E in respectievelijk U en V. Bewijs dat de vector UV. x 2y. a 4b. sin sin cos cos. a b 2 2. cos cos, sin sin.
Oplossing Op e ellips E neem je twee vste punt P Q e vernderlijk punt R De middelloodlijn vn e constnte PR QR snijd de grote s vn E in respectievelijk U V Bewijs dt de vector UV vector is (dus onfhnkelijk
1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.
Voorereidende opgven Kerstvkntieursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem
Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.
Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?
Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.
Vraag Antwoord Scores. (en dit is gelijk aan fa. is een primitieve functie van f a ) 1
Beoordelingsmodel Vrg Antwoord Scores Onfhnkelijk vn mximumscore x x F'x ( ) = e + x e Dit geeft F ( ) ( ) e x ' x = x (en dit is gelijk n f ( x ), dus F is een primitieve functie vn f ) mximumscore 5
Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is:
Integrlen DE ONBEPAALDE INTEGRAAL VAN f() wordt genoteerd met f()d, en is de meest lgemene zogenmde primitieve vn f() dt is: f()d = F() + C wrij F() elke functie is zodnig dt F'() = f() en C een willekeurige
opgaven formele structuren procesalgebra
opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve
5.1 Rekenen met differentialen
Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 5 Substitutie We hebben gezien dt de productregel voor de fgeleide een mnier geeft, om voor zeker functies een primitieve te vinden,
4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES
4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:
Noordhoff Uitgevers bv
ldzijde f () Er is geen symmetrie in een vertile lijn. Alle rklijnen heen een positief hellingsgetl. Wrshijnlijk (0, 0). d f () e - ICT - Rklijnen ldzijde Geruik dt d y om de hellingsgetllen vn de rklijnen
Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.
Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn
Parels van studenten tijdens een examen
Prel 1 Prels vn studenten tijdens een exmen c k x k n+1 n+1 ( = c k x k ( ) )x c n+1x n+1 n+1 k ( ) k x n+1 k ( ) k k k Prel 2 Vrg: Zij n N, c k C voor k = 1,..., n, c n 0. Toon n dt de functie f(z) =
Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer
Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1
Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten
Willem van Ravenstein
Willem van Ravenstein 1. Variabelen Rekenen is het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken je de bewerkingen machtsverheffen en worteltrekken.
Exacte waarden bij sinus en cosinus
acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie
Je gaat naar de winkel en koopt 4 pakken melk van 1,40 per stuk.
Opgve 1 Je gt nr de winkel en koopt 4 pkken melk vn 1,40 per stuk. Hoeveel etl je in totl? Wt he je met de getllen 4 en 1,40 gedn om het ntwoord te vinden? Hoe doe je dt zonder rekenmhine? Opgve 2 Je gt
Proeftentamen LAI (tweede deel), voorjaar 2006 Uitwerkingen
Proeftentmen LAI (tweede deel), voorjr 2006 Uitwerkingen 1. Lt zien: ls R een trnsitieve reltie op A is, dn is R 2 (dt wil zeggen R R) ook trnsitief. Lt vervolgens zien dt heel lgemeen geldt: ls R trnsitief
4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES
4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:
Inleiding Natuurwetenschappen
Inleiding Ntuurwetenschppen Tijden: september: 7:45 :45 3 september: 7:45 :45 6 september: 09:30 3:30 Loctie: Adres: Leuvenln, Utrecht Gebouw: Mrius Ruppertgebouw Zl: A Opdrchtgever: Jmes Boswell Instituut
1. Lineaire functies.
Uitwerkingen hodstuk. Lineire funties. Bij dit hodstuk komen de sisvrdigheden hkjes wegwerken, rekenen met reuken en oplossen vn lineire vergelijkingen uitgereid n de orde. Het kn nodig zijn hier prt voor
Eindexamen vwo wiskunde B II
Formules Vlkke meetkunde Verwijzingen nr definities en stellingen die bij een bewijs mogen worden gebruikt zonder ndere toelichting. Hoeken, lijnen en fstnden: gestrekte hoek, rechte hoek, overstnde hoeken,
Die Verskil van Vierkante
Die Verskil vn Vierknte Kom ons definieër gou n vierknt : n Vierknt is n uitdrukking wrvn die eksponent n ewe getl is. n Uitdrukking soos x y 3 is egter nie n vierknt nie, l is die eksponent vn die x n
opdrachtenboek groep 6
opdrchtenboek groep 6 53933 blok opdrchtenboek groep 6 blok Mlmberg, s-hertogenbosch Alle rechten voorbehouden. Niets uit deze uitgve mg worden verveelvoudigd, opgeslgen in een geutomtiseerd gegevensbestnd,
