Feedback examen Statistiek II Juni 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Feedback examen Statistiek II Juni 2011"

Transcriptie

1 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven met grootte n uit die populatie. De schatter S2 X van σ 2 X is... A niet zuiver maar wel efficiënt B zuiver maar niet efficiënt C zuiver en efficiënt D Geen van de andere alternatieven Zie cursus p [67.2, 76.4] is het betrouwbaarheidsinterval (met α = 95%) voor de verwachting µ X van de variabele X (rusthartslag, in slagen per minuut) in de populatie van mannelijke dertigers in Vlaanderen, gebaseerd op een steekproef van 115 proefpersonen. Welke bewering wordt geïmpliceerd door dit? A Geen van de andere alternatieven B De kans dat µ X in het interval [67.2, 76.4] ligt is 95%. C De kans dat de rusthartslag van een vlaamse mannelijke dertiger in het interval [67.2, 76.4] ligt is 95%. D De kans dat µ X (bij een steekproef met grootte 115) in het interval [67.2, 76.4] ligt is 95%. B. µ X is een getal en [67.2, 76.4] is een vast interval. Dus µ x ligt in dat interval of niet, maar dat is niet stochastisch. Dat is niet toevallig. We kunnen hier niet van kansen spreken. B is dus fout. C. Je kan C herschrijven als P (67.2 X 76.4) = Maar dit heeft niets te maken met de betrouwbaarheid van het betrouwbaarheidsinterval. De betrouwbaarheid van het betrouwbaarheidsinterval is P (67.2 X 76.4). Dus C fout. D is fout voor dezelfde reden als B. 1

2 3 Bij een statistische toets is α de kans dat... A Geen van de andere alternatieven B de alternatieve hypothese fout is C de nulhypothese juist is D de nulhypothese fout is α is de kans dat de nulhypothese verworpen wordt indien die juist is. Tijdens het examen hebben veel studenten gevraagd of ze C moesten aanstippen omdat C gedeeltelijk correct is. Let op, C is absoluut niet correct : de kans dat de nulhypothese juist is bestaat niet. De nulhypothese is juist of fout. Het is niet stochastisch; het is niet toevallig, alhoewel we het niet weten. We kunnen dus hier niet van kansen spreken. 4 Bij een statistische toets wil je de alternatieve hypothese µ X > 10 toetsen. Je trekt een steekproef met grootte n = 70 en je vindt x = 11. De overschrijdingskans is de kans dat... A Geen van de andere alternatieven B x > 11 C x > 10 D µ X > 11 De overschrijdingskans is de kans dat X 11 of X > 11 (met continue variabelen). 5 Om β 1 zo precies mogelijk te schatten bij een enkelvoudige lineaire regressie kunnen we... A zorgen dat de variantie van X groot is in de steekproef B zorgen dat de variantie van X klein is in de steekproef C een kleine steekproef trekken D zorgen dat σ 2 ε zo groot mogelijk is De precisie van een schatter wordt gemeten aan de hand van zijn variantie. De schatter van β 1 is B 1. We willen dus de variantie van B 1 minimaliseren. Op p. 98 vind je V (B 1 ) = σ2 ɛ ns 2. x A. De variantie van X in de steekproef is s 2 x. Hoe groter s 2 x, hoe groter de noemer van V (B 1 ) en hoe kleiner V (B 1 ). A is dus correct. C. Hoe kleiner de steekproef, hoe kleiner de noemer van V (B 1 ) en hoe groter V (B 1 ). C is dus fout. D. Hoe groter σ 2 ε, hoe groter de teller van V (B 1 ) en hoe groter V (B 1 ). D is dus fout. 2

3 6 Het effectenmodel bij een enkelvoudige variantie-analyse is A Y ik = µ + α i + ε ik, i = 1,..., I, k = 1,..., n i B geen van de andere alternatieven C Y ik = µ i + α ik + ε ik, i = 1,..., I, k = 1,..., n i D Y ik = µ i + α i + ε ik, i = 1,..., I, k = 1,..., n i Zie cursus p De sigma-restrictie bij het effectenmodel bij een enkelvoudige variantie-analyse legt op dat Ii=1 α i = 0. Dit impliceert dat... A α i = µ i µ, i = 1,..., I B α i = µ i, i = 1,..., I C geen van de andere alternatieven D µ i = µ, i = 1,..., I Antwoord op p.115 van de cursus. Hieronder meer uitleg. De definitie van µ i is µ i = µ+α i (cursus p.113). Dus α i = µ i µ ; (1) de sigma-restrictie impliceert dus Bijgevolg, of nog Maw I µ i Iµ = 0, i=1 I I α i = (µ i µ) = 0. i=1 i=1 I I µ i µ = 0 i=1 i=1 I µ i (µ + µ µ) = 0. i=1 I Ii=1 µ i µ i = Iµ en µ =. I i=1 Merk op dat µ dus gelijk is aan µ (zie definitie van µ op p.113). We kunnen dus vergelijking (1) herschrijven als α i = µ i µ. Dit is alternatief A. 3

4 8 Bij een enkelvoudige variantie-analyse is ŷ ik A de schatting van E(Y ik ) B de schatting van y ik C de schatting van Y ik D geen van de andere alternatieven A. Juist (zie cursus p.116). B. y ik is één van de geobserveerde waarden in je steekproef. Je kent dus y ik perfekt en je hoeft die niet te schatten. C. Y ik is een toevalsvariabele en je kan nooit een toevalsvariabele schatten omdat die altijd variëert. We schatten alleen parameters : vaste (maar onbekende) getallen. 9 Bij een enkelvoudige variantie-analyse met 4 groepen correspondeert de hypothese µ 1 groter dan µ 3 en µ 4 (gemiddeld gezien) met het contrast... A geen van de andere alternatieven B C 1 0 1/3 1/3 D 1 0 1/2 1/2 Het correcte contrast is : 1 0 1/2 1/2 B, C en D. De som van de gewichten moet nul zijn. 4

5 10 We willen nagaan of de verdeling in vijf categorieën dezelfde is in populatie A en B (homogeniteitstoets). We trekken een steekproef van 40 individuen uit populatie A en een steekproef van 47 individuen uit populatie B. We berekenen deze statistiek Welke bewering is correct? k p i=1 j=1 (f ij n iˆπ j ) 2 n iˆπ j. A Hoe kleiner de statistiek, hoe sterker de argumenten in het voordeel van de homogeniteit B Hoe groter de statistiek, hoe sterker de argumenten in het voordeel van de homogeniteit C Hoe dichter bij 1 de statistiek, hoe sterker de argumenten in het voordeel van de homogeniteit D Geen van de andere alternatieven Als de populaties homogeen zijn, dan zijn de geobserveerde frequenties f ij meestal (in veel cellen) ongeveer gelijk aan de theoretische frequenties n iˆπ j. Bijgevolg zijn de verschillen (f ij n iˆπ j ) meestal klein. De statistiek is dus klein. En hoe kleiner (dichter bij nul), hoe sterker de argumenten in het voordeel van de homogeniteit. 11 Een kwart van de populatie in Vlaanderen heeft kenmerk A. Je wil de hypothese toetsen dat de frequentie van kenmerk A bij Vlaamse vrouwen groter dan 25% is. Je trekt een steekproef van 3 vlaamse vrouwen en je vindt één vrouw met stoornis A. Wat is de overschrijdingskans? A 37/64 B 27/64 C 16/64 D Geen van de andere alternatieven De overschrijdingskans is P (B(n, π) 1) = P (B(3, 0.25) = 1) + P (B(3, 0.25) = 2) + P (B(3, 0.25) = 3) = 1 P (B(3, 0.25) = 0) = 1 (3/4) 3 = 1 27/64 = 37/64. 5

6 12 Je vermoedt dat de voeding van studenten op kot slecht is. Ze zouden meer junk food eten dan andere jongeren op dezelfde leeftijd en zouden dus dikker zijn. De verwachting van het gewicht van jonge mannen op dezelfde leeftijd is gekend: µ m = 74. De standaard fout is σ m = 5. De nulhypothese is dus H 0 : µ km = 74 en de alternatieve hypothese H a : µ km > 74. Je kiest α = Je weegt een steekproef van 100 mannelijke studenten die op kot zitten en je gebruikt de adequate statistische toets om de hypothese te toetsen. Wat is het onderscheidingsvermogen van de toets indien µ km = 76? A 99% B 85% C 64% D Geen van de andere alternatieven Eerst bepaal je de kritieke waarde van de eenzijdige z-toets met α = Het is Je verwerpt de nulhypothese indien de statistiek groter dan 1.65 is. Dus indien Derhalve verwerp je de nulhypothese indien x µ m σ/ n > x > 1.65 σ/ n + µ m. De kans dat je de nulhypothese verwerpt is dus P (X > 1.65 σ/ n + µ m ). Indien µ km = 76, dan weet je dat X = N(76, σ) en X = N(76, σ/ n). De kans dat je de nulhypothese verwerpt, indien µ km = 76 is dan P (N(76, σ/ n) > 1.65 σ/ n + µ m ) = P (N(0, 1) > 1.65 σ/ n + µ m 76 σ/ ) n = P (N(0, 1) > µ m 76 σ/ n ) = P (N(0, 1) > /10 ) = P (N(0, 1) > ) = P (N(0, 1) > 2.35) = P (N(0, 1) < 2.35) =

7 13 De variabelen X (leeftijd) en Y (reactietijd) worden in een experiment geobserveerd bij een steekproef van 10 mannen. X Y Je vermoedt een lineair verband tussen die twee variabelen en je wil het volgende lineair model toetsen : Y i = β 0 + β 1 x i + ε i, i = 1,..., 8. Na enkele berekeningen vind je x = 45, ȳ = 700, s 2 X = 250, s2 Y = 18000, r XY = 0.53, b 0 = and b 1 = 4.5. Wat is de predictie ŷ 3 onder het nulmodel? A 700 B 610 C 750 D Geen van de andere alternatieven Onder het nulmodel is er geen verband tussen X en Y. De beste predictie voor Y is dus onafhankelijk van X; en ŷ 3 = ŷ 1 = ŷ 10 =... De beste predictie voor een y-waarde is gewoon de verwachting van Y waarvan de schatting ȳ is. 14 Onduidelijke vraag. Goedgekeurd (dus +3) voor iedereen. 7

8 15 Je hebt in Flari gelezen dat er meer geboortes zijn tijdens de volle maan dan tijdens de andere fases van de maan (nieuwe maan, eerste kwartier en laatste kwartier). Anderen zeggen dat er meer geboortes zijn tijdens de nieuwe maan. Je wil dit nagaan en je raadpleegt de archieven van een ziekenhuis. In het laatste jaar zijn daar 240 babys geboren. Je beschouwt die 240 geboortes als een aselecte steekproef. Onderstaande tabel geeft het aantal geboortes in de vier fases (elk één week lang). nieuwe maan eerste kwartier volle maan laatste kwartier Je theoretische hypothese is dat het aantal geboortes hoger is in sommige fases dan in anderen. De waarde van de toetsingsgrootheid in die steekproef is A 2.1 B 1.6 C 4.3 D Geen van de andere alternatieven De hypothese gaat over proporties. Zijn de vier proporties identiek? Dus χ 2 -toets. De theoretische proporties in de vier categoriën zijn 0.25 en de theoretische frequenties zijn allemaal 60. De statistiek of toetsingsgrootheid is gelijk aan (63 60) (52 60) (67 60) (58 60) = = 126/60 =

9 16 Gegeven de onderstaande ANOVA-tabel van een enkelvoudige variantie-analyse met één factor A: Analysis of Variance Table Response: a Df Sum Sq Mean Sq F value Pr(>F) A e-16 Residuals Welke bewering is volledig correct op basis van bovenstaande output? A de between-groups variance (tussensubject variantie) is hier gelijk aan B De verwachte gemiddelden verschillen niet tussen de niveaus van A C De analyse is uitgevoerd op n = 29 observaties D Er werden Sigma-restricties toegepast B. De verwachte gemiddelden verschillen wel tussen de niveaus van A omdat de overschrijdingskans is. Dit is duidelijk kleiner dan gebruikelijke waarden van α. C. De analyse is uitgevoerd op n = = 30 observaties. D. Je kan de restricties uit deze tabel niet afleiden. 9

10 17 Men doet een onderzoek naar het verband tussen het aantal zonnepanelen op het dak van een gezin en de prijs van de gezinswagen. Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) wagen Residual standard error: on 10 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 1 and 10 DF, p-value: Analysis of Variance Table Response: zon Df Sum Sq Mean Sq F value Pr(>F) wagen Residuals Welk uitspraak is correct op basis van de bovenstaande output? A De foutkwadratensom bedraagt B Op basis van deze gegevens kan men besluiten dat de regressierechte door de oorsprong gaat C Er namen 10 gezinnen aan het onderzoek deel D De determinatiecoëfficiënt is B. De schatting van β 0 is Dit impliceert toch niet dat β 0 0. Inderdaad, is maar een schatting van β 0. Om te besluiten dat β 0 0, kijken we naar de overschrijdingskans die correspondeert met de toets van de hypothese β 0 = 0. Die overschrijdingskans is Die is veel kleiner dan gebruikelijke waarden van α. We besluiten dus dat het intercept niet nul is. C. n = = 12. D. De determinatiecoëfficiënt is (de gecorrigeerde determinatiecoëfficiënt is ). 10

11 18 Onderstaande output bevat de resultaten van een lineaire regressie met 1 categorische predictor ( ECON ) die werd gehercodeerd met behulp van dummycodering waarbij het laatste niveau als referentie werd gekozen. Welke conclusie kan NIET getrokken worden? A Er is een significant verschil tussen de gemiddelden van het tweede en derde niveau B Het gemiddelde van het laatste niveau heeft de waarde 1.8 C Het regressiegewicht horend bij het eerste niveau bedraagt 1.2 D In het algemeen is er geen statistisch significant verschil tussen de groepen van ECON A. We beschikken over geen informatie betreffende het contrast tussen niveaus 2 en 3. Maar we weten wel dat er geen verschil is tussen de niveaus (overschrijdingskans =.298). Er is dus ook geen verschil tussen het tweede en derde niveau. B. Omdat dummycodering gebruikt werd met het laatste niveau als referentie, kunnen we afleiden dat het gemiddelde van het laatste niveau gelijk aan b 0 is. Dus C. Evident. D. De overschrijdingskans is 0.298, dus groter dan de gebruikelijke waarden van α. 11

12 19 De gegevens in de onderstaande tabel gaan over de inname van proteïnen (X) en de nitrogenenbalans (Y). Variabele Gemiddelde Standaarddeviatie Correlatie Inname x = 1 s x = 0.25 r = 0.99 Nitrogenenbalans ȳ = 20 s y = 1 Indien we de nitrogenenbalans voorspellen op basis van de inname van proteïnen, wat is de voorspelde nitrogenenbalans indien de inname gelijk is aan 2? A B C 20 D De helling (regressiecoëfficiënt) is b 1 = rs y /s x =.99 1/ Het intercept is b 0 = ȳ b 1 x = 16. Uiteindelijk is de voorspelde waarde ongeveer =

13 20 In de onderstaande tabel vindt u gegevens van een studie over energiedrankjes, met één steekproef van vijf proefpersonen. Elke drank werd beoordeeld (variabele X, intervalmeetniveau, normaal verdeeld) op een schaal van 0 tot 100, waarbij 100 de hoogst mogelijke rating is. Subject gemiddelde standaarddev Energiedrank A Energiedrank B Is er een significant verschil in voorkeuren? A Nee, indien getoetst met α = 10% B Er zijn niet voldoende gegevens beschikbaar om de toets uit te voeren C Ja, indien getoetst wordt met α = 10% D Ja, indien getoetst wordt met α = 5% A. Hypothese betreffende het verschil tussen twee verwachtingen met één steekproef (afhankelijke waarnemingen). Dus t-toets (p.69 in de cursus). De verschillen d i zijn 5, 1, 5, 11, 8. Het gemiddelde d is 4 en s d = 1 5 ( 5 4)2 + (1 4) 2 + (5 4) 2 + (11 4) 2 + (8 4) 2 = 156/ Toetsingsgrootheid : Waarde in de steekproef : D s d / n / De kritieke waarden (zie verdelingsfunctie van de Student variabele met 4 vrijheidsgraden en α = 0.10) zijn en Beslissing : de geobserveerde waarde 1.5 (ongeveer) ligt duidelijk binnen het acceptatieinterval [ 2.132, 2.132]. B. Er zijn slechts 5 respondenten maar de variabele X is normaal verdeeld. De kleine steekproefgrootte is dus geen probleem. 13

14 21 Studenten van de bachelor in chemie en van de bachelor in de lichamelijke opvoeding en de bewegingswetenschappen krijgen beide een cursus psychologie tijdens hun opleiding. Hoewel de gemiddelde slaagcijfers van beide groepen nagenoeg gelijk zijn, zijn er toch veel meer studenten uit de bachelor in de lichamelijke opvoeding en de bewegingswetenschappen die niet slagen voor dit opleidingsonderdeel in vergelijking met de studenten uit de bachelor in de chemie. Men vermoedt dat dit komt omdat studenten uit de bachelor in de lichamelijke opvoeding en de bewegingswetenschappen veel meer uiteenlopende resultaten behalen voor psychologie dan studenten uit de bachelor chemie. Men wil deze hypothese testen aan de hand van een steekproef bestaande uit 50 studenten uit de bachelor in chemie en 50 studenten uit de bachelor in de lichamelijke opvoeding en de bewegingswetenschappen. Welke verdeling zou je gebruiken om een correct besluit te trekken omtrent de onderzoeksvraag? A F 49,49 B T 48 C T 49 D T 98 De alternatieve hypothese is σlo 2 > σ2 ch. Deze hypothese wordt getoetst aan de hand van de F-toets, die gebaseerd is op een F-verdeelde toetsingsgrootheid (cursus, p.71). A is dus juist. 14

College 2 Enkelvoudige Lineaire Regressie

College 2 Enkelvoudige Lineaire Regressie College Enkelvoudige Lineaire Regressie - Leary: Hoofdstuk 7 tot p. 170 (Advanced Correlational Strategies) - MM&C: Hoofdstuk 10 (Inference for Regression) - Aanvullende tekst 3 Jolien Pas ECO 011-01 Correlatie:

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

toetskeuze schema verschillen in gemiddelden

toetskeuze schema verschillen in gemiddelden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets week 5: het toetsen van

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) op dinsdag 3-03-00, 9- uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Beschrijvende statistiek Beschrijvende en toetsende statistiek Beschrijvend Samenvatting van gegevens in de steekproef van onderzochte personen (gemiddelde, de standaarddeviatie, tabel, grafiek) Toetsend

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren:

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 4 1. Toets met behulp van SPSS de hypothese van Evelien in verband met de baardlengte van metalfans. Ga na of je dezelfde conclusies

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Classification - Prediction

Classification - Prediction Classification - Prediction Tot hiertoe: vooral classification Naive Bayes k-nearest Neighbours... Op basis van predictor variabelen X 1, X 2,..., X p klasse Y (= discreet) proberen te bepalen. Training

Nadere informatie

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse 10.1 Eenwegs-variantieanalyse: Als we gegevens hebben verzameld van verschillende groepen en we willen nagaan of de populatiegemiddelden van elkaar verscihllen,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

b) Het spreidingsdiagram ziet er als volgt uit (de getrokken lijn is de later uit te rekenen lineaire regressie-lijn): hoogte

b) Het spreidingsdiagram ziet er als volgt uit (de getrokken lijn is de later uit te rekenen lineaire regressie-lijn): hoogte Classroom Exercises GEO2-4208 Opgave 7.1 a) Regressie-analyse dicteert hier geen stricte regels voor. Wanneer we echter naar causaliteit kijken (wat wordt door wat bepaald), dan is het duidelijk dat hoogte

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Tentamen Biostatistiek 3 / Biomedische wiskunde

Tentamen Biostatistiek 3 / Biomedische wiskunde Tentamen Biostatistiek 3 / Biomedische wiskunde 25 maart 2014; 12:00-14:00 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau. Het

Nadere informatie

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE DEEL 3 INDUCTIEVE STATISTIEK INHOUD H 10: INLEIDING TOT DE INDUCTIEVE STATISTIEK H 11: PUNTSCHATTING 11.1 ALGEMEEN 11.1.1 Definities 11.1.2 Eigenschappen 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE 11.3

Nadere informatie

Sheets K&S voor INF HC 10: Hoofdstuk 12

Sheets K&S voor INF HC 10: Hoofdstuk 12 Sheets K&S voor INF HC 1: Hoofdstuk 12 Statistiek Deel 1: Schatten (hfdst. 1) Deel 2: Betrouwbaarheidsintervallen (11) Deel 3: Toetsen van hypothesen (12) Betrouwbaarheidsintervallen (H11) en toetsen (H12)

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing M, M & C, Chapter 6, Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Use and Abuse

Nadere informatie

Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen.

Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen. Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen. 1. (a) In de appendix van deze vraag, is een dataset gegeven met de corresponderende

Nadere informatie

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008 Examen Statistische Modellen en Data-analyse Derde Bachelor Wiskunde 14 januari 2008 Vraag 1 1. Stel dat ɛ N 3 (0, σ 2 I 3 ) en dat Y 0 N(0, σ 2 0) onafhankelijk is van ɛ = (ɛ 1, ɛ 2, ɛ 3 ). Definieer

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Toegepaste Statistiek, Week 6 1

Toegepaste Statistiek, Week 6 1 Toegepaste Statistiek, Week 6 1 Eén ordinale en één nominale variabele Nominale variabele met TWEE categorieën, 1 en 2 Ordinale variabele normaal verdeeld binnen iedere categorie? Variantie in beide categorieën

Nadere informatie

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 12 : Regressie en correlatie Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Regressie en correlatie p 1/26 Regressielijn Vraag : vind het

Nadere informatie

Toetsen van Hypothesen. Het vaststellen van de hypothese

Toetsen van Hypothesen. Het vaststellen van de hypothese Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

College 3 Meervoudige Lineaire Regressie

College 3 Meervoudige Lineaire Regressie College 3 Meervoudige Lineaire Regressie - Leary: Hoofdstuk 8 p. 165-169 - MM&C: Hoofdstuk 11 - Aanvullende tekst 3 (alinea 2) Jolien Pas ECO 2012-2013 'Computerprogramma voorspelt Top 40-hits Bron: http://www.nu.nl/internet/2696133/computerprogramma-voorspelt-top-40-hits.html

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen)

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) 8.16. Men wenst H 0 : p 0.2 te testen tegenover H 1 : p 0.4 voor een binomiale distributie met n 10. Bepaal α en β als de testfunctie gegeven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op vrijdag 29-04-2004, 9-2 uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt A. Effect & het onderscheidingsvermogen Effectgrootte (ES) De effectgrootte (effect size) vertelt ons iets over hoe relevant de relatie tussen twee variabelen is in de praktijk. Er zijn twee soorten effectgrootten:

Nadere informatie

Methoden van Onderzoek en Statistiek, Deeltentamen 2, 29 maart 2012 Versie 2

Methoden van Onderzoek en Statistiek, Deeltentamen 2, 29 maart 2012 Versie 2 Vraag 1. Voor welk van de onderstaande variabelen zal een placebo effect waarschijnlijk het grootst zijn? 1. Haarlengte. 2. Lichaamstemperatuur. 3. Mate van tevredenheid met de behandeling. 4. Hemoglobinegehalte

Nadere informatie

Eindtoets Toegepaste Biostatistiek

Eindtoets Toegepaste Biostatistiek Eindtoets Toegepaste Biostatistiek 2013-2014 29 januari 2014 Dit tentamen bestaat uit vier opgaven, onderverdeeld in 24 subvragen. Begin bij het maken van een nieuwe opgave steeds op een nieuw antwoordvel.

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Faculteit der Wiskunde en Informatica 2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Opgave 1: (5 x 6 = 30 punten) (Bij deze opgave is gebruik van resultaten uit bijlage 1 noodzakelijk)

Nadere informatie

Inhoudsopgave. Deel I Schatters en toetsen 1

Inhoudsopgave. Deel I Schatters en toetsen 1 Inhoudsopgave Deel I Schatters en toetsen 1 1 Hetschattenvanpopulatieparameters.................. 3 1.1 Inleiding:schatterversusschatting................. 3 1.2 Hetschattenvaneengemiddelde..................

Nadere informatie

Oplossingen hoofdstuk XI

Oplossingen hoofdstuk XI Oplossingen hoofdstuk XI. Hierbij vind je de resultaten van het onderzoek naar de relatie tussen een leestest en een schoolrapport voor lezen. Deze gegevens hebben betrekking op een regressieanalyse bij

Nadere informatie

Inhoud. Woord vooraf 13. Hoofdstuk 1. Inductieve statistiek in onderzoek 17. Hoofdstuk 2. Kansverdelingen en kansberekening 28

Inhoud. Woord vooraf 13. Hoofdstuk 1. Inductieve statistiek in onderzoek 17. Hoofdstuk 2. Kansverdelingen en kansberekening 28 Inhoud Woord vooraf 13 Hoofdstuk 1. Inductieve statistiek in onderzoek 17 1.1 Wat is de bedoeling van statistiek? 18 1.2 De empirische cyclus 19 1.3 Het probleem van de inductieve statistiek 20 1.4 Statistische

Nadere informatie

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling Kwantitatieve Data Analyse (KDA) Onderzoekspracticum Sessie 2 11 Aanpassingen takenboek! Check studienet om eventuele verbeteringen te downloaden! Huidige versie takenboek: 09 Gjalt-Jorn Peters gjp@ou.nl

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 5 februari 2010

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 5 februari 2010 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 5 februari - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 9 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) Avondopleiding. donderdag 6-6-3, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN Interim Toegepaste Biostatistiek deel december 2009 Versie A ANTWOORDEN C 2 B C A 5 C 6 B 7 B 8 B 9 D 0 D C 2 A B A 5 C Lever zowel het antwoordformulier als de interim toets in Versie A 2. Dit tentamen

Nadere informatie

Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009

Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009 Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009 Opdracht 1 Onderstaande tabel bevat metingen aan de opbrengst van rozen bij verschillende mate van stikstofen fosfortoevoer. rozen/snijvak/dag fosfaatniveau

Nadere informatie

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur Tentamen Kansrekening en statistiek wi205in 25 juni 2007, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Introductie tot de statistiek

Introductie tot de statistiek Introductie tot de statistiek Hogeschool Gent 04/05/2010 Inhoudsopgave 1 Basisbegrippen en beschrijvende statistiek 8 1.1 Onderzoek............................ 8 1.1.1 Data........................... 8

Nadere informatie

Wiskunde B - Tentamen 1

Wiskunde B - Tentamen 1 Wiskunde B - Tentamen Tentamen 57 Wiskunde B voor CiT vrijdag januari 5 van 9. tot. uur Dit tentamen bestaat uit 6 opgaven, formulebladen en tabellen. Vermeld ook uw studentnummer op uw werk en tentamenbriefje.

Nadere informatie

DEZE PAGINA NIET vóór 8.30u OMSLAAN!

DEZE PAGINA NIET vóór 8.30u OMSLAAN! STTISTIEK 1 VERSIE MT15303 1308 1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 1 (MT-15303) 5 augustus 2013, 8.30-10.30 uur EZE PGIN NIET vóór 8.30u OMSLN! STRT MET INVULLEN VN NM, REGISTRTIENUMMER,

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

Inleiding Statistiek

Inleiding Statistiek Inleiding Statistiek Practicum 1 Op dit practicum herhalen we wat Matlab. Vervolgens illustreren we het schatten van een parameter en het toetsen van een hypothese met een klein simulatie experiment. Het

Nadere informatie

Statistiek voor A.I. College 14. Dinsdag 30 Oktober

Statistiek voor A.I. College 14. Dinsdag 30 Oktober Statistiek voor A.I. College 14 Dinsdag 30 Oktober 1 / 16 2 Deductieve statistiek Orthodoxe statistiek 2 / 16 Grootte steekproef Voorbeeld NU.nl 26 Oktober 2012: Helft broodjes döner kebab vol bacteriën.

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Opgave 1: (zowel 2DM40 als 2S390)

Opgave 1: (zowel 2DM40 als 2S390) TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4 en S39) op donderdag, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Toegepaste data-analyse: oefensessie 2

Toegepaste data-analyse: oefensessie 2 Toegepaste data-analyse: oefensessie 2 Depressie 1. Beschrijf de clustering van de dataset en geef aan op welk niveau de verschillende variabelen behoren Je moet weten hoe de data geclusterd zijn om uit

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

Dit jaar gaan we MULTIVARIAAT TOETSEN. Bijvoorbeeld: We willen zien of de scores op taal en rekenen van kinderen afwijken in de populatie.

Dit jaar gaan we MULTIVARIAAT TOETSEN. Bijvoorbeeld: We willen zien of de scores op taal en rekenen van kinderen afwijken in de populatie. Toetsen van hypothesen Bijvoorbeeld: nagaan of het gemiddeld IQ bij een bepaalde steekproef groter/kleiner is als in de populatie. µ = 100 Normaalverdeling, waarbij we de score van de steekproef gaan vergelijken

Nadere informatie

werkcollege 7 - D&P10: Hypothesis testing using a single sample

werkcollege 7 - D&P10: Hypothesis testing using a single sample cursus 11 mei 2012 werkcollege 7 - D&P10: Hypothesis testing using a single sample huiswerk opgaven Ch.9: 1, 8, 11, 12, 20, 26, 36, 37, 71 Activities 9.3 en 9.4 experimenten zelf deelnemen als proefpersoon

Nadere informatie

College 6 Eenweg Variantie-Analyse

College 6 Eenweg Variantie-Analyse College 6 Eenweg Variantie-Analyse - Leary: Hoofdstuk 11, 1 (t/m p. 55) - MM&C: Hoofdstuk 1 (t/m p. 617), p. 63 t/m p. 66 - Aanvullende tekst 6, 7 en 8 Jolien Pas ECO 01-013 Het Experiment: een voorbeeld

Nadere informatie

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages.

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages. MARGES EN SIGNIFICANTIE BIJ STEEKPROEFRESULTATEN. De marges van percentages Metingen via een steekproef leveren een schatting van de werkelijkheid. Het toevalskarakter van de steekproef heeft als consequentie,

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

CVO PANTA RHEI - Schoonmeersstraat 26 9000 GENT 09 335 22 22. Soorten stochastische variabelen (discrete versus continue)

CVO PANTA RHEI - Schoonmeersstraat 26 9000 GENT 09 335 22 22. Soorten stochastische variabelen (discrete versus continue) identificatie opleiding Marketing modulenaam Statistiek code module A12 goedkeuring door aantal lestijden 80 studiepunten datum goedkeuring structuurschema / volgtijdelijkheid link: inhoud link leerplan:

Nadere informatie

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur Kansrekening en statistiek wi2105in deel 2 27 januari 2010, 14.00 16.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na

Nadere informatie

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN 4.1 PARAMETERTOESTEN 1 A. Toetsen van het gemiddelde Beschouw een steekproef X 1, X,, X n van n onafhankelijke N(µ, σ) verdeelde kansveranderlijken Men

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet?

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet? Verklarende Statistiek: Toetsen Zat ik nou in dat kritische gebied of niet? Toetsen, Overzicht Nulhypothese - Alternatieve hypothese (voorbeeld: toets voor p = p o in binomiale steekproef) Betrouwbaarheid

Nadere informatie

Sheets hoorcollege 1 (over paragraaf 7.1) Uitgewerkte opgaven week 6 Antwoorden uitgewerkte opgaven week 6

Sheets hoorcollege 1 (over paragraaf 7.1) Uitgewerkte opgaven week 6 Antwoorden uitgewerkte opgaven week 6 MATERIALEN BIJ STATISTIEK (1991) JANUARI 010 Sheets hoorcollege 1 (over paragraaf 7.1) Uitgewerkte opgaven week 1 Antwoorden uitgewerkte opgaven week 1 11 15 Power-point sheets hoorcollege (over paragraaf

Nadere informatie

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen M, M & C 7.3 Optional Topics in Comparing Distributions: F-toets 6.4 Power & Inference as a Decision 7.1 The power of the t-test 7.3 The power of the sample t- Toetsende Statistiek Week 5. De F-toets &

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter

Nadere informatie

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)?

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)? Vraag 1. Welk design bevat geen random assignment: a) Een design gebaseerd op matching b) Een design gebaseerd op blocking c) Een factorial design d) Elk van de hierboven genoemde designs Vraag 2. In een

Nadere informatie

Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 13-14

Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 13-14 Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 1314 Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 1314 Figuren en formules

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18 Stochastiek 2 Inleiding in de Mathematische Statistiek 1 / 18 t-toetsen 2 / 18 Steekproefgemiddelde en -variantie van normale observaties Stelling. Laat X 1,..., X n o.o. zijn en N(µ, σ 2 )-verdeeld. Dan:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op maandag ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op maandag , TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op maandag 08-03-2004, 9.00-2.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine,

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets Vandaag Onderzoeksmethoden: Statistiek 4 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap: Hypothese toetsen t-toets

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek cursus 23 mei 2012 werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen onderzoek streeft naar inzicht in relatie tussen variabelen bv. tussen onafhankelijke

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op maandag 5 januari 29 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie