HOOFDSTUK VII REGRESSIE ANALYSE

Maat: px
Weergave met pagina beginnen:

Download "HOOFDSTUK VII REGRESSIE ANALYSE"

Transcriptie

1 HOOFDSTUK VII REGRESSIE ANALYSE 1

2 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens werden verzameld bestaande uit observaties van 2 kwantitatieve variabelen (x en y) op n objekten Deze gegevens kunnen voorgesteld worden in een scatter diagram Indien de punten zich in de nabijheid van een rechte bevinden noemt men de relatie tussen x en y een: LINEAIRE RELATIE 2

3 1.1 De regressierechte van y gegeven x Indien men veronderstelt dat y afhangt van x bepaalt men de regressierechte van y gegeven x Beschouw een gepaarde steekproef: (x 1, y 1 ), (x 2, y 2 ),, (x n, y n ) met elke x i is een y i geassocieerd Men beschouwt een theoretisch model in hetwelk de veranderlijke y kan beschouwd worden als een lineaire functie van x: y = a + b x x is de onafhankelijke variabele y is de afhankelijke of outcome variabele 3

4 Voor elke waarneming x i heeft men twee overeenkomende waarden van y: de waarneming y i de waarde gegeven door het lineair verband: y i L = a + bx i (de geschatte of voorspelde waarde) Deze rechte is een goed model van het verband tussen de twee veranderlijken indien de verschillen tussen de twee waarden klein zijn Men noemt a het intercept (waarde van y voor x=0) Men noemt b de richtingscoefficient (de toename van y overeenkomend met een stijging van x met één éénheid) Men noemt a en b ook de regressiecoefficienten 4

5 1.2 De kleinste kwadraten methode Om een zo goed mogelijk model te bekomen bepaalt men de parameters a en b zodanig dat de verschillen: d i = y i - y i L zo klein mogelijk zijn Men noemt d i het residu t.o.v. het model De meest gebruikte methode om dit te bereiken is de kleinste kwadraten methode waarmee de som van de kwadraten van de d i wordt geminimaliseerd: n min d i 2 1 Dit kan ook geschreven worden als: n min F(a,b) = (y -a-bx ) 2 i = 1 i i Men vindt het minimum door F(a,b) af te leiden naar a en naar b, deze afgeleiden aan nul gelijk te stellen en het zo gekregen stelsel van twee vergelijkingen en twee onbekenden (a en b) op te lossen: F(a,b) n = 2(y a bx ) = 0 a 1 i i F(a,b) n = 2x (y a bx ) = 0 b 1 i i i 5

6 b = 1 n n x y yx 1 i i 1 n n x2 x 2 1 i a = y bx Door gebruik te maken van de formule voor de correlatiecoefficient: r = 1 n x y n yx 1 i i 1 n x2 n i x 2 1 n y2 i 1 n i y 2 = 1 kan men b schrijven als b = r 1 n y2 n i y n x2 n i x 2 1 rs y = s x 6

7 De vergelijking van de rechte wordt dan: y = a + bx = y bx + bx = y + b(x x) rs y = x + (x x) s x of y- y = rs y (x x) s x Men noemt deze rechte de regressierechte voor y gegeven x of RR Y X Deze rechte laat toe voor een meting van de variabele x een schatting te bekomen van de variabele y indien deze onbekend is 7

8 1.3 Kwaliteitsmaten voor de regressierechte De kleinste kwadraten methode bepaalt de rechte waarvoor de gemiddelde kwadratische afwijking minimaal wordt. Bijgevolg is de gemiddelde kwadratische afwijking van de punten t.o.v. de regressierechte een kwaliteitsmaat voor de gevonden rechte. Men noemt deze de residuele variantie s2 1 n y.x = d2 n 1 i Men kan aantonen dat de residuele variantie gelijk is aan: s2 y(1 r 2 ) waar r de correlatiecoefficient is. Als kwaliteitsmaat wordt ook veel gebruik gemaakt van r 2, het kwadraat van de correlatiecoefficient (waarvoor ook de notatie R 2 wordt gebruikt) r 2 kan geinterpreteerd worden als het gedeelte van de variabiliteit van y dat wordt verklaard door x 8

9 1.4 De regressierechte van x gegeven y De regressierechte voor y gegeven x heeft als vergelijking: y-y = rs y (x x) s x Wanneer men de variabele y als onafhankelijk beschouwt en men wenst een schatting te bekomen van x, gebruikt men de regressierechte voor x gegeven y. Dit veronderstelt de volgende relatie tussen de 2 variabelen: x = a + b y De vergelijking van deze regressierechte is: x x= rs x (y-y) s y 9

10 1.5 Opmerkingen over de 2 regressierechten a. De twee regressierechten snijden elkaar in (x,y) Men noemt dit punt het zwaartepunt van de twee-dimensionale verdeling b. Wanneer r=0 zijn de twee regressierechten loodrecht op elkaar: RR Y X : y-y = 0 of y= y RR X Y : x-x = 0 of x= x 10

11 c. Het teken van r bepaalt de richting van de twee regressierechten: Als r > 0 zijn ze beide stijgend Als r < 0 zijn ze beide dalend Als r = 0 zijn ze loodrecht op elkaar De hoek tussen de twee rechten daalt wanneer r stijgt d. Indien r = 1 of aan -1 vallen alle punten op de rechte en is de residuele variantie gelijk aan 0, en omgekeerd Als r=1 is de rechte stijgend Als r=-1 is de rechte dalend 11

12 1.6 Hypothesetoets voor de richtingscoefficient b Veronderstel dat de residuen d i normaal verdeeld zijn met dezelfde variantie σ 2 Noem β de richtingscoefficient van de regressierechte in de populatie (b is de richtingscoefficient voor de steekproef) Men kan aantonen dat : b ~ N (β, σ2 ns x 2 ) Hieruit leidt men af dat: (b- β)s x n 2 s y 1 r 2 ~ t n-2 12

13 Om na te gaan of er een significante regressie bestaat, m.a.w. of y afhangt van x: H 0 : β = 0 H 1 : β 0 Bereken bs x n 2 s y 1 r 2 en vergelijk de gevonden waarde met de waarde uit een tabel voor de Student verdeling met n-2 vrijheidsgraden Opmerking Deze methode veronderstelt dat x geen kansveranderlijke is maar een konstante. Indien x ook een kansveranderlijke is moet men veronderstellen dat y niet afhangt van de variabele x maar van de gemeten waarde x i 13

14 1.7 Wiskundige Modellen voor Linaire Regressie Het doel is de verklaring van een waarneming. In de simpele lineaire regressie hangt de waarneming af van één veranderlijke en is het verband lineair Dit geeft aanleiding tot volgend model: y i = a + b x i + r i waar a = intercept b = slope r i = residu In de multipele lineaire regressie hangt de variabele y af van meerdere variabelen: y i = b 0 + b 1 x (1) + b 2 x (2) +...+b m x (m) + r i De coefficienten b i kunnen worden geschat op basis van de observaties en er zijn toetsen (analoog met de toets op b voor simpele lineaire regressie) om de variabele te selecteren die bijdragen tot de verklaring van variabele y. 14

15 In geval van veel mogelijke verklarende variabelen die onderling gecorreleerd zijn gebruikt men meestal een stapsgewijze (stepwize) selectiemethode. De meest gebruikte van deze methoden is de voorwaarts (forward) stepwize methode. Deze methode begint met de keuze van één enkele variabele, namelijk deze waarvoor R 2 maximaal is. Nadien worden variabelen één per één bijgevoegd aan het model. Telkens wordt de variabele gekozen waarvoor R 2 het meeste toeneemt. De methode stopt wanneer er geen variabelen zijn die toelaten R 2 te verhogen. 15

16 2. POLYNOMIALE REGRESSIE Op basis van een grafische voorstelling kan men nagaan of een rechte aangewezen is als beschrijving van de relatie tussen x en y. In sommige gevallen is een polynomiale relatie (kwadratisch, cubisch) beter aangepast. Een polynomiaal model wordt bekomen op basis van multiepele lineaire regressie door het bijvoegen van een aantal hoge orde termen. Bij voorbeeld beschrijft het volgend model een cubieke relatie tussen x en y: y i = b + b x + b x 2 + b x3 + r i De analyse van dergelijk model gebeurt op dezelfde wijze als voor multiepele lineare regressie. Het is alsof de machten van x overeenkomen met verschillende variabelen in het model. 16

17 3. LOGISTISCHE REGRESSIE Logistische regressie wordt gebruikt om de kans op een gebeurtenis te voorspellen. In dit geval heeft men een binaire afhankelijke variabele. Voorbeelden: Al dan niet bereiken van een eindpunt in een studie Aan of afwezigheid van een symptoom Het doel van logistische regressie is de selectie van de verklarende (onafhankelijke) variabelen die de kans op de gebeurtenis (de afhankelijke variabele) beïnvloeden. Op dezelfde wijze als bij lineaire regressie wordt een vergelijking gebruikt om de afhankelijke variabele te voorspellen op basis van de waarden van de geselecteerde verklarende variabelen. 17

18 In logistische regressie wordt gebruik gemaakt van de volgende vergelijking (die een logistische kromme voorstelt): y i = 1+ 1 exp(-z ) i + r i waarin: z i = b 0 + b 1 x (1) + b 2 x (2) +...+b m x (m) + r i In deze vergelijking stelt y i de kans voor dat de gebeurtenis zich zou voordoen en de x (i) zijn de verklarende variabelen. Odds van een gebeurtenis De odds van een gebeurtenis is de kans van de gebeurtenis gedeeld door de kans dat deze zich niet zou voordoen: P(A) 1- P(A) De odds ratio (OR) is de verhouding van de odds van een gebeurtenis in twee populaties (b.v. patiënten met en zonder een bepaald risicofactor). Het exponentieel van b i (e bi ) is een schatting van de odds ratio. Het kan worden geïnterpreteerd als de toename in de odds (van een eindpunt of gebeurtenis) indien x i toeneemt met één eenheid. 18

19 Voorbeeld Toename in de odds van een gebeurtenis indien de leeftijd toeneemt met één jaar Interpretatie Een odds ratio groter dan 1 duidt op een toename van het risico Een odds ratio kleiner dan 1 duidt op een afname van het risico Rond de odds ratio kan een 95% betrouwbaarheidsinterval (BI) worden geconstrueerd: Indien het 95% BI de waarde 1 niet bevat duidt dit op een significant effect van de variabele Voorbeeld OR (leeftijd) = % CI: [ ] 19

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 12 : Regressie en correlatie Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Regressie en correlatie p 1/26 Regressielijn Vraag : vind het

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

b) Het spreidingsdiagram ziet er als volgt uit (de getrokken lijn is de later uit te rekenen lineaire regressie-lijn): hoogte

b) Het spreidingsdiagram ziet er als volgt uit (de getrokken lijn is de later uit te rekenen lineaire regressie-lijn): hoogte Classroom Exercises GEO2-4208 Opgave 7.1 a) Regressie-analyse dicteert hier geen stricte regels voor. Wanneer we echter naar causaliteit kijken (wat wordt door wat bepaald), dan is het duidelijk dat hoogte

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008 Examen Statistische Modellen en Data-analyse Derde Bachelor Wiskunde 14 januari 2008 Vraag 1 1. Stel dat ɛ N 3 (0, σ 2 I 3 ) en dat Y 0 N(0, σ 2 0) onafhankelijk is van ɛ = (ɛ 1, ɛ 2, ɛ 3 ). Definieer

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

College 2 Enkelvoudige Lineaire Regressie

College 2 Enkelvoudige Lineaire Regressie College Enkelvoudige Lineaire Regressie - Leary: Hoofdstuk 7 tot p. 170 (Advanced Correlational Strategies) - MM&C: Hoofdstuk 10 (Inference for Regression) - Aanvullende tekst 3 Jolien Pas ECO 011-01 Correlatie:

Nadere informatie

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN 4.1 PARAMETERTOESTEN 1 A. Toetsen van het gemiddelde Beschouw een steekproef X 1, X,, X n van n onafhankelijke N(µ, σ) verdeelde kansveranderlijken Men

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek cursus 23 mei 2012 werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen onderzoek streeft naar inzicht in relatie tussen variabelen bv. tussen onafhankelijke

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

Toegepaste data-analyse: oefensessie 2

Toegepaste data-analyse: oefensessie 2 Toegepaste data-analyse: oefensessie 2 Depressie 1. Beschrijf de clustering van de dataset en geef aan op welk niveau de verschillende variabelen behoren Je moet weten hoe de data geclusterd zijn om uit

Nadere informatie

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit College 7 Regressie-analyse en Variantie verklaren Inleiding M&T 2012 2013 Hemmo Smit Neem mee naar tentamen Geslepen potlood + gum Collegekaart (alternatief: rijbewijs, ID-kaart, paspoort) (Grafische)

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Classification - Prediction

Classification - Prediction Classification - Prediction Tot hiertoe: vooral classification Naive Bayes k-nearest Neighbours... Op basis van predictor variabelen X 1, X 2,..., X p klasse Y (= discreet) proberen te bepalen. Training

Nadere informatie

SPSS. Statistiek : SPSS

SPSS. Statistiek : SPSS SPSS - hoofdstuk 1 : 1.4. fase 4 : verrichten van metingen en / of verzamelen van gegevens Gegevens gevonden bij een onderzoek worden systematisch weergegeven in een datamatrix bij SPSS De datamatrix Gebruik

Nadere informatie

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA)

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) DATA STRUKTUUR Afhankelijke variabele: Eén kontinue variabele Onafhankelijke variabele(n): - één discrete variabele: één gecontroleerde factor - twee discrete variabelen:

Nadere informatie

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Dr.ir. P.W. Heijnen Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 22 april 2010 1 1 Introductie De

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Dinsdag 18 Oktober 1 / 1 2 Statistiek Vandaag: Centrale Limietstelling Correlatie Regressie 2 / 1 Centrale Limietstelling 3 / 1 Centrale Limietstelling St. (Centrale

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

Opgave 1: (zowel 2DM40 als 2S390)

Opgave 1: (zowel 2DM40 als 2S390) TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4 en S39) op donderdag, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

College 3 Meervoudige Lineaire Regressie

College 3 Meervoudige Lineaire Regressie College 3 Meervoudige Lineaire Regressie - Leary: Hoofdstuk 8 p. 165-169 - MM&C: Hoofdstuk 11 - Aanvullende tekst 3 (alinea 2) Jolien Pas ECO 2012-2013 'Computerprogramma voorspelt Top 40-hits Bron: http://www.nu.nl/internet/2696133/computerprogramma-voorspelt-top-40-hits.html

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op maandag 5 januari 29 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Dr.ir. P.W. Heijnen Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 6 mei 2010 1 1 Introductie De Energiekamer

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

HOOFDSTUK I - INLEIDENDE BEGRIPPEN

HOOFDSTUK I - INLEIDENDE BEGRIPPEN HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.2 Kansveranderlijken en verdelingen 1 Veranderlijken Beschouw een toevallig experiment met uitkomstenverzameling V (eindig of oneindig), de verzameling van alle gebeurtenissen

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Experimenteel onderzoek

Experimenteel onderzoek Newton - VWO Experimenteel onderzoek Samenvatting Soorten onderzoek experimenteel onderzoek - de opzet van een experimenteel onderzoek hangt af van het onderzoeksdoel literatuuronderzoek - over een bepaald

Nadere informatie

DEEL 1 Probleemstelling 1

DEEL 1 Probleemstelling 1 DEEL 1 Probleemstelling 1 Hoofdstuk 1 Van Probleem naar Analyse 1.1 Notatie 4 1.1.1 Types variabelen 4 1.1.2 Types samenhang 5 1.2 Sociaalwetenschappelijke probleemstellingen en hun basisformat 6 1.2.1

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Inleveren: uiterlijk maandag 6 februari 16.00 bij Marianne Jonker (Kamer: R3.46) Afspraken De opdrachten maak je in tweetallen. Schrijf duidelijk

Nadere informatie

Statistiek. Met het rekentoestel CASIO Collège fx-92b 2D+ kunnen statistische berekeningen in één of in twee variabelen uitgevoerd worden.

Statistiek. Met het rekentoestel CASIO Collège fx-92b 2D+ kunnen statistische berekeningen in één of in twee variabelen uitgevoerd worden. Statistiek Met het rekentoestel CASIO Collège fx-92b 2D+ kunnen statistische berekeningen in één of in twee variabelen uitgevoerd worden. 1. STATISTISCHE BEREKENINGEN 1.1. Instellen van het menu STAT 1.2.

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Reconstructie Bedrijfsstatistiek 2016

Reconstructie Bedrijfsstatistiek 2016 Reconstructie Bedrijfsstatistiek 2016 Open vragen Vraag 1 1. Bewijs dat σ^² een onvertekende schatter is voor σ²=σi 1/n * Xi² 2. Bereken de variantie van o^² 3. Is de schatter consistent? 4. Teken chi-kwadraat

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

4 Domein STATISTIEK - versie 1.2

4 Domein STATISTIEK - versie 1.2 USolv-IT - Boomstructuur DOMEIN STATISTIEK - versie 1.2 - c Copyrighted 42 4 Domein STATISTIEK - versie 1.2 (Op initiatief van USolv-IT werd deze boomstructuur mede in overleg met het Universitair Centrum

Nadere informatie

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008 Wiskunde 007- //008 Vraag Veronderstel dat de concentraties in het bloed van stof A en van stof B omgekeerd evenredig zijn en positief. Als de concentratie van stof A met p % toeneemt, dan zal de concentratie

Nadere informatie

De conjunctuurgevoeligheid van de registratierechten in Vlaanderen: een econometrische analyse

De conjunctuurgevoeligheid van de registratierechten in Vlaanderen: een econometrische analyse De conjunctuurgevoeligheid van de registratierechten in Vlaanderen Steunpunt Beleidsrelevant onderzoek Bestuurlijke Organisatie Vlaanderen De conjunctuurgevoeligheid van de registratierechten in Vlaanderen:

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Reflecties bij de invoering van TI-Nspire CAS op de Europese Scholen L.A.A. Blomme

Reflecties bij de invoering van TI-Nspire CAS op de Europese Scholen L.A.A. Blomme Reflecties bij de invoering van TI-Nspire CAS op de Europese Scholen L.A.A. Blomme In 2010 is op de Europese Scholen het nieuwe wiskunde programma gestart. Een van de grote innovaties betreft het invoeren

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

Rapportage bijzondere bijstand 2014

Rapportage bijzondere bijstand 2014 Rapport Rapportage bijzondere bijstand 2014 Vinodh Lalta Thomas Slager 30 oktober 2015 CBS Den Haag Henri Faasdreef 312 2492 JP Den Haag Postbus 24500 2490 HA Den Haag +31 70 337 38 00 www.cbs.nl projectnummer

Nadere informatie

Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient

Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient Opdracht 4a ----------- Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient In 1738 werd in de haven van Stockholm voor een aantal landen voor elk land geregistreerd hoeveel schepen

Nadere informatie

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014 Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal Toets Kansrekenen I 28 maart 2014 Naam : Richting : Lees volgende aanwijzingen alvorens aan het examen te beginnen Wie de

Nadere informatie

Hoofdstuk 18. Verbanden tussen variabelen vaststellen en interpreteren

Hoofdstuk 18. Verbanden tussen variabelen vaststellen en interpreteren Hoofdstuk 18 Verbanden tussen variabelen vaststellen en interpreteren Analyse van verbanden Analyse van verbanden: bij de analyse van verbanden stel je vast of er een stabiel verband bestaat tussen twee

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

11. Eenvoudige programma s schrijven in Maxima

11. Eenvoudige programma s schrijven in Maxima 11. Eenvoudige programma s schrijven in Maxima We zullen in dit hoofdstuk een aantal eenvoudige Maxima programma s laten zien. 11.1. Aantal wortels van een vierkantsvergelijking Het onderstaande programma

Nadere informatie

Samenvatting. J. Nachtegaal, S.E. Kramer, J.M. Festen (Amsterdam)

Samenvatting. J. Nachtegaal, S.E. Kramer, J.M. Festen (Amsterdam) Samenvatting Associatie tussen gehoorverlies en psychosociale gezondheid bij 18 tot 70 jarigen: eerste resultaten van de Nationale Longitudinale Studie naar Horen (NL-SH). J. Nachtegaal, S.E. Kramer, J.M.

Nadere informatie

Toegepaste Biostatistiek Wetenschappelijk Onderzoek

Toegepaste Biostatistiek Wetenschappelijk Onderzoek Toegepaste Biostatistiek Wetenschappelijk Onderzoek Geert Verbeke Biostatistisch Centrum, K.U.Leuven geert.verbeke@med.kuleuven.be http://perswww.kuleuven.be/geert verbeke Master Biomedische Wetenschappen

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

Oplossingen hoofdstuk XI

Oplossingen hoofdstuk XI Oplossingen hoofdstuk XI. Hierbij vind je de resultaten van het onderzoek naar de relatie tussen een leestest en een schoolrapport voor lezen. Deze gegevens hebben betrekking op een regressieanalyse bij

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) op dinsdag 3-03-00, 9- uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Relatie tussen gehoorverlies & psychosociale gezondheid

Relatie tussen gehoorverlies & psychosociale gezondheid Relatie tussen gehoorverlies & psychosociale gezondheid Eerste resultaten van de Nationale Longitudinale Studie naar Horen (NL-SH) Onderzoeksprogramma > Care and Prevention Janneke Nachtegaal, Sophia Kramer

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

Statistiek 2 deel A 30 minuten over statistisch toetsen

Statistiek 2 deel A 30 minuten over statistisch toetsen Statistiek 2 deel A 30 minuten over statistisch toetsen R.J. Baars, MSc Kruytgebouw N710 r.j.baars@uu.nl februari 2014 Opbouw van statistiek Statistiek 1 (periode 2: vandaag) Dit college + zelfstudie +

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Sterrenkunde Praktikum 1 Fouten en fitten

Sterrenkunde Praktikum 1 Fouten en fitten Sterrenkunde Praktikum 1 Fouten en fitten Paul van der Werf 12 februari 2008 1 Inleiding In de sterrenkunde werken we vaak met zwakke signalen, of met grote hoeveelheden metingen van verschillende nauwkeurigheid.

Nadere informatie

Families parabolen en fonteinen met de TI-Nspire

Families parabolen en fonteinen met de TI-Nspire Families parabolen en fonteinen met de TI-Nspire Dr Didier Deses Samenvatting We bestuderen 1-parameterfamilies van parabolen. De klassieke families (bijv.: y = ax 2 ) komen aan bod alsook de parabolen

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Samenvatting. Het Terneuzen Geboortecohort. Detectie en Preventie van Overgewicht en Cardiometabool Risico vanaf de Geboorte

Samenvatting. Het Terneuzen Geboortecohort. Detectie en Preventie van Overgewicht en Cardiometabool Risico vanaf de Geboorte Het Terneuzen Geboortecohort Detectie en Preventie van Overgewicht en Cardiometabool Risico vanaf de Geboorte In Hoofdstuk 1 worden de achtergrond, relevantie, gebruikte definities en concepten, en de

Nadere informatie

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A.

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A. Grootheden en eenheden Kwalitatieve en kwantitatieve waarnemingen Een kwalitatieve waarneming is wanneer je meet zonder bijvoorbeeld een meetlat. Je ziet dat een paard hoger is dan een muis. Een kwantitatieve

Nadere informatie

Toegepaste data-analyse: sessie 3

Toegepaste data-analyse: sessie 3 Toegepaste data-analyse: sessie 3 Mixed Models II: Actor-partner model Corr (Yij, Yik) = σσ 2 kkkkkkkkkkkk σσ 2 kkkkkkkkkkkk+ σσ 2 rrrrrr Je kan deze data niet modelleren a.d.h.v. lineaire regressie. Er

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

2.1 Lineaire formules [1]

2.1 Lineaire formules [1] 2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

EERSTE AFGELEIDE TWEEDE AFGELEIDE

EERSTE AFGELEIDE TWEEDE AFGELEIDE Lesrief EERSTE AFGELEIDE etreme waarden raaklijn normaal TWEEDE AFGELEIDE uigpunten 6/7Np GGHM03 Inleiding Met ehulp van de grafische rekenmachine kun je snel zien of de grafiek daalt of stijgt. Het horizontaal

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 5 oktober 007 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

Graphical modelling voor Mediastudies Data

Graphical modelling voor Mediastudies Data Graphical modelling voor Mediastudies Data De analyse Alle analyses zijn gedaan met MIM, een analyseprogramma ontworpen voor graphical modelling (Versie 3.2.07, Edwards,1990,1995). Modellen zijn verkregen

Nadere informatie

Hoofdstuk 19. Voorspellende analyse bij marktonderzoek

Hoofdstuk 19. Voorspellende analyse bij marktonderzoek Hoofdstuk 19 Voorspellende analyse bij marktonderzoek Voorspellen begrijpen Voorspelling: een uitspraak over wat er naar verwachting in de toekomst zal gebeuren op basis van ervaringen uit het verleden

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

Hoofdstuk 2. Aanduiding 1: Aanduiding 2: Formule 1: Formule 2: s2 x = Formule 3: s x = Formule 4: X nieuw = X oud ± a betekent ook

Hoofdstuk 2. Aanduiding 1: Aanduiding 2: Formule 1: Formule 2: s2 x = Formule 3: s x = Formule 4: X nieuw = X oud ± a betekent ook Hoofdstuk 2 Aanduiding 1: X ij Aanduiding 2: Formule 1: Formule 2: s2 x = Formule 3: s x = Formule 4: X nieuw = X oud ± a betekent ook ± a Formule 5: X nieuw = bx oud betekent t X nieuw = X oud/b betekent

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn Codelijst: : de dynamisch gegenereerde waarde van INVUL: invuloefening ( Short answer ) KLEUR: gebruik kleur! MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn MC: multiple

Nadere informatie

Cover Page. The handle http://hdl.handle.net/1887/32149 holds various files of this Leiden University dissertation.

Cover Page. The handle http://hdl.handle.net/1887/32149 holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/32149 holds various files of this Leiden University dissertation. Author: Renema, Jelmer Jan Title: The physics of nanowire superconducting single-photon

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie