HOOFDSTUK VII REGRESSIE ANALYSE

Maat: px
Weergave met pagina beginnen:

Download "HOOFDSTUK VII REGRESSIE ANALYSE"

Transcriptie

1 HOOFDSTUK VII REGRESSIE ANALYSE 1

2 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens werden verzameld bestaande uit observaties van 2 kwantitatieve variabelen (x en y) op n objekten Deze gegevens kunnen voorgesteld worden in een scatter diagram Indien de punten zich in de nabijheid van een rechte bevinden noemt men de relatie tussen x en y een: LINEAIRE RELATIE 2

3 1.1 De regressierechte van y gegeven x Indien men veronderstelt dat y afhangt van x bepaalt men de regressierechte van y gegeven x Beschouw een gepaarde steekproef: (x 1, y 1 ), (x 2, y 2 ),, (x n, y n ) met elke x i is een y i geassocieerd Men beschouwt een theoretisch model in hetwelk de veranderlijke y kan beschouwd worden als een lineaire functie van x: y = a + b x x is de onafhankelijke variabele y is de afhankelijke of outcome variabele 3

4 Voor elke waarneming x i heeft men twee overeenkomende waarden van y: de waarneming y i de waarde gegeven door het lineair verband: y i L = a + bx i (de geschatte of voorspelde waarde) Deze rechte is een goed model van het verband tussen de twee veranderlijken indien de verschillen tussen de twee waarden klein zijn Men noemt a het intercept (waarde van y voor x=0) Men noemt b de richtingscoefficient (de toename van y overeenkomend met een stijging van x met één éénheid) Men noemt a en b ook de regressiecoefficienten 4

5 1.2 De kleinste kwadraten methode Om een zo goed mogelijk model te bekomen bepaalt men de parameters a en b zodanig dat de verschillen: d i = y i - y i L zo klein mogelijk zijn Men noemt d i het residu t.o.v. het model De meest gebruikte methode om dit te bereiken is de kleinste kwadraten methode waarmee de som van de kwadraten van de d i wordt geminimaliseerd: n min d i 2 1 Dit kan ook geschreven worden als: n min F(a,b) = (y -a-bx ) 2 i = 1 i i Men vindt het minimum door F(a,b) af te leiden naar a en naar b, deze afgeleiden aan nul gelijk te stellen en het zo gekregen stelsel van twee vergelijkingen en twee onbekenden (a en b) op te lossen: F(a,b) n = 2(y a bx ) = 0 a 1 i i F(a,b) n = 2x (y a bx ) = 0 b 1 i i i 5

6 b = 1 n n x y yx 1 i i 1 n n x2 x 2 1 i a = y bx Door gebruik te maken van de formule voor de correlatiecoefficient: r = 1 n x y n yx 1 i i 1 n x2 n i x 2 1 n y2 i 1 n i y 2 = 1 kan men b schrijven als b = r 1 n y2 n i y n x2 n i x 2 1 rs y = s x 6

7 De vergelijking van de rechte wordt dan: y = a + bx = y bx + bx = y + b(x x) rs y = x + (x x) s x of y- y = rs y (x x) s x Men noemt deze rechte de regressierechte voor y gegeven x of RR Y X Deze rechte laat toe voor een meting van de variabele x een schatting te bekomen van de variabele y indien deze onbekend is 7

8 1.3 Kwaliteitsmaten voor de regressierechte De kleinste kwadraten methode bepaalt de rechte waarvoor de gemiddelde kwadratische afwijking minimaal wordt. Bijgevolg is de gemiddelde kwadratische afwijking van de punten t.o.v. de regressierechte een kwaliteitsmaat voor de gevonden rechte. Men noemt deze de residuele variantie s2 1 n y.x = d2 n 1 i Men kan aantonen dat de residuele variantie gelijk is aan: s2 y(1 r 2 ) waar r de correlatiecoefficient is. Als kwaliteitsmaat wordt ook veel gebruik gemaakt van r 2, het kwadraat van de correlatiecoefficient (waarvoor ook de notatie R 2 wordt gebruikt) r 2 kan geinterpreteerd worden als het gedeelte van de variabiliteit van y dat wordt verklaard door x 8

9 1.4 De regressierechte van x gegeven y De regressierechte voor y gegeven x heeft als vergelijking: y-y = rs y (x x) s x Wanneer men de variabele y als onafhankelijk beschouwt en men wenst een schatting te bekomen van x, gebruikt men de regressierechte voor x gegeven y. Dit veronderstelt de volgende relatie tussen de 2 variabelen: x = a + b y De vergelijking van deze regressierechte is: x x= rs x (y-y) s y 9

10 1.5 Opmerkingen over de 2 regressierechten a. De twee regressierechten snijden elkaar in (x,y) Men noemt dit punt het zwaartepunt van de twee-dimensionale verdeling b. Wanneer r=0 zijn de twee regressierechten loodrecht op elkaar: RR Y X : y-y = 0 of y= y RR X Y : x-x = 0 of x= x 10

11 c. Het teken van r bepaalt de richting van de twee regressierechten: Als r > 0 zijn ze beide stijgend Als r < 0 zijn ze beide dalend Als r = 0 zijn ze loodrecht op elkaar De hoek tussen de twee rechten daalt wanneer r stijgt d. Indien r = 1 of aan -1 vallen alle punten op de rechte en is de residuele variantie gelijk aan 0, en omgekeerd Als r=1 is de rechte stijgend Als r=-1 is de rechte dalend 11

12 1.6 Hypothesetoets voor de richtingscoefficient b Veronderstel dat de residuen d i normaal verdeeld zijn met dezelfde variantie σ 2 Noem β de richtingscoefficient van de regressierechte in de populatie (b is de richtingscoefficient voor de steekproef) Men kan aantonen dat : b ~ N (β, σ2 ns x 2 ) Hieruit leidt men af dat: (b- β)s x n 2 s y 1 r 2 ~ t n-2 12

13 Om na te gaan of er een significante regressie bestaat, m.a.w. of y afhangt van x: H 0 : β = 0 H 1 : β 0 Bereken bs x n 2 s y 1 r 2 en vergelijk de gevonden waarde met de waarde uit een tabel voor de Student verdeling met n-2 vrijheidsgraden Opmerking Deze methode veronderstelt dat x geen kansveranderlijke is maar een konstante. Indien x ook een kansveranderlijke is moet men veronderstellen dat y niet afhangt van de variabele x maar van de gemeten waarde x i 13

14 1.7 Wiskundige Modellen voor Linaire Regressie Het doel is de verklaring van een waarneming. In de simpele lineaire regressie hangt de waarneming af van één veranderlijke en is het verband lineair Dit geeft aanleiding tot volgend model: y i = a + b x i + r i waar a = intercept b = slope r i = residu In de multipele lineaire regressie hangt de variabele y af van meerdere variabelen: y i = b 0 + b 1 x (1) + b 2 x (2) +...+b m x (m) + r i De coefficienten b i kunnen worden geschat op basis van de observaties en er zijn toetsen (analoog met de toets op b voor simpele lineaire regressie) om de variabele te selecteren die bijdragen tot de verklaring van variabele y. 14

15 In geval van veel mogelijke verklarende variabelen die onderling gecorreleerd zijn gebruikt men meestal een stapsgewijze (stepwize) selectiemethode. De meest gebruikte van deze methoden is de voorwaarts (forward) stepwize methode. Deze methode begint met de keuze van één enkele variabele, namelijk deze waarvoor R 2 maximaal is. Nadien worden variabelen één per één bijgevoegd aan het model. Telkens wordt de variabele gekozen waarvoor R 2 het meeste toeneemt. De methode stopt wanneer er geen variabelen zijn die toelaten R 2 te verhogen. 15

16 2. POLYNOMIALE REGRESSIE Op basis van een grafische voorstelling kan men nagaan of een rechte aangewezen is als beschrijving van de relatie tussen x en y. In sommige gevallen is een polynomiale relatie (kwadratisch, cubisch) beter aangepast. Een polynomiaal model wordt bekomen op basis van multiepele lineaire regressie door het bijvoegen van een aantal hoge orde termen. Bij voorbeeld beschrijft het volgend model een cubieke relatie tussen x en y: y i = b + b x + b x 2 + b x3 + r i De analyse van dergelijk model gebeurt op dezelfde wijze als voor multiepele lineare regressie. Het is alsof de machten van x overeenkomen met verschillende variabelen in het model. 16

17 3. LOGISTISCHE REGRESSIE Logistische regressie wordt gebruikt om de kans op een gebeurtenis te voorspellen. In dit geval heeft men een binaire afhankelijke variabele. Voorbeelden: Al dan niet bereiken van een eindpunt in een studie Aan of afwezigheid van een symptoom Het doel van logistische regressie is de selectie van de verklarende (onafhankelijke) variabelen die de kans op de gebeurtenis (de afhankelijke variabele) beïnvloeden. Op dezelfde wijze als bij lineaire regressie wordt een vergelijking gebruikt om de afhankelijke variabele te voorspellen op basis van de waarden van de geselecteerde verklarende variabelen. 17

18 In logistische regressie wordt gebruik gemaakt van de volgende vergelijking (die een logistische kromme voorstelt): y i = 1+ 1 exp(-z ) i + r i waarin: z i = b 0 + b 1 x (1) + b 2 x (2) +...+b m x (m) + r i In deze vergelijking stelt y i de kans voor dat de gebeurtenis zich zou voordoen en de x (i) zijn de verklarende variabelen. Odds van een gebeurtenis De odds van een gebeurtenis is de kans van de gebeurtenis gedeeld door de kans dat deze zich niet zou voordoen: P(A) 1- P(A) De odds ratio (OR) is de verhouding van de odds van een gebeurtenis in twee populaties (b.v. patiënten met en zonder een bepaald risicofactor). Het exponentieel van b i (e bi ) is een schatting van de odds ratio. Het kan worden geïnterpreteerd als de toename in de odds (van een eindpunt of gebeurtenis) indien x i toeneemt met één eenheid. 18

19 Voorbeeld Toename in de odds van een gebeurtenis indien de leeftijd toeneemt met één jaar Interpretatie Een odds ratio groter dan 1 duidt op een toename van het risico Een odds ratio kleiner dan 1 duidt op een afname van het risico Rond de odds ratio kan een 95% betrouwbaarheidsinterval (BI) worden geconstrueerd: Indien het 95% BI de waarde 1 niet bevat duidt dit op een significant effect van de variabele Voorbeeld OR (leeftijd) = % CI: [ ] 19

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN 4.1 PARAMETERTOESTEN 1 A. Toetsen van het gemiddelde Beschouw een steekproef X 1, X,, X n van n onafhankelijke N(µ, σ) verdeelde kansveranderlijken Men

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Toegepaste data-analyse: oefensessie 2

Toegepaste data-analyse: oefensessie 2 Toegepaste data-analyse: oefensessie 2 Depressie 1. Beschrijf de clustering van de dataset en geef aan op welk niveau de verschillende variabelen behoren Je moet weten hoe de data geclusterd zijn om uit

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

SPSS. Statistiek : SPSS

SPSS. Statistiek : SPSS SPSS - hoofdstuk 1 : 1.4. fase 4 : verrichten van metingen en / of verzamelen van gegevens Gegevens gevonden bij een onderzoek worden systematisch weergegeven in een datamatrix bij SPSS De datamatrix Gebruik

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Classification - Prediction

Classification - Prediction Classification - Prediction Tot hiertoe: vooral classification Naive Bayes k-nearest Neighbours... Op basis van predictor variabelen X 1, X 2,..., X p klasse Y (= discreet) proberen te bepalen. Training

Nadere informatie

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA)

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) DATA STRUKTUUR Afhankelijke variabele: Eén kontinue variabele Onafhankelijke variabele(n): - één discrete variabele: één gecontroleerde factor - twee discrete variabelen:

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van

Nadere informatie

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

Opgave 1: (zowel 2DM40 als 2S390)

Opgave 1: (zowel 2DM40 als 2S390) TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4 en S39) op donderdag, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op maandag 5 januari 29 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

College 3 Meervoudige Lineaire Regressie

College 3 Meervoudige Lineaire Regressie College 3 Meervoudige Lineaire Regressie - Leary: Hoofdstuk 8 p. 165-169 - MM&C: Hoofdstuk 11 - Aanvullende tekst 3 (alinea 2) Jolien Pas ECO 2012-2013 'Computerprogramma voorspelt Top 40-hits Bron: http://www.nu.nl/internet/2696133/computerprogramma-voorspelt-top-40-hits.html

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

Statistiek. Met het rekentoestel CASIO Collège fx-92b 2D+ kunnen statistische berekeningen in één of in twee variabelen uitgevoerd worden.

Statistiek. Met het rekentoestel CASIO Collège fx-92b 2D+ kunnen statistische berekeningen in één of in twee variabelen uitgevoerd worden. Statistiek Met het rekentoestel CASIO Collège fx-92b 2D+ kunnen statistische berekeningen in één of in twee variabelen uitgevoerd worden. 1. STATISTISCHE BEREKENINGEN 1.1. Instellen van het menu STAT 1.2.

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

Rapportage bijzondere bijstand 2014

Rapportage bijzondere bijstand 2014 Rapport Rapportage bijzondere bijstand 2014 Vinodh Lalta Thomas Slager 30 oktober 2015 CBS Den Haag Henri Faasdreef 312 2492 JP Den Haag Postbus 24500 2490 HA Den Haag +31 70 337 38 00 www.cbs.nl projectnummer

Nadere informatie

Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient

Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient Opdracht 4a ----------- Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient In 1738 werd in de haven van Stockholm voor een aantal landen voor elk land geregistreerd hoeveel schepen

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Statistiek 2 deel A 30 minuten over statistisch toetsen

Statistiek 2 deel A 30 minuten over statistisch toetsen Statistiek 2 deel A 30 minuten over statistisch toetsen R.J. Baars, MSc Kruytgebouw N710 r.j.baars@uu.nl februari 2014 Opbouw van statistiek Statistiek 1 (periode 2: vandaag) Dit college + zelfstudie +

Nadere informatie

Zomerschool Vakdidactisch Onderzoek Leuven, 8-10 september 2010 Sessie 8: Analyse van kwantitatieve data

Zomerschool Vakdidactisch Onderzoek Leuven, 8-10 september 2010 Sessie 8: Analyse van kwantitatieve data Zomerschool Vakdidactisch Onderzoek Leuven, 8-10 september 2010 Sessie 8: Analyse van kwantitatieve data An Carbonez Leuven Statistics Research Centre Katholieke Universiteit Leuven Voorstelling van de

Nadere informatie

Toegepaste Biostatistiek Wetenschappelijk Onderzoek

Toegepaste Biostatistiek Wetenschappelijk Onderzoek Toegepaste Biostatistiek Wetenschappelijk Onderzoek Geert Verbeke Biostatistisch Centrum, K.U.Leuven geert.verbeke@med.kuleuven.be http://perswww.kuleuven.be/geert verbeke Master Biomedische Wetenschappen

Nadere informatie

Toegepaste data-analyse: sessie 3

Toegepaste data-analyse: sessie 3 Toegepaste data-analyse: sessie 3 Mixed Models II: Actor-partner model Corr (Yij, Yik) = σσ 2 kkkkkkkkkkkk σσ 2 kkkkkkkkkkkk+ σσ 2 rrrrrr Je kan deze data niet modelleren a.d.h.v. lineaire regressie. Er

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

Regressie-analyse. Cursus Bachelor Project 2 B&O College 2 Harry B.G. Ganzeboom. Regressie-model en mediatie-analyse 1

Regressie-analyse. Cursus Bachelor Project 2 B&O College 2 Harry B.G. Ganzeboom. Regressie-model en mediatie-analyse 1 Regressie-analyse Cursus Bachelor Project 2 B&O College 2 Harry B.G. Ganzeboom Regressie-model en mediatie-analyse 1 Agenda Lineaire regressie-model (herhaling) Enkelvoudig (simple) Meervoudig (multiple)

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4) woensdag 8 oktober 9, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven Statistisch

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Samenvatting. J. Nachtegaal, S.E. Kramer, J.M. Festen (Amsterdam)

Samenvatting. J. Nachtegaal, S.E. Kramer, J.M. Festen (Amsterdam) Samenvatting Associatie tussen gehoorverlies en psychosociale gezondheid bij 18 tot 70 jarigen: eerste resultaten van de Nationale Longitudinale Studie naar Horen (NL-SH). J. Nachtegaal, S.E. Kramer, J.M.

Nadere informatie

Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden.

Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden. - 239 - Naam:... Klas:... Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden. Eventjes herhalen!!! Voor een vergelijking van de eerste graad, herleid op nul, is het linkerlid een veelterm

Nadere informatie

Regressie-analyse doel menu hulp globale werkwijze aandachtspunten Doel: Voor de uitvoering in SPSS: Missing Values Globale werkwijze

Regressie-analyse doel menu hulp globale werkwijze aandachtspunten Doel: Voor de uitvoering in SPSS: Missing Values Globale werkwijze Regressie-analyse Regressie-analyse is gericht op het voorspellen van één (numerieke) afhankelijke variabele met behulp van een of meerdere onafhankelijke variabelen (numerieke en/of dummy-variabelen).

Nadere informatie

Wiskundige vaardigheden

Wiskundige vaardigheden Inleiding Bij het vak natuurkunde ga je veel rekenstappen zetten. Het is noodzakelijk dat je deze rekenstappen goed en snel kunt uitvoeren. In deze presentatie behandelen we de belangrijkste wiskundige

Nadere informatie

Gedragsanalyse Experiment Verzekeren per Kilometer

Gedragsanalyse Experiment Verzekeren per Kilometer Gedragsanalyse Experiment Verzekeren per Kilometer Jasper Knockaert mailto:jknockaert@feweb.vu.nl 11 oktober 29 1 Inleiding Het Transumo project Verzekeren per Kilometer onderzoekt de mogelijkheden van

Nadere informatie

Een model voor een lift

Een model voor een lift Een model voor een lift 2 de Leergang Wiskunde schooljaar 213/14 2 Inhoudsopgave Achtergrondinformatie... 4 Inleiding... 5 Model 1, oriëntatie... 7 Model 1... 9 Model 2, oriëntatie... 11 Model 2... 13

Nadere informatie

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar 25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een

Nadere informatie

Samenvattingen 5HAVO Wiskunde A.

Samenvattingen 5HAVO Wiskunde A. Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband

Nadere informatie

vwo: Het maken van een natuurkunde-verslag vs 21062011

vwo: Het maken van een natuurkunde-verslag vs 21062011 Het maken van een verslag voor natuurkunde, vwo versie Deze tekst vind je op www.agtijmensen.nl: Een voorbeeld van een verslag Daar vind je ook een po of pws verslag dat wat uitgebreider is. Gebruik volledige

Nadere informatie

Graphical modelling voor Mediastudies Data

Graphical modelling voor Mediastudies Data Graphical modelling voor Mediastudies Data De analyse Alle analyses zijn gedaan met MIM, een analyseprogramma ontworpen voor graphical modelling (Versie 3.2.07, Edwards,1990,1995). Modellen zijn verkregen

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Cover Page. The handle http://hdl.handle.net/1887/32149 holds various files of this Leiden University dissertation.

Cover Page. The handle http://hdl.handle.net/1887/32149 holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/32149 holds various files of this Leiden University dissertation. Author: Renema, Jelmer Jan Title: The physics of nanowire superconducting single-photon

Nadere informatie

De interpretatie van interactieeffecten in regressiemodellen. Jan Pickery

De interpretatie van interactieeffecten in regressiemodellen. Jan Pickery De interpretatie van interactieeffecten in regressiemodellen Jan Pickery Samenstelling Diensten voor het Algemeen Regeringsbeleid Studiedienst van de Vlaamse Regering Jan Pickery Verantwoordelijke uitgever

Nadere informatie

Projectieve Vlakken en Codes

Projectieve Vlakken en Codes Projectieve Vlakken en Codes 1. De Fanocode Foutdetecterende en foutverbeterende codes. Anna en Bart doen mee aan een spelprogramma voor koppels. De ene helft van de deelnemers krijgt elk een kaart waarop

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 17-11-2003 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een zakrekenmachine.

Nadere informatie

HET COBB-DOUGLAS MODEL ALS MODEL VOOR DE NUTSFUNCTIE IN DE ARBEIDSTHEORIE. 1. Inleiding

HET COBB-DOUGLAS MODEL ALS MODEL VOOR DE NUTSFUNCTIE IN DE ARBEIDSTHEORIE. 1. Inleiding HET COBB-DOUGLAS MODEL ALS MODEL VOOR DE NUTSFUNCTIE IN DE ARBEIDSTHEORIE IGNACE VAN DE WOESTYNE. Inleiding In zowel de theorie van het consumentengedrag als in de arbeidstheorie, beiden gesitueerd in

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be

Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be Te kennen leerstof wiskunde voor het toelatingsexamen graduaten Lea De Bie lea.debie@cvoleuven.be SOORTEN GETALLEN (Dit hoofdstukje geldt als inleiding en is geen te kennen leerstof). Natuurlijke getallen

Nadere informatie

Schriftelijk tentamen - UITWERKINGEN

Schriftelijk tentamen - UITWERKINGEN Business Administration / Bedrijfskunde Schriftelijk tentamen - UITWERKINGEN Algemeen Vak : Statistische Methoden Groep : niet van toepassing en Technieken Vakcode : BKB0019t Soort tentamen : gesloten

Nadere informatie

Significante cijfers en meetonzekerheid

Significante cijfers en meetonzekerheid Inhoud Significante cijfers en meetonzekerheid... 2 Significante cijfers... 2 Wetenschappelijke notatie... 3 Meetonzekerheid... 3 Significante cijfers en meetonzekerheid... 4 Opgaven... 5 Opgave 1... 5

Nadere informatie

5 Technische aspecten i.v.m. de statistische verwerking

5 Technische aspecten i.v.m. de statistische verwerking 5 Technische aspecten i.v.m. de statistische verwerking 5.1 Gebruikte technieken: frequentietabellen en regressie De bekomen data werden uitgezuiverd aan de hand van strikte regels (Nuyts & Zwerts 2001b),

Nadere informatie

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen SPSS Introductiecursus Sanne Hoeks Mattie Lenzen Statistiek, waarom? Doel van het onderzoek om nieuwe feiten van de werkelijkheid vast te stellen door middel van systematisch onderzoek en empirische verzamelen

Nadere informatie

www.samengevat.nl voorbeeldhoofdstuk havo wiskunde A

www.samengevat.nl voorbeeldhoofdstuk havo wiskunde A www.samengevat.nl voorbeeldhoofdstuk havo wiskunde A www.samengevat.nl havo wiskunde A Drs. F.C. Luijbe Voorwoord Beste docent, Voor u ligt een deel van de nieuwe Samengevat havo wiskunde A. Dit katern

Nadere informatie

Het verhaal van de financiële staart Jan Beirlant, Goedele Dierckx Universitair Centrum voor Statistiek en Departement Wiskunde, KULeuven

Het verhaal van de financiële staart Jan Beirlant, Goedele Dierckx Universitair Centrum voor Statistiek en Departement Wiskunde, KULeuven Het verhaal van de financiële staart Jan Beirlant, Goedele Dierckx Universitair Centrum voor Statistiek en Departement Wiskunde, KULeuven In het secundair onderwijs wordt de 8-uur wiskunde nauwelijks nog

Nadere informatie

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.

Nadere informatie

4. Resultaten. 4.1 Levensverwachting naar geslacht en opleidingsniveau

4. Resultaten. 4.1 Levensverwachting naar geslacht en opleidingsniveau 4. Het doel van deze studie is de verschillen in gezondheidsverwachting naar een socio-economisch gradiënt, met name naar het hoogst bereikte diploma, te beschrijven. Specifieke gegevens in enkel mortaliteit

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 97-9: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (Annual High School Mathematics Examination - USA en

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

Stelsels van vergelijkingen

Stelsels van vergelijkingen Module 5 Stelsels van vergelijkingen 5.1 Definitie en voorbeelden Een verzameling van vergelijkingen in een aantal onbekenden waarvan men de gemeenschappelijke oplossing(en) zoekt, noemt men een stelsel

Nadere informatie

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 Bjorn Winkens Methodologie en Statistiek Universiteit Maastricht 21 maart

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

1. Gegeven zijn de itemsores van 8 personen op een test van 3 items

1. Gegeven zijn de itemsores van 8 personen op een test van 3 items 1. Gegeven zijn de itemsores van 8 personen op een test van 3 items item Persoon 1 2 3 1 1 0 0 2 1 1 0 3 1 0 0 4 0 1 1 5 1 0 1 6 1 1 1 7 0 0 0 8 1 1 0 Er geldt: (a) de p-waarden van item 1 en item 2 zijn

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2008 WISKUNDE 5 PERIODEN DATUM : 5 juni 2008 ( s morgens) DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN Formuleboekje voor de Europese scholen Niet-programmeerbare,

Nadere informatie

NCVGZ 2014. Resultaten effect onderzoek Watercampagne Lekker Fit! Rotterdam. Vivian van de Gaar. Consortium Integrale Aanpak Overgewicht

NCVGZ 2014. Resultaten effect onderzoek Watercampagne Lekker Fit! Rotterdam. Vivian van de Gaar. Consortium Integrale Aanpak Overgewicht NCVGZ 2014 Resultaten effect onderzoek Watercampagne Lekker Fit! Rotterdam Vivian van de Gaar Probleemstelling Overgewichtpreventie bij kinderen aanpakken! Lekker Fit! Rotterdam (controle) Regulier school

Nadere informatie

Algemene toelichting op de Box-Jenkins-methode

Algemene toelichting op de Box-Jenkins-methode Algemene toelichting op de Box-Jenkins-methode Aan de hand van tijdreeksanalyse volgens de Box-Jenkins-methode [Box and Jenkins, 1976], kan de tijdreeks van een variabele beschreven worden met een discreet

Nadere informatie

Technische nota. Tevredenheid van zelfstandige ondernemers en werkbaar werk. Ria Bourdeaud hui Stephan Vanderhaeghe

Technische nota. Tevredenheid van zelfstandige ondernemers en werkbaar werk. Ria Bourdeaud hui Stephan Vanderhaeghe Brussel, februari 2009 Technische nota Tevredenheid van zelfstandige ondernemers en werkbaar werk Ria Bourdeaud hui Stephan Vanderhaeghe Brussel, SERV - STV Innovatie & Arbeid, februari 2009 Technische

Nadere informatie

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 0 tijdvak woensdag 0 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage.. Dit eamen bestaat uit 0 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Vergrijzing MKB-ondernemers zet bedrijfsprestaties onder druk

Vergrijzing MKB-ondernemers zet bedrijfsprestaties onder druk M201210 Vergrijzing MKB-ondernemers zet bedrijfsprestaties onder druk Arjan Ruis Zoetermeer, september 2012 Vergrijzing MKB-ondernemers zet bedrijfsprestaties onder druk De leeftijd van de ondernemer blijkt

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Verbanden tussen demografische kenmerken, gezondheidsindicatoren en gebruik van logopedie

Verbanden tussen demografische kenmerken, gezondheidsindicatoren en gebruik van logopedie Notitie De vraag naar logopedie datum 24 mei 2016 aan van Marliek Schulte (NVLF) Robert Scholte en Lucy Kok (SEO Economisch Onderzoek) Rapport-nummer 2015-15 Kunnen ontwikkelingen in de samenstelling en

Nadere informatie

3.2 Kritieke punten van functies van meerdere variabelen

3.2 Kritieke punten van functies van meerdere variabelen Wiskunde voor kunstmatige intelligentie, 007/008 Als in een kritiek punt x 0 ook de tweede afgeleide f (x 0 ) = 0 is, kunnen we nog steeds niet beslissen of de functie een minimum, maximum of een zadelpunt

Nadere informatie

Onderneming en omgeving - Economisch gereedschap

Onderneming en omgeving - Economisch gereedschap Onderneming en omgeving - Economisch gereedschap 1 Rekenen met procenten, basispunten en procentpunten... 1 2 Werken met indexcijfers... 3 3 Grafieken maken en lezen... 5 4a Tweedegraads functie: de parabool...

Nadere informatie

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995 Schriftelijk examen statistiek, data-analyse en informatica Maandag 29 mei 1995 Tweede jaar kandidaat arts + Tweede jaar kandidaat in de biomedische wetenschappen Naam: Voornaam: Vraa Kengetal g Blad 1

Nadere informatie

II. ZELFGEDEFINIEERDE FUNCTIES

II. ZELFGEDEFINIEERDE FUNCTIES II. ZELFGEDEFINIEERDE FUNCTIES In Excel bestaat reeds een uitgebreide reeks van functies zoals SOM, GEMIDDELDE, AFRONDEN, NU enz. Het is de bedoeling om functies aan deze lijst toe te voegen door in Visual

Nadere informatie