Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt"

Transcriptie

1 A. Effect & het onderscheidingsvermogen Effectgrootte (ES) De effectgrootte (effect size) vertelt ons iets over hoe relevant de relatie tussen twee variabelen is in de praktijk. Er zijn twee soorten effectgrootten: Gebaseerd op de proportie verklaarde variantie: de proportie verklaarde variantie wordt vaak aangegeven met één van de volgende termen: R² of eta squared, partial eta squared of omega squared. Deze vormen worden verderop in de samenvatting verder toegelicht bij de uitleg over ANOVA en regressie. Gebaseerd op het verschil in gemiddelden. Dit wordt vaak aangeduid met behulp van Cohen s d. Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt berekend met behulp van één van de volgende formules: d = y µ y 1 y 2 of d = σ σ Dit is afhankelijk van of je een steekproefgemiddelde met het populatiegemiddelde wilt vergelijken of twee gemiddelden van twee verschillende steekproeven met elkaar wilt vergelijken. Wanneer we voor de eerste methode zouden kiezen en dus het gevonden steekproefgemiddelde willen vergelijken met het populatiegemiddelde, dan geeft de waarde van Cohen s d het aantal standaarddeviatie weer waarmee het steekproefgemiddelde van het populatiegemiddelde afligt. Wanneer je dus een waarde van d van d = 0,5 zou hebben, dan zou het steekproefgemiddelde 0,5 standaarddeviaties van het populatiegemiddelde afliggen. Er zijn een aantal vuistregels die meestal worden aangehouden om te kunnen spreken van een klein, een middelmatig of een groot effect. Wanneer de effectgrootte rond de d = 0,80 ligt, dan spreken we van een groot effect. Is de waarde van de effectgrootte ongeveer d = 0,50, dan is het bevonden effect middelmatig. Bevinden we een effectgrootte van rondom d = 0,20, dan wordt het effect klein genoemd. Denk er wel aan dat deze regels niet meer zijn dan vuistregels. Het zijn geen vaste regels en iemand anders zou ook gemakkelijk kunnen kiezen voor andere vuistregels. Berekenen van het onderscheidingsvermogen Wanneer we een significantietoets uitvoeren, dan zijn er vier mogelijke conclusies die we kunnen trekken: Je verwerpt H0 wel Je verwerpt H0 niet H0 klopt fout type één α 1 fout type één H0 klopt niet 1 fout type twee fout type twee β Tabel 1: Fout type één en twee. Fout type één is wanneer H0 klopt is, maar je verwerpt deze: het onterecht verwerpen van de nulhypothese. Deze fout wordt aangeduid met het sigmateken α. Fout type twee ontstaat wanneer H0 niet klopt, maar je deze niet verwerpt: je neemt dan onterecht de nulhypothese aan. Deze fout wordt aangeduid met het bètateken β. Je zit dus goed als H0 klopt is en je H0 niet verwerpt. De kans hierop kun je ook berekenen door middel van de formule 1 α. Je zit ook goed wanneer H0 niet waar is en je deze wel verwerpt.. 1

2 Deze kans is te berekenen door middel van de formule 1 - β. Dit laatste, 1 - β, is het onderscheidingsvermogen van je toets. Het onderscheidingsvermogen wordt ook wel de power genoemd en is het terecht verwerpen van de nulhypothese. De waarde van het onderscheidingsvermogen wil je zo groot mogelijk hebben, bijvoorbeeld wanneer je een significante uitkomst ontdekt met je onderzoek en je de nulhypothese gaat verwerpen, je ook wilt dat je deze handelingen terecht doet. Om de power te berekenen, bereken je eerst de waarde die x aanneemt onder de verkeerde nulhypothese. Dit doe je met behulp van de z-score. Je kijkt dus naar wanneer je onder de verkeerde nulhypothese deze nulhypothese zou verwerpen. Wanneer je de waarde van deze x weet, bereken je de juiste kans om H0 te verwerpen met behulp van de z-score door hierin de juiste waarde van het gemiddelde in te voeren. Het berekenen van het onderscheidingsvermogen kan lastig te begrijpen zijn. Daarom kan dit het beste uitgelegd worden met behulp van een voorbeeld. Stel, je hebt een populatie die verdeeld is met X ~ N(µ,1). Hierin voer je een significantietoets uit met een alfa van 0,05, waarbij je het volgende toetst: H0: µ = 4,0 Ha: µ > 4,0 Hier is bekend dat het aantal proefpersonen 49 is. Vervolgens komen we er achter dat µ verkeerd is: deze is niet 4,0 maar 4,6. Om de power te berekenen moeten we eerst de waarde van x achterhalen onder de verkeerde nulhypothese, om zo te achterhalen wanneer H0 wordt verworpen onder de verkeerde H0. We weten dat bij een éénzijdige toetsing met α=0,05 de z-score z = 1,645 is. Vervolgens: z = x µ α/ n = x 4,0 1/7 = 1,645. x 4,0 = 0,235. x = 4,235. Vervolgens bereken je de correcte kans om H0 te verwerpen (onder Ha = 4,6): P Ha ( x > 4,235) = P Ha = ( x 4,6 ) 1/7 > (4,235 4,6 1/7 P Ha (Z > -2,555) = 1-0,0054 = 0,9946. De conclusie die we hier uit kunnen trekken is dat er een kans is van 99,46% dat we H0 terecht afwijzen als Ha: µ = 4,6 waar is. Het onderscheidingsvermogen van een significantietoets is afhankelijk van: De steekproefgrootte n: wanneer n groter wordt, dan wordt het onderscheidingsvermogen groter. Het significantieniveau α: wanneer α groter wordt, dan wordt het onderscheidingsvermogen groter. De effectgrootte (effect size, ES, wordt hier onder uitgelegd): wanneer de ES groter wordt, dan wordt het onderscheidingsvermogen groter. ) 2

3 Als de bovenstaande 3 punten bekend zijn, dan kan de power worden berekend met behulp van het software programma G*Power. Een andere manier om je power te vergroten, is door de errorvariantie te verkleinen. Dit kan door groepen in je onderzoek homogener te maken of door een extra variabele aan je onderzoek toe te voegen. Er zijn 2 manieren waarop analyse naar onderscheidingsvermogen kan worden uitgevoerd: A priori analyse naar onderscheidingsvermogen: deze manier heeft de voorkeur. De power van het onderzoek wordt berekend vóórdat het onderzoek wordt uitgevoerd door de effectgrootte, het significantieniveau en het gewenste onderscheidingsvermogen in te voeren in het programma G*Power. Vervolgens wordt de benodigde steekproefgrootte voor het onderzoek uitgerekend. Deze steekproefgrootte is dus aangepast op het gewenste onderscheidingsvermogen. Dus als je in je onderzoek een goed onderscheidingsvermogen van ongeveer 0,80 wilt nastreven, dan kun je door de overige gegevens in te vullen berekenen hoeveel proefpersonen je bij je onderzoek moet betrekken. Post hoc analyse naar onderscheidingsvermogen: deze manier wordt uitgevoerd nadat het onderzoek is uitgevoerd. Door de ES, het significantieniveau en de steekproefgrootte in te voeren, bereken je de power die het onderzoek (dat al is uitgevoerd) had. Deze manier is geschikt als a priori onderzoek voor een volgend onderzoek. 3

4 B. Eénweg ANOVA en de toepassingen daarvan. De t-toets met twee steekproeven Je maakt gebruik van de t-toets wanneer je twee steekproefgroepen met elkaar wilt vergelijken. Hierbij toets je de volgende hypotheses: H0: µ1=µ2 Ha:µ1 µ2 (deze kan ook éénzijdig zijn in plaats van tweezijdig). Hierbij zijn de populatiegemiddelde µ en standaarddeviatie σ onbekend: ze worden benaderd met y en s. Herinner je dat dat het grote verschil was tussen een t-toets en een z-toets: bij een t-toets is de populatiestandaarddeviatie onbekend. In dit vak gaan we over het algemeen uit van gelijke standaarddeviaties. Op deze manier kunnen we gebruik maken van Spooled: de gepoolde standaarddeviatie. De test statistic voor de t test luidt als volgt: t= y 1 y 2 sp 1 n1 + 1 n2. Deze test statistic is verdeeld met n1 + n2-2 vrijheidsgraden. Éénweg ANOVA Helaas blijft het gebruik van de t-toets beperkt tot het vergelijken van slechts twee groepen. In sommige gevallen willen we meer dan twee groepen met elkaar vergelijken. In zo n geval maken we gebruik van ANOVA: ANalysis Of VAriance. Bij het uitvoeren van een ANOVA wordt gekeken naar de verschillen tussen gemiddelden van I onafhankelijke groepen die je in je onderzoek opneemt. De H0 en Ha hierbij luiden als volgt: H0: µ1=µ2=µ3=µ4 Ha: Ten minste één µ wijkt af of niet alle µs zijn gelijk. Omdat het idee achter ANOVA vrijwel gelijk is aan het uitvoeren van een t-toets vergelijk je bij een ANOVA net zoals bij het uitvoeren van een t-toets de between group variatie met de within group variatie. De between group variatie is de variatie tussen de groepen die je vergelijkt. Dit is dus het deel dat kan worden verklaard door de verschillen tussen groepen. In bovenstaande formule van de t-toets is dat wat boven de streep in de breuk gebeurt. Hier vergelijk je immers de verschillen tussen de twee groepen door het ene gemiddelde van het andere gemiddelde af te trekken. De within group variatie is de variatie binnen de groepen die je vergelijkt. Dit is het deel van de variantie die onverklaard blijft binnen de groepen, ofwel de error. In de bovenstaande formule is dat wat onder de streep in de breuk staat. Er is namelijk altijd sprake van variatie in scores, de scores van de betrokken proefpersonen zijn immers nooit allemaal hetzelfde. Dat zien we terug in de standaarddeviatie. Een ANOVA tabel gemaakt met behulp van SPSS ziet er als volgt uit: Tabel 2: Fictief Voorbeeld van ANOVA Tabel SPSS: Descriptive Statistics. 4

5 Tabel 3: Fictief Voorbeeld van ANOVA Tabel SPSS: ANOVA De onderdelen van deze ANOVA-tabel uit SPSS zullen hieronder worden toegelicht. De sum of squares De variantie wordt bij ANOVA weergegeven in sum of squares. De sum of squares kunnen als volgt worden opgedeeld: SStotaal= SSgroep + SSerror Hierbij is SST (SStotaal) de totale spreiding die je observeert. De formule hiervoor is: SST= ij(yij-y )². Dit kan handmatig worden berekend door de totale variantie van y x (n- 1) te doen. Kan ook als volgt worden berekend: SStotaal = SSgroep + SSerror SStotaal = MStotaal x DFtotaal SSG (SSgroep) is de spreiding tussen groepen. Dit wordt in andere situaties ook wel SSmodel of SSbetween genoemd. De formule hiervoor is: SSG= ij(y i y )². Dit kan handmatig worden berekend door van alle gemiddelden van de groepen het totale gemiddelde af te trekken, te kwadrateren en x de n van die groep te doen. Deze uitkomsten tel je vervolgens bij elkaar op. Kan ook als volgt worden berekend: SSgroep = SStotaal - SSerror SSgroep = MSgroep x DFgroep (ofwel MSmodel x DFmodel) SSE (SSerror) is de spreiding binnen groepen die niet verklaard kan worden. Dit wordt ook wel SSwithin genoemd. De formule hiervoor is: SSE= ij(yij y i). Dit kan handmatig worden berekend door de variantie van elke groep x (n - 1) van die groep te doen. Als je dit gedaan hebt tel je dit vervolgens bij elkaar op. De sum of squares error kan ook als volgt worden berekend: SSerror = SStotaal - SSgroep (ofwel SStotaal - SSmodel) SSerror = MSerror x DFerror 5

6 Als je over de sum of squares beschikt, kun je deze gebruiken om samen met de vrijheidsgraden (DF) de mean square te berekenen. De vrijheidsgraden De vrijheidsgraden kunnen als volgt worden berekend: DFtotaal (DFT) = n - 1. DFtotaal kan ook op één van de volgende manieren worden berekend: DFtotaal = DFgroep + DFerror. DFtotaal = SST MST. DFgroep (DFG) = I - 1, waarbij I het aantal groepen van X is. DFgroep kan ook op één van de volgende manieren worden berekend: DFgroep = DFtotaal - DFerror. DFgroep = SSG MSG. DFerror (DFE) = n - I. DFerror kan ook op de één van de volgende manieren worden berekend: DFerror = DFtotaal - DFgroep. DFerror = SSE MSE. 6

College 2 Enkelvoudige Lineaire Regressie

College 2 Enkelvoudige Lineaire Regressie College Enkelvoudige Lineaire Regressie - Leary: Hoofdstuk 7 tot p. 170 (Advanced Correlational Strategies) - MM&C: Hoofdstuk 10 (Inference for Regression) - Aanvullende tekst 3 Jolien Pas ECO 011-01 Correlatie:

Nadere informatie

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling Kwantitatieve Data Analyse (KDA) Onderzoekspracticum Sessie 2 11 Aanpassingen takenboek! Check studienet om eventuele verbeteringen te downloaden! Huidige versie takenboek: 09 Gjalt-Jorn Peters gjp@ou.nl

Nadere informatie

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse 10.1 Eenwegs-variantieanalyse: Als we gegevens hebben verzameld van verschillende groepen en we willen nagaan of de populatiegemiddelden van elkaar verscihllen,

Nadere informatie

College 6 Eenweg Variantie-Analyse

College 6 Eenweg Variantie-Analyse College 6 Eenweg Variantie-Analyse - Leary: Hoofdstuk 11, 1 (t/m p. 55) - MM&C: Hoofdstuk 1 (t/m p. 617), p. 63 t/m p. 66 - Aanvullende tekst 6, 7 en 8 Jolien Pas ECO 01-013 Het Experiment: een voorbeeld

Nadere informatie

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen M, M & C 7.3 Optional Topics in Comparing Distributions: F-toets 6.4 Power & Inference as a Decision 7.1 The power of the t-test 7.3 The power of the sample t- Toetsende Statistiek Week 5. De F-toets &

Nadere informatie

Bij factor ANOVA is er een tweede onafhankelijke variabele in de analyse bij gekomen. Er zijn drie soorten designs mogelijk:

Bij factor ANOVA is er een tweede onafhankelijke variabele in de analyse bij gekomen. Er zijn drie soorten designs mogelijk: 13. Factor ANOVA De theorie achter factor ANOVA (tussengroep) Bij factor ANOVA is er een tweede onafhankelijke variabele in de analyse bij gekomen. Er zijn drie soorten designs mogelijk: 1. Onafhankelijke

Nadere informatie

College 2 Enkelvoudige Lineaire Regressie

College 2 Enkelvoudige Lineaire Regressie College Enkelvoudige Lineaire Regreie - Leary: Hoofdtuk 8 t/m p. 65 - MM&C: Hoofdtuk 0 - Aanvullende tekt 3 (alinea ) Jolien Pa ECO 0-03 Correlatie: Hoe en Waarom? Een correlatie bechrijft niet HOE en

Nadere informatie

College 7 Tweeweg Variantie-Analyse

College 7 Tweeweg Variantie-Analyse College 7 Tweeweg Variantie-Analyse - Leary: Hoofdstuk 12 (p. 255 t/m p. 262) - MM&C: Hoofdstuk 12 (p. 618 t/m p. 623 ), Hoofdstuk 13 - Aanvullende tekst 9, 10, 11 Jolien Pas ECO 2012-2013 Het Experiment

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Statistiek voor A.I. College 14. Dinsdag 30 Oktober

Statistiek voor A.I. College 14. Dinsdag 30 Oktober Statistiek voor A.I. College 14 Dinsdag 30 Oktober 1 / 16 2 Deductieve statistiek Orthodoxe statistiek 2 / 16 Grootte steekproef Voorbeeld NU.nl 26 Oktober 2012: Helft broodjes döner kebab vol bacteriën.

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

Sheets hoorcollege 1 (over paragraaf 7.1) Uitgewerkte opgaven week 6 Antwoorden uitgewerkte opgaven week 6

Sheets hoorcollege 1 (over paragraaf 7.1) Uitgewerkte opgaven week 6 Antwoorden uitgewerkte opgaven week 6 MATERIALEN BIJ STATISTIEK (1991) JANUARI 010 Sheets hoorcollege 1 (over paragraaf 7.1) Uitgewerkte opgaven week 1 Antwoorden uitgewerkte opgaven week 1 11 15 Power-point sheets hoorcollege (over paragraaf

Nadere informatie

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.

Nadere informatie

Statistiek voor A.I. College 12. Dinsdag 23 Oktober

Statistiek voor A.I. College 12. Dinsdag 23 Oktober Statistiek voor A.I. College 12 Dinsdag 23 Oktober 1 / 20 2 Deductieve statistiek Orthodoxe statistiek 2 / 20 3 / 20 Jullie - onderzoek Wivine Tijd waarop je opstaat (uu:mm wordt weergeven als uumm). Histogram

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) op dinsdag 3-03-00, 9- uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en

Nadere informatie

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren:

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 4 1. Toets met behulp van SPSS de hypothese van Evelien in verband met de baardlengte van metalfans. Ga na of je dezelfde conclusies

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

Methoden van Onderzoek en Statistiek, Deeltentamen 2, 29 maart 2012 Versie 2

Methoden van Onderzoek en Statistiek, Deeltentamen 2, 29 maart 2012 Versie 2 Vraag 1. Voor welk van de onderstaande variabelen zal een placebo effect waarschijnlijk het grootst zijn? 1. Haarlengte. 2. Lichaamstemperatuur. 3. Mate van tevredenheid met de behandeling. 4. Hemoglobinegehalte

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 10 Donderdag 20 Oktober 1 / 1 2 Statistiek Vandaag: Hypothese toetsen 2 / 1 3 / 1 Terzijde NU.nl 19 oktober 2011: Veel Facebookvrienden wijst op grotere hersenen. (http://www.nu.nl/wetenschap/2645008/veel-facebookvrienden-wijst-groterehersenen-.html)

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

M M M M M M M M M M M M M M La La La La La La La Mid Mid Mid Mid Mid Mid Mid 65 56 83 68 64 47 59 63 93 65 75 68 68 51

M M M M M M M M M M M M M M La La La La La La La Mid Mid Mid Mid Mid Mid Mid 65 56 83 68 64 47 59 63 93 65 75 68 68 51 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 7 1. Een onderzoeker wil nagaan of de fitheid van jongeren tussen 14 en 18 jaar (laag, matig, hoog) en het geslacht (M, V) een

Nadere informatie

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Eindtoets Toegepaste Biostatistiek

Eindtoets Toegepaste Biostatistiek Eindtoets Toegepaste Biostatistiek 2013-2014 29 januari 2014 Dit tentamen bestaat uit vier opgaven, onderverdeeld in 24 subvragen. Begin bij het maken van een nieuwe opgave steeds op een nieuw antwoordvel.

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

Inhoud. Woord vooraf 13. Hoofdstuk 1. Inductieve statistiek in onderzoek 17. Hoofdstuk 2. Kansverdelingen en kansberekening 28

Inhoud. Woord vooraf 13. Hoofdstuk 1. Inductieve statistiek in onderzoek 17. Hoofdstuk 2. Kansverdelingen en kansberekening 28 Inhoud Woord vooraf 13 Hoofdstuk 1. Inductieve statistiek in onderzoek 17 1.1 Wat is de bedoeling van statistiek? 18 1.2 De empirische cyclus 19 1.3 Het probleem van de inductieve statistiek 20 1.4 Statistische

Nadere informatie

toetskeuze schema verschillen in gemiddelden

toetskeuze schema verschillen in gemiddelden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets week 5: het toetsen van

Nadere informatie

Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 13-14

Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 13-14 Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 1314 Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 1314 Figuren en formules

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets Vandaag Onderzoeksmethoden: Statistiek 4 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap: Hypothese toetsen t-toets

Nadere informatie

werkcollege 7 - D&P10: Hypothesis testing using a single sample

werkcollege 7 - D&P10: Hypothesis testing using a single sample cursus 11 mei 2012 werkcollege 7 - D&P10: Hypothesis testing using a single sample huiswerk opgaven Ch.9: 1, 8, 11, 12, 20, 26, 36, 37, 71 Activities 9.3 en 9.4 experimenten zelf deelnemen als proefpersoon

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

Toetsen van Hypothesen. Het vaststellen van de hypothese

Toetsen van Hypothesen. Het vaststellen van de hypothese Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt

Nadere informatie

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN Interim Toegepaste Biostatistiek deel december 2009 Versie A ANTWOORDEN C 2 B C A 5 C 6 B 7 B 8 B 9 D 0 D C 2 A B A 5 C Lever zowel het antwoordformulier als de interim toets in Versie A 2. Dit tentamen

Nadere informatie

Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen.

Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen. Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen. 1. (a) In de appendix van deze vraag, is een dataset gegeven met de corresponderende

Nadere informatie

variantie: achtergronden en berekening

variantie: achtergronden en berekening variantie: achtergronden en berekening Hugo Quené opleiding Taalwetenschap Universiteit Utrecht 8 sept 1995 aangepast 8 mei 007 1 berekening variantie Als je de variantie met de hand moet uitrekenen, is

Nadere informatie

Variantie-analyse. 3.1 Het twee-steekproevenprobleem III.1

Variantie-analyse. 3.1 Het twee-steekproevenprobleem III.1 III.1 Variantie-analyse 3.1 Het twee-steekproevenprobleem In Statistiek & kansrekening zijn vragen aan de orde geweest zoals heeft invoering van nieuwe veiligheidsmaatregelen geleid tot een vermindering

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing M, M & C, Chapter 6, Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Use and Abuse

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Beschrijvende statistiek Beschrijvende en toetsende statistiek Beschrijvend Samenvatting van gegevens in de steekproef van onderzochte personen (gemiddelde, de standaarddeviatie, tabel, grafiek) Toetsend

Nadere informatie

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)?

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)? Vraag 1. Welk design bevat geen random assignment: a) Een design gebaseerd op matching b) Een design gebaseerd op blocking c) Een factorial design d) Elk van de hierboven genoemde designs Vraag 2. In een

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) Avondopleiding. donderdag 6-6-3, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

College 1 Grondprincipes van de Wetenschap

College 1 Grondprincipes van de Wetenschap College 1 Grondprincipes van de Wetenschap Inleiding M&T 01 013 Hemmo Smit Overzicht van dit college Korte inleiding in het vakgebied Praktische informatie over het vak Wat is wetenschap? De empirische

Nadere informatie

E Y = ln(β 1 x) ln β 1 + β 2

E Y = ln(β 1 x) ln β 1 + β 2 Tentamen Statistische Methoden MST STM 1 april 2009, 9.00 12.00 uur Toelichting. Een antwoord alleen is niet voldoende: er dient een motivatie, toelichting of berekening aanwezig te zijn. Gebruik, tenzij

Nadere informatie

SOCIALE STATISTIEK (deel 2)

SOCIALE STATISTIEK (deel 2) SOCIALE STATISTIEK (deel 2) D. Vanpaemel KU Leuven D. Vanpaemel (KU Leuven) SOCIALE STATISTIEK (deel 2) 1 / 57 Hoofdstuk 5: Schatters en hun verdeling 5.1 Steekproefgemiddelde als toevalsvariabele D. Vanpaemel

Nadere informatie

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA)

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) DATA STRUKTUUR Afhankelijke variabele: Eén kontinue variabele Onafhankelijke variabele(n): - één discrete variabele: één gecontroleerde factor - twee discrete variabelen:

Nadere informatie

b) Het spreidingsdiagram ziet er als volgt uit (de getrokken lijn is de later uit te rekenen lineaire regressie-lijn): hoogte

b) Het spreidingsdiagram ziet er als volgt uit (de getrokken lijn is de later uit te rekenen lineaire regressie-lijn): hoogte Classroom Exercises GEO2-4208 Opgave 7.1 a) Regressie-analyse dicteert hier geen stricte regels voor. Wanneer we echter naar causaliteit kijken (wat wordt door wat bepaald), dan is het duidelijk dat hoogte

Nadere informatie

College Week 1 Grondprincipes van de Wetenschap

College Week 1 Grondprincipes van de Wetenschap College Week 1 Grondprincipes van de Wetenschap Inleiding in de Methoden & Technieken 013 014 Hemmo Smit Overzicht van dit college Korte inleiding in het vakgebied Praktische informatie over het vak Wat

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

Oplossingen hoofdstuk XI

Oplossingen hoofdstuk XI Oplossingen hoofdstuk XI. Hierbij vind je de resultaten van het onderzoek naar de relatie tussen een leestest en een schoolrapport voor lezen. Deze gegevens hebben betrekking op een regressieanalyse bij

Nadere informatie

Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009

Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009 Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009 Opdracht 1 Onderstaande tabel bevat metingen aan de opbrengst van rozen bij verschillende mate van stikstofen fosfortoevoer. rozen/snijvak/dag fosfaatniveau

Nadere informatie

College 3 Meervoudige Lineaire Regressie

College 3 Meervoudige Lineaire Regressie College 3 Meervoudige Lineaire Regressie - Leary: Hoofdstuk 8 p. 165-169 - MM&C: Hoofdstuk 11 - Aanvullende tekst 3 (alinea 2) Jolien Pas ECO 2012-2013 'Computerprogramma voorspelt Top 40-hits Bron: http://www.nu.nl/internet/2696133/computerprogramma-voorspelt-top-40-hits.html

Nadere informatie

Inductieve statistiek voor informatiewetenschappers

Inductieve statistiek voor informatiewetenschappers INDUCTIEVE STATISTIEK VOOR INFORMATIEWETENSCHAPPERS I 570 1 Inductieve statistiek voor informatiewetenschappers HENK VOORBIJ 1. Inleiding Er zijn twee soorten statistiek: beschrijvende en inductieve (ook

Nadere informatie

Wiskunde B - Tentamen 1

Wiskunde B - Tentamen 1 Wiskunde B - Tentamen Tentamen 57 Wiskunde B voor CiT vrijdag januari 5 van 9. tot. uur Dit tentamen bestaat uit 6 opgaven, formulebladen en tabellen. Vermeld ook uw studentnummer op uw werk en tentamenbriefje.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 1 November 1 / 26 2 Statistiek Vandaag: Power Grootte steekproef Filosofie 2 / 26 Power 3 / 26 Power Def. De power (kracht) van een hypothese toets is (1 β),

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

antwoorden bij tentamen Statistiek

antwoorden bij tentamen Statistiek antwoorden bij tentamen Statistiek cursuscode 200300427, cursusjaar 2003-2004, blok 2 woensdag 28 januari 2004, 9:00-12:00 uur, Kromme Nieuwegracht 80, zaal 0.06 Schrijf je naam en student-nummer op elk

Nadere informatie

EXAMEN : Basisbegrippen statistiek. Examen 16 januari 2015

EXAMEN : Basisbegrippen statistiek. Examen 16 januari 2015 EXAMEN : Basisbegrippen statistiek Examen 16 januari 2015 Oplossingen 1 Vraag 1 a) Leg in max. 3 lijnen uit wat een dichtheidsfunctie is en illustreer met 3 duidelijk verschillende voorbeelden. Een (kans)

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets Vandaag Onderzoeksmethoden: Statistiek 4 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap: Hypothese toetsen t-toets

Nadere informatie

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen)

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) 8.16. Men wenst H 0 : p 0.2 te testen tegenover H 1 : p 0.4 voor een binomiale distributie met n 10. Bepaal α en β als de testfunctie gegeven

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Paragraaf 10.1 : Populatie en Steekproef

Paragraaf 10.1 : Populatie en Steekproef Hoofdstuk 10 Statistische Variabelen (H5 Wis A) Pagina 1 van 8 Paragraaf 10.1 : Populatie en Steekproef Les 1 : Herhaling Definitie Betrouwbaarheidsinterval (BI) Betrouwbaarheidsinterval (BI) = { de waarden

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Schriftelijk tentamen - UITWERKINGEN

Schriftelijk tentamen - UITWERKINGEN Business Administration / Bedrijfskunde Schriftelijk tentamen - UITWERKINGEN Algemeen Vak : Statistische Methoden Groep : niet van toepassing en Technieken Vakcode : BKB009t Soort tentamen : gesloten boek

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Inhoudsopgave. Deel I Schatters en toetsen 1

Inhoudsopgave. Deel I Schatters en toetsen 1 Inhoudsopgave Deel I Schatters en toetsen 1 1 Hetschattenvanpopulatieparameters.................. 3 1.1 Inleiding:schatterversusschatting................. 3 1.2 Hetschattenvaneengemiddelde..................

Nadere informatie

Introductie tot de statistiek

Introductie tot de statistiek Introductie tot de statistiek Hogeschool Gent 04/05/2010 Inhoudsopgave 1 Basisbegrippen en beschrijvende statistiek 8 1.1 Onderzoek............................ 8 1.1.1 Data........................... 8

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 3 februari 2012

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 3 februari 2012 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 3 februari 2012 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 27 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 30 januari 2009 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 2 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking

Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking Opdracht 9a ----------- t-procedures voor een enkelvoudige steekproef Voor de meting van de leesvaardigheid van kinderen wordt als toets de Degree of Reading Power (DRP) gebruikt. In een onderzoek onder

Nadere informatie

Faculteit Economie en Bedrijfskunde studiejaar

Faculteit Economie en Bedrijfskunde studiejaar Faculteit Economie en Bedrijfskunde studiejaar 03-04 VOORBLAD Op deze eerste pagina vindt u belangrijke informatie met betrekking tot dit tentamen. Lees de hierna volgende informatie aandachtig door voordat

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 5 februari 2010

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 5 februari 2010 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 5 februari - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 9 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op vrijdag 29-04-2004, 9-2 uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Hoofdstuk 2. Aanduiding 1: Aanduiding 2: Formule 1: Formule 2: s2 x = Formule 3: s x = Formule 4: X nieuw = X oud ± a betekent ook

Hoofdstuk 2. Aanduiding 1: Aanduiding 2: Formule 1: Formule 2: s2 x = Formule 3: s x = Formule 4: X nieuw = X oud ± a betekent ook Hoofdstuk 2 Aanduiding 1: X ij Aanduiding 2: Formule 1: Formule 2: s2 x = Formule 3: s x = Formule 4: X nieuw = X oud ± a betekent ook ± a Formule 5: X nieuw = bx oud betekent t X nieuw = X oud/b betekent

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages.

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages. MARGES EN SIGNIFICANTIE BIJ STEEKPROEFRESULTATEN. De marges van percentages Metingen via een steekproef leveren een schatting van de werkelijkheid. Het toevalskarakter van de steekproef heeft als consequentie,

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Bestaat er een betekenisvol verband tussen het geslacht en het voorkomen van dyslexie? Gebruik de Chi-kwadraattoets voor kruistabellen.

Bestaat er een betekenisvol verband tussen het geslacht en het voorkomen van dyslexie? Gebruik de Chi-kwadraattoets voor kruistabellen. Oplossingen hoofdstuk IX 1. Bestaat er een verband tussen het geslacht en het voorkomen van dyslexie? Uit een aselecte steekproef van 00 leerlingen (waarvan 50% jongens en 50% meisjes) uit het basisonderwijs

Nadere informatie

Opgaven hoofdstuk 10 Het ontwerpen van experimenten en variantieanalyse

Opgaven hoofdstuk 10 Het ontwerpen van experimenten en variantieanalyse Opgaven hoofdstuk 10 Het ontwerpen van experimenten en variantieanalyse 10.1 Wat zijn de behandelingen voor een ontworpen experiment dat één kwalitatieve factor met niveaus A, B, C en D gebruikt? 10.2

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

Toegepaste Statistiek, Week 6 1

Toegepaste Statistiek, Week 6 1 Toegepaste Statistiek, Week 6 1 Eén ordinale en één nominale variabele Nominale variabele met TWEE categorieën, 1 en 2 Ordinale variabele normaal verdeeld binnen iedere categorie? Variantie in beide categorieën

Nadere informatie

duidelijk. Welke groepen verschillen wel/niet van elkaar?wat zijn je hypothesen?

duidelijk. Welke groepen verschillen wel/niet van elkaar?wat zijn je hypothesen? Opdracht 3 t-test ANOVA one way ANOVA two way 33038 discussie post-hoc is niet duidelijk. Welke groepen verschillen wel/niet van elkaar?wat zijn je hypothesen? je behandeling van de two-way anova is niet

Nadere informatie

Hoofdstuk 19. Voorspellende analyse bij marktonderzoek

Hoofdstuk 19. Voorspellende analyse bij marktonderzoek Hoofdstuk 19 Voorspellende analyse bij marktonderzoek Voorspellen begrijpen Voorspelling: een uitspraak over wat er naar verwachting in de toekomst zal gebeuren op basis van ervaringen uit het verleden

Nadere informatie